

Improving Web
Services Security

Scenarios and Implementation Guidance for WCF

Feedback: WCFSec@microsoft.com

Information in this document, including URL and other Internet Web site references, is
subject to change without notice. Unless otherwise noted, the example companies,
organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious, and no association with any real company,
organization, product, domain name, e-mail address, logo, person, place, or event is
intended or should be inferred. Complying with all applicable copyright laws is the
responsibility of the user. Without limiting the rights under copyright, no part of this
document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as expressly
provided in any written license agreement from Microsoft, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or other
intellectual property.

© 2008 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Windows Server, Active Directory, SQL Server, and Visual Studio
are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of
their respective owners.

Improving Web Services
Security

Scenarios and Implementation Guidance for WCF

patterns & practices

J.D. Meier

Carlos Farre
Jason Taylor

Prashant Bansode
Steve Gregersen

Madhu Sundararajan
Rob Boucher

Foreword by Nicholas Allen
The computer industry has come to a realization – based on many years of slowly
learning from painful experiences – that computer networks are hostile environments.
Nevertheless, computer users demand as part of their basic expectations that
applications take advantage of the ubiquitous and continuously available connectivity at
their disposal to deliver a rich connected experience.

It is now your task to design and assemble the loosely coupled service components that
you have available in a way that blunts threats and thwarts attacks on the user’s
precious assets. Your applications must withstand the hazards of living in a hostile
networked environment. To make that possible, you must understand the risks that
your applications face and you must be certain that the remedies you put in place
properly mitigate the dangers of those risks.

As someone who has been through several rounds of security and threat modeling for
Windows Communication Foundation, I can say without hesitation that knowledge and
experience are your greatest assets for designing secure Web service applications. The
trick is to gain as much of that knowledge as possible from the painful experiences of
other people rather than painful experiences of your own.

J.D. Meier and team have done a fantastic job of assembling and digesting countless
practical experiences into a convenient and centralized resource. Practitioners of
service-oriented development with WCF will want to use this guide as both a means of
learning about the fundamentals of Web service security and a reference for getting
specific, step-by-step instructions for dozens of the most common security problems. I
enjoy that this guide collects together several different approaches for learning about
and implementing security solutions. By combining a variety of formats – scenarios,
how-to articles, and guidelines are only a sample of the offered modes – solutions are
both reinforced and made more easily discoverable through different entry points.

The reason that I’m so excited to see Improving Web Services Security: Scenarios and
Implementation Guidance for WCF is that having a secure system has become such a
deep and pervasive requirement that security has to be treated as part and parcel of
functionality. Having the Guide to make WCF security understandable and accessible
adds value to the WCF platform by improving its usability as a whole. I highly
recommend this book to anyone involved in the development, deployment, or
management of WCF applications. This book has something of value for you whether it
is read end to end or consumed tactically in parts to solve a specific problem. Security is
too intrinsically important to pass up this aid to your success.

Nicholas Allen
Program Manager, Windows Communication Foundation
May 2008

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 4

Foreword by Rockford Lhotka
Looking into the future, it is clear that Windows Communication Foundation (WCF) is one of the
core pillars of the Microsoft .NET Framework. As the logical successor to ASMX Web services,
Web service extensions, Remoting, Microsoft Message Queuing (MSMQ), and Enterprise
Services, WCF is the single API for any cross-process or cross-network communication needs in
.NET. This is true for both service-oriented and n-tier client/server scenarios, as WCF effectively
supports both models.

While Visual Studio continues to improve its tool support for WCF, the reality is that WCF is a
very large and complex technology. Tooling alone can’t simplify all the options enough to make
the use of WCF truly easy. It is critical that developers using WCF understand the various
security configuration options, how they interact with the available bindings, and the
ramifications of their choices.

Although understanding the options and their consequences is critical, one must ultimately
implement the decisions. Typically, this is done through configuration of WCF, which is perhaps
the hardest and most complex part of any WCF project. Even with the configuration tools
available, configuring WCF for even relatively simple security models can be a very painstaking
and time-consuming task.
This is why the guidance you are about to read is so exciting! It opens with a section covering
the security concerns you’ll need to address when building service-oriented systems. The
discussion then moves on to coverage of the concepts and reasoning behind the available
security options in WCF, and how choices made here can impact your options elsewhere in
WCF. Armed with that background, you can then read the sections covering specific scenarios
for both Internet and intranet application models. Finally come what I view as the jewels of this
guidance: the detailed how-to walkthroughs for configuring WCF as needed to meet your
security requirements.

Nowhere else will you find such unified content describing the concepts, reasoning, and
practical application of security in Windows Communication Foundation.

Rockford Lhotka
Principal Technology Evangelist, Magenic
May 2008

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 5

Introduction
This guide shows you how to improve security for your WCF services. It also shows you how to
effectively design your authentication, authorization, and communication strategies for
Microsoft® Windows Communication Foundation.

The information in this guide is based on practices learned from customer feedback and
product support, as well as experience gained in the field and while implementing real
solutions. The guidance is task-based and presented in the following parts:

• Part I – Security Fundamentals for Web Services gives you a quick overview of fundamental
security concepts as they relate to services, service-oriented design, and Service-Oriented
Architecture (SOA).

• Part II – WCF Security Fundamentals gives you a firm foundation in key WCF security
concepts, with special attention on authentication, authorization, and secure
communication, as well as WCF binding configurations.

• Part III – Intranet Application Scenarios shows you a set of end-to-end intranet application
scenarios that you can use to jump-start your application architecture designs, with a focus
on authentication, authorization, and communication for your intranet from a WCF
perspective.

• Part IV – Internet Application Scenarios shows you a set of end-to-end Internet application
scenarios that you can use to jump-start your application architecture design for the
Internet from a WCF perspective.

WCF / Services Security
Many factors and decisions combine to improve security in WCF services and applications. This
guide focuses on the following:

• Authentication, authorization, and communication design for your services
• Solution patterns for common distributed application scenarios using WCF
• Principles, patterns, and practices for improving key security aspects in services

The following diagram illustrates a common solution pattern for WCF intranet scenarios:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 6

ASP.NETIIS

SQL
Server

Alice

Bob

Mary

TLS/SSL
(Privacy/
Integrity)

Integrated Windows
Authentication

Web Server

Database Server

WCF
(Self Hosted)

Application Server

Windows
Authentication

WCF
Identity

Transport
Security
(Privacy/
Integrity)

IPSec
(Optional)

(Privacy/
Integrity)

Alice

Bob

Mary Windows
Authentication

Windows
Authentication /

Windows Groups

ASP.NET
Identity

WCF Proxy

netTCPBinding

Figure 1. Example WCF Implementation Solution Pattern

Scope of This Guide
This guide is focused on key security aspects of WCF. The guide addresses security across the
three primary physical tiers: the client, remote application server, and database server. Clients
include Microsoft Windows Forms, ASP.NET, and WCF.

Out of Scope
The following are outside the scope for this guide:

• Federation
• Claims authorization

Why We Wrote This Guide
From our own experience with WCF, and through conversations with customers and Microsoft
employees who work in the field, we determined that there was significant demand for a guide
that would show how to use WCF in the real world. While there is information in the product
documentation, in blog posts, and in forums, there has been no single place to find proven
practices for the effective use of WCF in the context of line-of-business (LOB) applications
under real-world constraints.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 7

Who Should Read This Guide
This guide is targeted at individuals involved in building applications with WCF. The following
are examples of roles that would benefit from this guidance:

• A development team that wants to adopt WCF
• A software architect or developer looking to get the most out of WCF, with regard to

designing his or her application security
• Interested parties investigating the use of WCF who don’t know how well it would work for

their particular deployment scenarios and constraints
• Individuals tasked with learning WCF security practices

How to Use This Guide
Use the first part of the guide to gain a firm foundation in key security concepts and WCF. Next,
use the application scenarios to evaluate potential designs for your own scenario. The
application scenarios are skeletal, end-to-end examples of how you might design your
authentication, authorization, and communication from a security perspective. Use the
appendix of “Guidelines,” “Practices,” “How To” articles, and “Questions and Answers” to dive
into implementation details. This separation allows you to understand the topics first and then
explore the details as you see fit.

Organization of This Guide
You can read this guide from end to end, or you can read only the chapters you need for your
job.

Parts
This guide is divided into four parts:

• Part I – Security Fundamentals for Web Services
• Part II – WCF Security Fundamentals
• Part III – Intranet Application Scenarios
• Part IV – Internet Application Scenarios

Part I – Security Fundamentals for Web Services
• Chapter 01 – Security Fundamentals for Web Services
• Chapter 02 – Threats and Countermeasures for Web Services
• Chapter 03 – Security Design Guidelines for Web Services

Part II – WCF Security Fundamentals
• Chapter 04 – WCF Security Fundamentals
• Chapter 05 – Authentication, Authorization, and Identities in WCF
• Chapter 06 – Impersonation and Delegation in WCF
• Chapter 07 – Message and Transport Security
• Chapter 08 – Bindings

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 8

Part III – Intranet Application Scenarios
• Chapter 09 – Intranet – Web to Remote WCF Using Transport Security (Original Caller, TCP)
• Chapter 10 – Intranet – Web to Remote WCF Using Transport Security (Trusted Subsystem,

HTTP)
• Chapter 11 – Intranet – Web to Remote WCF Using Transport Security (Trusted Subsystem

TCP)
• Chapter 12 – Intranet – Windows Forms to Remote WCF Using Transport Security (Original

Caller, TCP)

Part IV – Internet Application Scenarios
• Chapter 13 – Internet – WCF and ASMX Client to Remote WCF Using Transport Security

(Trusted Subsystem, HTTP)
• Chapter 14 – Internet – Web to Remote WCF Using Transport Security (Trusted Subsystem,

TCP)
• Chapter 15 – Internet – Windows Forms Client to Remote WCF Using Message Security

(Original Caller, HTTP)

Checklist
• WCF Security Checklist

Guidelines
• WCF Security Guidelines

Practices
• WCF Security Practices at a Glance

Questions and Answers
• WCF Security Questions and Answers (Q&A)

“How To” Articles
• How To – Audit and Log Security Events in WCF Calling from Windows Forms
• How To – Create and Install Temporary Certificates in WCF for Message Security During

Development
• How To – Create and Install Temporary Certificates in WCF for Transport Security During

Development
• How To – Create and Install Temporary Client Certificates in WCF During Development
• How To – Host WCF in a Windows Service Using TCP
• How To – Impersonate the Original Caller in WCF Calling from a Web Application
• How To – Impersonate the Original Caller in WCF Calling from Windows Forms
• How To – Perform Input Validation in WCF
• How To – Perform Message Validation with Schema Validation in WCF

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 9

• How To – Use basicHttpBinding with Windows Authentication and TransportCredentialOnly
in WCF from Windows Forms

• How To – Use Certificate Authentication and Message Security in WCF calling from
Windows Forms

• How To – Use Certificate Authentication and Transport Security in WCF Calling from
Windows Forms

• How To – Use Delegation for Flowing the Original Caller Credentials to the Back-end in WCF
Calling from Windows Forms

• How To – Use Health Monitoring to Instrument a WCF Service for Security
• How To – Use netTcpBinding with Windows Authentication and Message Security in WCF

from Windows Forms
• How To – Use netTcpBinding with Windows Authentication and Transport Security in WCF

from Windows Forms
• How To – Use Protocol Transition for Impersonating and Delegating the Original Caller in

WCF
• How To – Use the SQL Server Role Provider with Username Authentication in WCF Calling

from Windows Forms
• How To – Use SQL Server Role Provider with Windows Authentication in WCF Calling from

Windows Forms
• How To – Use Username Authentication with Custom Authentication and Message Security

in WCF Calling from Windows Forms
• How To – Use Username Authentication with the SQL Server Membership Provider and

Message Security in WCF Calling from Windows Forms
• How To – Use Username Authentication with Transport Security in WCF Calling from

Windows Forms
• How To – Use wsHttpBinding with Username Authentication and

TransportWithMessageCredential in WCF Calling from Windows Forms
• How To – Use wsHttpBinding with Windows Authentication and Message Security in WCF

Calling from Windows Forms
• How To – Use wsHttpBinding with Windows Authentication and Transport Security in WCF

Calling from Windows Forms

Resources
• WCF Security Resources

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 10

Feedback and Support
We have made every effort to ensure the accuracy of this guide and its companion content.

Feedback on the Guide
We’ve provided a 3TUshort questionaireU3T on the Internet that would only take 5 to 10 minutes max
to fill out. Copy these questions to an email message and send the answers to
3TUWCFSec@microsoft.comU3T.

We are also particularly interested in feedback regarding the following:

• Technical issues specific to recommendations
• Usefulness and usability issues

Any input can be sent in e-mail to 3 TUWCFSec@microsoft.comU3T .

Technical Support
Technical support for the Microsoft products and technologies referenced in this guide is
provided by Microsoft Product Support Services (PSS). For product support information, please
visit the Microsoft Product Support Web site at 3TUhttp://support.microsoft.comU3T .

Community Support
Microsoft MSDN® Newsgroups:

Forum Address
Windows
Communication
Foundation
("Indigo")

3TUhttp://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=118&SiteID=1U3T

Architecture
General

3TUhttp://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=228&SiteID=1U3T

The Team Who Brought You This Guide
This guide was created by the following team members:

• J.D. Meier
• Carlos Farre
• Jason Taylor
• Prashant Bansode
• Steve Gregersen
• Madhu Sundararajan
• Rob Boucher

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 11

Contributors and Reviewers
• External Contributors / Reviewers: Andy Eunson; Anil John; Anu Rajendra; Brandon

Bohling; Chaitanya Bijwe; Daniel Root; David P. Romig, Sr.; Dennis Rea; Kevin Lam; Michele
Leroux Bustamante; Parameswaran Vaideeswaran; Rockford Lhotka; Rudolph Araujo;
Santosh Bejugam

• Microsoft Contributors / Reviewers: Alik Levin; Brandon Blazer; Brent Schmaltz; Curt Smith;
David Bradley; Dmitri Ossipov; Jan Alexander; Jason Hogg; Jason Pang; John Steer; Marc
Goodner; Mark Fussell; Martin Gudgin; Martin Petersen-Frey; Mike de Libero; Mohammad
Al-Sabt; Nobuyuki Akama; Ralph Squillace; Richard Lewis; Rick Saling; Rohit Sharma; Scott
Mason; Sidd Shenoy; Sidney Higa; Stuart Kwan; Suwat Chitphakdibodin; T.R. Vishwanath;
Todd Kutzke; Todd West; Vijay Gajjala; Vittorio Bertocci; Wenlong Dong; Yann Christensen;
Yavor Georgiev

Tell Us About Your Success
If this guide helps you, we would like to know. Tell us by writing a short summary of the
problems you faced and how this guide helped you out. Submit your summary to:
3TUMyStory@Microsoft.comU3 T .

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 12

Solutions at a Glance

Summary
This chapter provides an at-a-glance roadmap into the various solutions presented in this guide.
Use this chapter to find fast answers to common WCF security-related problems. This roadmap
summarizes the solutions presented in this guide and provides links to appropriate material so
that you can easily find the information you need and solutions to specific problems.

Security Engineering

• How to identify and evaluate threats

Use threat modeling to systematically identify threats rather than applying security in a
haphazard manner. Next, rate the threats based on the risk of an attack or occurrence of a
security compromise and the potential damage that could result. This allows you to tackle
threats in the appropriate order.

For more information about creating a threat model and evaluating threat risks, see “Threat
Modeling Web Applications” at http://msdn.microsoft.com/en-us/library/ms978516.aspx .

• How to create secure designs
Use tried and tested design principles. Focus on the critical areas where the correct approach
is essential and where mistakes are often made. This guide refers to these as application
vulnerability categories. They include input validation, authentication, authorization,
configuration management, sensitive data protection, session management, cryptography,
parameter manipulation, exception management, and auditing and logging considerations.
Pay serious attention to deployment issues including topologies, network infrastructure,
security policies, and procedures.

You can use the end-to-end application scenarios in this guide to help identify candidate
authentication and authorization strategies.

• How to perform an design inspections
Review your application’s design in relation to the target deployment environment and
associated security policies. Consider the restrictions imposed by the underlying
infrastructure layer security, including perimeter networks, firewalls, remote application
servers, and so on. Use application vulnerability categories to help partition your application,
and analyze the approach taken for each area.

You can use the guidelines in this guide to create customized guidelines for your teams.

• How to perform security code inspections
You can use the following general technique for performing security inspections:

1. Identify security code review objectives. Establish goals and constraints for the review.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 13

2. Perform a preliminary scan. Use static analysis to find an initial set of security issues and
to improve your understanding of where you will be most likely to find security issues
when you review the code more fully.

3. Review the code for security issues. Review the code thoroughly with the goal of finding
security vulnerabilities that are common to many applications. You can use the results of
step 2 to focus your analysis.

4. Review for security issues unique to the architecture. Complete a final analysis by
looking for security issues that relate to the unique architecture of your application. This
step is most important if you have implemented a custom security mechanism or any
feature designed specifically to mitigate a known security threat.

For more information on performing code inspections, see “How To: Perform a Code Review for
Managed Code (“Baseline Activity”)” at http://msdn.microsoft.com/en-
us/library/ms998364.aspx.

• How to perform security deployment inspections
Inspect your service’s run-time behavior and configuration. This includes your service’s
accounts, ports, and protocols.

Message and Transport Security

• How to choose between message and transport security

The transport-level security model is simple, well understood, and adequate for many
(primarily intranet-based) scenarios, in which the transport mechanisms and endpoint
configuration can be tightly controlled.

The main issues with transport-level security are:
• Security becomes tightly coupled to, and dependent on, the underlying platform, transport

mechanism, and security service provider (NTLM, Kerberos, and so on).
• Security is applied on a point-to-point basis, with no provision for multiple hops and

routing through intermediate application nodes.

Message-level security:
• Can be independent from the underlying transport.
• Enables a heterogeneous security architecture.
• Provides end-to-end security and accommodates message routing through intermediate

application nodes.
• Supports multiple encryption technologies.
• Supports non-repudiation.

Authentication / Authorization

• How to design an effective authentication and authorization strategy

Use the following pattern to work through your authentication and authorization strategies:
1. Identify your user stores.
2. Identify your role stores.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 14

3. Identify resources you need to access and operations you need to perform.
4. Identify which identities need to access the resources and perform the operations.
5. Choose your authentication and authorization strategies.

• How to authenticate users for intranet applications

The most common scenarios for intranet applications include any of the following patterns:
• Username authentication with the SQL Server membership provider
• Windows authentication with Active Directory
• Username authentication with a custom store
• Certificate authentication with Windows

• How to authenticate users for Internet applications

The most common scenarios for Internet applications include any of the following patterns:
• Username authentication with the SQL Server membership provider
• Basic authentication with Active Directory
• Username authentication with a custom store
• Certificate authentication with Windows

• How to authorize callers to perform operations and access resources

Consider the following options:
• If you are using Windows authentication, use WindowsTokenRoleProvider for role

authorization using Windows groups.
• If you are using Windows authentication, use SqlRoleProvider for role authorization.
• If you are using Windows authentication, use AzMan policy store in an XML file, in

Active Directory, or in Active Directory Application Mode (ADAM). Consider using
AuthorizationStoreRoleProvider for role authorization.

• If you are using username authentication with SqlMembershipProvider, use
SqlRoleProvider for role authorization.

• If you are using username authentication mapped to Windows, use
WindowsTokenRoleProvider for role authorization using Windows groups.

• If you are using username authentication mapped to Windows, use AzMan policy store in
an XML file, in Active Directory, or in Active Directory Application Mode (ADAM).
Consider using AuthorizationStoreRoleProvider for role authorization.

• If you are using certificate authentication with certificates mapped to Windows accounts,
use WindowsTokenRoleProvider for role authorization using Windows groups.

• If you are using certificate authentication with certificates mapped to Windows accounts,
use AzMan policy store in an XML file, in Active Directory, or in Active Directory
Application Mode (ADAM). Consider using AuthorizationStoreRoleProvider for role
authorization.

• How to choose effective strategies for authorization

You can use the following resource access strategies:
• Role-based. Map users to roles and check whether a role can perform the requested

operation.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 15

• Identity-based. Authorize users based on their identity.
• Claims-based. Grant or deny access to the operation or resources based on the client’s

claims.
• Resource-based. Protect resources using access control lists (ACLs).

• How to choose between trusted subsystem and impersonation/delegation

With the trusted subsystem model, you use the process identity to access downstream
network resources such as databases. With impersonation/delegation, you use
impersonation and use the original caller’s identity to access the database. The trusted
subsystem model offers better scalability because your application benefits from efficient
connection pooling. You also minimize back-end ACL management. Only the trusted
identity can access the database. Your end users have no direct access. In the trusted
subsystem model, the service is granted broad access to back-end resources. As a result, a
compromised service could potentially make it easier for an attacker to gain broad access
to back-end resources. Keeping the service account’s credentials protected is essential.
With impersonation/delegation, you benefit from operating system auditing because you
can track which users have attempted to access specific resources. You can also enforce
granular access controls in the database, and individual user accounts can be restricted
independently of one another in the database.

• How to choose between resource-based and role-based authorization
Your authorization strategy may also be influenced by your choice of authentication type.
Consider the following:

Resource-based authorization considerations:

• If you are using certificate authentication, you will need to map certificates to Windows
groups.

• If you are using username authentication, you will need to perform protocol transition.
• Windows authentication will work with resource-based authorization by default.
• Basic authentication will work with resource-based authorization by default.

Note: You need to impersonate for resource-based authorization.

Role-based authorization considerations:

• If you are using certificate authentication, you will need to map certificates to Windows
groups.

• If you are using username authentication with Windows groups, you will need to perform
protocol transition.

• Username authentication will work with ASP.NET roles by default.
• Windows authentication will work with Windows groups by default.
• Basic authentication will work with Windows groups by default.

Patterns

• How to leverage Web services security patterns

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 16

Familiarize yourself with the following patterns, then evaluate and apply the patterns when
they make sense for your particular scenario:
• Brokered Authentication
• Brokered Authentication: Kerberos
• Brokered Authentication: X509 PKI
• Brokered Authentication: STS
• Data Confidentiality
• Data Origin Authentication
• Direct Authentication
• Exception Shielding
• Message Replay Detection
• Message Validator
• Perimeter Service Router
• Protocol Transition with Constrained Delegation
• Trusted Subsystem

For information on the patterns above, see the patterns & practices “Web Services Security”
guide at http://msdn.microsoft.com/en-us/library/aa480545.aspx.

Auditing and Logging

• How to enable auditing in WCF

You can enable auditing in the configuration file.

• How to instrument your WCF service
You can use ASP.NET Health Monitoring.

• How to improve your auditing in WCF

Audit for the following:
• User management events. Instrument your application and monitor user-management

events such as password resets, password changes, account lockout, user registration, and
authentication events. Doing this helps you to detect and react to potentially suspicious
behavior. It also enables you to gather operations data; for example, to track who is
accessing your application and when user account passwords need to be reset.

• Unusual or suspicious activity. Instrument your application and monitor events that
might indicate unusual or suspicious activity. This enables you to detect and react to
potential problems as early as possible. Unusual activity could include replays of old
authentication tickets or too many login attempts over a specific period of time.

• Significant business operations. Track significant business operations. For example,
instrument your application to record access to particularly sensitive methods and
business logic.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 17

Bindings

• How to choose the right WCF binding

Consider the following scenarios:
• If you need to support clients over the Internet, consider using wsHttpBinding.
• If you need to expose your WCF service to legacy clients such as an ASMX Web service,

use basicHttpBinding.
• If you need to support WCF clients within an intranet, consider using netTcpBinding.
• If you need to support WCF clients on the same machine, consider using

netNamedPipeBinding.
• If you need to support disconnected queued calls, use netMsmqBinding.
• If you need to support bidirectional communication between the WCF client and WCF

service, use wsDualHttpBinding or netTcpBinding.

• How to create a custom binding

To create a custom binding, in the WCF configuration file, select a set of binding elements
that are supposed to be constructed in a specific order. Those binding elements refer to
transaction, reliable message, security, encoding formats, and transport protocol.

• How to support multiple authentication and authorization strategies

Use multiple bindings to support multiple authentication and authorization strategies. For
instance, you could use basicHttpBinding with username authentication to support legacy
ASMX clients, and wsHttpBinding with Windows authentication to support newer WCF-
enabled clients.

Exception Management

• How to handle exceptions in WCF

Use fault contracts to handle exceptions in WCF. By using the FaultContract attribute in a
service contract, you can specify the possible faults that can occur in your WCF service. This
prevents you from exposing any other exception details to the clients.
• Apply the FaultContract attribute directly on a contract operation, specifying the

exception type that can be thrown as shown in the following example:

 [OperationContract]
 [FaultContract(typeof(DivideByZeroException))]
 double Divide(double number1,double number2);

Impersonation / Delegation

• How to impersonate at the service level

You can impersonate the entire service by setting the impersonateCallerForAllOperations
attribute to "true" in the WCF configuration file. If you are impersonating all operations in

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 18

the service, the Impersonation property of the OperationBehaviorAttribute applied to
each operation will override. Therefore if the property on the operation is set to something
other than Allowed or Required, impersonation will be turned off for that operation.

• How to impersonate at the operation level

You can impersonate declaratively by applying the OperationBehavior attribute on any
operation that requires client impersonation. Use impersonation selectively and only on the
operations that need it, since by nature impersonation increases the potential attack surface of
your application.

• How to flow the original caller to the back end (double hop)
If your WCF service runs under the Network Service account, configure your computer
account in Active Directory to be trusted for delegation. If your application runs under a
custom domain account, you must register a service principal name (SPN) in Active
Directory in order to associate the domain account with the HTTP service on your WCF
server. You then configure your domain account in Active Directory to be trusted for
delegation.
Impersonate the original caller imperatively or declaratively – before you access the back-
end resource, the original caller will be delegated to be authenticated and authorized at the
back end.

Message Validation

• How to perform parameter validation

Use parameter inspectors to validate for length, range, format, and type. You can validate
parameters on both the client and the service. The server should not trust client-side
validation, but you can use it to reduce round-trips for incorrect input. The following are the
key steps you need to perform:
1. Write a class that implements a parameter inspector.
2. Write class that implements endpoint behavior.
3. Write a class that implements a behavior element.
4. Add the behavior element as an extensibility point in the WCF configuration file.
5. Create an endpoint behavior that uses the behavior element as an extensibility point.
6. Configure the endpoint to use the endpoint behavior.

• How to perform message validation
Use schemas and regular expressions to validate for length, range, format, and type. Schemas
are preferred for validating complex types (classes and message contracts). For performance
reasons, you will want to load the schema from the cache (in the Message Inspector). You
can validate incoming and outgoing messages on the server side as well as incoming and
outgoing messages on the client side. The server should not trust client-side validation, but
you can use it to reduce round-trips for incorrect input.
The following are the key steps you need to perform:
1. Write a class that implements Message inspector.
2. Write a class that implements endpoint behavior.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 19

3. Write a class that implements a behavior element.
4. Add the behavior element as an extensibility point in the WCF configuration file.
5. Create an endpoint behavior that uses the behavior element as an extensibility point.
6. Configure the endpoint to use the endpoint behavior.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 20

Fast Track – A Guide for Getting Started and Applying the
Guidance

Summary
This “fast track” chapter highlights the basic approach taken by this guide to help you design
and develop WCF applications with security in mind. Use this chapter to understand the basic
approach, security engineering activities, key scenarios, the security frame, and best practices
for the development of secure WCF applications with security.

Goal and Scope
This guide shows you how to design and build secure Web services with WCF.

It includes:

• End-to-end application scenarios
• Guidelines
• Step-by-step How To articles

The Approach
The keys to building secure services include:

• Identify your security objectives. This includes identifying your particular security
requirements.

• Know your threats. Know which threats are relevant for your scenarios and context. Threat
modeling is an effective technique for helping you identify relevant threats and
vulnerabilities. Your objectives will help you prioritize your threats and vulnerabilities.
Based on the threat model, developers address vulnerabilities, and testers verify that the
developers closed the issues.

• Apply proven principles, patterns, and practices. By using proven principles, patterns, and
practices, you can eliminate classes of security problems. You can also leverage lessons
learned. Patterns are effectively reusable solutions and typically encapsulate underlying
principles. While principles, patterns, and practices are a good starting point, you should
never blindly adopt them — you need to evaluate whether they make sense for your
specific scenario.

• Apply effective security engineering throughout the application life cycle. It is important to
consider security throughout your application life cycle. You should start by setting your
security objectives. Threat modeling will help shape your design and make key trade-offs.
Security design, code, and deployment inspections, along with testing, will improve your
overall security posture.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 21

patterns & practices Security Engineering
The Microsoft patterns & practices Security Engineering approach includes specific security-
related activities that help you meet your application security objectives.

Planning

Requirements
and Analysis

Architecture
and Design

Development

Testing

Deployment

Maintenance

Functional Requirements
Non Functional Requirements
Technology Requirements

Design Guidelines
Architecture and Design Review

Unit Tests
Code Review
Daily Builds

Integration Testing
System Testing

Deployment Review

Core Security

Security Objectives

Security Design Guidelines
Threat Modeling
Security Design Inspection

Security Code Inspection

Security Testing

Security Deployment Inspection

Activities

Figure 1. Security Engineering Activities

Summary of Key Security Engineering Activities
The Microsoft patterns & practices Security Engineering approach extends these proven core
activities to create security-specific activities. These activities include:

• Security objectives. Setting objectives helps you scope and prioritize your work by setting
boundaries and constraints. Setting security objectives helps you identify where to start,
how to proceed, and when you are done.

• Threat modeling. Threat modeling is an engineering technique that can help you identify
threats, attacks, vulnerabilities, and countermeasures that could affect your application.
You can use threat modeling to shape your application’s design, meet your company’s
security objectives, and reduce risk.

• Security design guidelines. Creating design guidelines is a common practice at the start of
an application project, in order to guide development and share knowledge across the
team. Effective design guidelines for security organize security principles, practices, and
patterns by actionable categories.

• Security design inspection. Security design inspections are an effective way to identify
problems in your application design. By using pattern-based categories and a question-
driven approach, you simplify evaluating your design against root-cause security issues.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 22

• Security code inspection. Many security defects are found during code reviews. Analyzing
code for security defects includes knowing what to look for and how to look for it. Security
code inspections optimize inspecting code for common security issues.

• Security testing. Use a risk-based approach and use the output from the threat modeling
activity to help establish the scope of your testing activities and define your test plans.

• Security deployment inspection. When you deploy your application during your build
process or staging process, you have an opportunity to evaluate your application’s run-time
characteristics in the context of your infrastructure. Deployment reviews for security focus
on evaluating your security design and the configuration of your application, host, and
network.

For more information on security engineering see, “patterns & practices Security Engineering
Explained” at http://msdn.microsoft.com/en-us/library/ms998382.aspx#

End-to-End Scenarios

Intranet
The following figure is an example of a common WCF intranet scenario. Note the use of the
TCP protocol. WCF is hosted by the Windows service, and Windows authentication is used to
authenticate users inside the Windows domain.

ASP.NETIIS

SQL
Server

Alice

Bob

Mary

TLS/SSL
(Privacy/
Integrity)

Integrated Windows
Authentication

Web Server

Database Server

WCF
(Self Hosted)

Application Server

Windows
Authentication

WCF
Identity

Transport
Security
(Privacy/
Integrity)

IPSec
(Optional)

(Privacy/
Integrity)

Alice

Bob

Mary Windows
Authentication

Windows
Authentication /

Windows Groups

ASP.NET
Identity

WCF Proxy

netTCPBinding

Figure 2. A Common WCF Intranet Scenario

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 23

Internet
The following figure is an example of a common WCF Internet scenario. Note the use of the
HTTP protocol. WCF is hosted in Internet Information Services (IIS), and Username
authentication is used to authenticate users.

Thick
Client

SQL
Server

Client

Database Server

Windows
Authentication

WCF
Identity

IPSec
(Optional)

(Privacy/
Integrity)

Mary

WCF Proxy

wsHttpBinding

WCF
(Web Service)IIS

Anonymous
Access

 Message
Security
(Privacy/
Integrity)

Username
Auth /

ASPNET Roles

Application Server

Figure 3. A Common WCF Internet Scenario

Web Services Security Frame
The following key security concepts provide a frame for thinking about security when designing
and architecting services. This helps you turn core security features such as authentication,
authorization, auditing, confidentiality, integrity, and availability into action.

Category Description
Auditing and Logging Auditing and logging refers to how security-related events are

recorded, monitored, and audited.
Authentication Authentication is the process in which an entity proves the

identity of another entity, typically through credentials, such as a
username and password.

Authorization Authorization is how your service provides access controls for
resources and operations.

Configuration
Management

Configuration management refers to how your service handles
database connections, administration, and other configuration

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 24

settings.
Exception Management Exception management refers to how you handle exceptions

within your application, including fault contracts.
Impersonation/Delegation Impersonation and delegation refers to how your service

impersonates users and passes identity information downstream
for authorization purposes.

Message Encryption Message encryption refers to protecting a message by converting
the contents to cipher text by using cryptographic methods.

Message Replay Detection Message replay detection refers to identifying and rejecting
messages that are resubmitted.

Message Signing Message signing refers to signing a message with a digital
signature using cryptographic methods, to confirm the source of
the message and detect if the contents have been tampered with
(i.e., authentication and integrity of the message).

Message Validation Message validation refers to how you verify the message payload
against a schema, as well as message size, content, and character
sets. This includes how your service filters, scrubs, and rejects
input and output before additional processing. Input and output
includes input from clients consuming the service as well as file-
system input, in addition to input from network resources, such as
databases. Output typically includes the return values from your
service or disk/database writes, among others.

Sensitive Data Sensitive data is user and application data whose integrity and
confidentiality need to be protected. This includes how you
protect sensitive data from being stolen from memory, from
configuration files, or when transmitted over the network.

Session Management A session refers to a series of related interactions between a client
and your service.

Threats and Attacks to Your Web Services
The following table highlights some of the common threats and attacks against Web services.

Category Description
Auditing and Logging • Tampering with log files

• Ineffectual or nonexistent audit processes
Authentication • Network eavesdropping

• Brute force attacks
• Dictionary attacks
• Cookie replay attacks
• Credential theft

Authorization • Elevation of privilege
• Disclosure of confidential data

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 25

• Data tampering
• Luring attacks

Configuration
Management

• Unauthorized access to administration interfaces
• Unauthorized access to configuration stores
• Retrieval of clear text
• Configuration secrets
• No individual accountability

Exception Management • System or application details are revealed
• Denial of service (DoS)

Impersonation/Delegation Elevation of privilege
Message Encryption Information disclosure
Message Replay Detection Horizontal and vertical privilege escalation
Message Signing Data tampering
Message Validation • Buffer overflows

• Cross-site scripting
• SQL injection
• Canonicalization attacks

Sensitive Data • Accessing of sensitive data in storage
• Network eavesdropping
• Information disclosure

Session Management • Session hijacking
• Session replay
• Man-in-the-middle attacks

Guidelines for Your Web Services
The following table summarizes effective guidelines to improve the security of your Web
services.

Category Description
Auditing and Logging • Identify malign or malicious behavior.

• Know your baseline (e.g., what does good traffic look like?).
• Instrument to expose behavior that can be watched. (The big

mistake here is typically that application instrumentation is
completely missing.

• Create a process to watch the logs and an escalation path for
significant issues.

Authentication • Use strong password policies.
• Do not store credentials on the client side.
• Do not store credentials in clear text on the server side.
• Encrypt communication channels to secure authentication

tokens.
• Use secure protocols such as Secure HTTP (HTTPS) to secure

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 26

authentication tokens.
Authorization • Use least-privileged accounts.

• Consider granularity of access.
• Enforce separation of privileges.
• Use role-based access control.

Configuration
Management

• Use least-privileged service accounts.
• Do not store credentials in plaintext format.
• Use strong authentication and authorization on administrative

interfaces.
• Do not use the Local Security Authority (LSA).
• Avoid storing sensitive information in the Web space or in

configuration files, especially in clear text.
Exception Management • Use structured exception handling (try-catch-finally).

• Only catch and wrap exceptions if the operation adds
value/information.

• Do not reveal sensitive system or application information.
• Do not log private data (passwords, etc.).
• Use the finally block to perform cleanup.
• Be cognizant of exception filters.

Impersonation/Delegation • Use constrained delegation.
• Do not hard-code credentials in your code and preferably not

in the configuration files.
• Use IIS application domains or Windows service accounts for

the host.
• Encrypt credentials; if you do, put them in configuration files.

Message Encryption Use strong algorithms with appropriate cipher modes, key
management, key length, etc.

Message Replay Detection • Enable replay detection within WCF.
• Use nonces and unique tokens to detect replay or

unauthorized requests.
Message Signing • Use strong algorithms with appropriate padding modes, key

management, key length, etc.
• Avoid use of self-signed certificates.

Message Validation • Use schema validation.
• Offload schema validation to an XML accelerator if possible.
• Use parameter validation.

Sensitive Data • Do not store secrets in software.
• Enforce separation of privileges.
• Encrypt sensitive data over the network.
• Secure the channel.
• Avoid key management.
• Cycle your keys.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 27

Session Management • Partition services by anonymous, identified, and authenticated

users;.
• Reduce session timeouts.
• Avoid storing sensitive data in session stores.
• Secure the channel to the session store.
• Authenticate and authorize access to the session store.

Web Services Security Patterns
The following table summarizes Web services security patterns and provides links to more
information.

Pattern Description Reference
Authentication
Direct
Authentication

The Web service acts as an authentication
service to validate credentials from the
client. The credentials, which include proof-
of-possession that is based on shared
secrets, are verified against an identity
store.

http://msdn.microsoft.com/en-
us/library/aa480566.aspx

Brokered
Authentication

The Web service validates the credentials
presented by the client, without the need
for a direct relationship between the two
parties. An authentication broker that both
parties trust independently issues a security
token to the client. The client can then
present credentials, including the security
token, to the Web service.

http://msdn2.microsoft.com/en-
us/library/aa480560.aspx

Brokered
Authentication:
Kerberos

Use the Kerberos protocol to broker
authentication between clients and Web
services.

http://msdn2.microsoft.com/en-
us/library/aa480562.aspx

Brokered
Authentication:
X509 PKI

Use brokered authentication with X.509
certificates issued by a certificate authority
(CA) in a public key infrastructure (PKI) in
order to verify the credentials presented by
the requesting application.

http://msdn2.microsoft.com/en-
us/library/aa480565.aspx

Brokered
Authentication:
Security Token

Use brokered authentication with a security
token issued by an STS. The STS is trusted
by both the client and the Web service to

http://msdn2.microsoft.com/en-
us/library/aa480563.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 28

Service (STS) provide interoperable security tokens.
Authorization
Protocol
Transition with
Constrained
Delegation

Use the Kerberos protocol extensions in
Windows Server. The extensions require the
user ID but not the password. You still need
to establish trust between the client
application and the Web service; however,
the application is not required to store or
send passwords.

http://msdn.microsoft.com/en-
us/library/aa480585.aspx

Trusted
Subsystem

The Web service acts as a trusted
subsystem to access additional resources. It
uses its own credentials instead of the
user’s credentials to access the resource.

http://msdn2.microsoft.com/en-
us/library/aa480587.aspx

Exception Management
Exception
Shielding

Sanitize unsafe exceptions by replacing
them with exceptions that are safe by
design. Return only those exceptions to the
client that have been sanitized or
exceptions that are safe by design.
Exceptions that are safe by design do not
contain sensitive information in the
exception message, and they do not contain
a detailed stack trace, either of which might
reveal sensitive information about the Web
service’s inner workings.

http://msdn2.microsoft.com/en-
us/library/aa480591.aspx

Message Encryption
Data
Confidentiality

Use encryption to protect sensitive data
that is contained in a message.
Unencrypted data, which is known as
plaintext, is converted to encrypted data,
which is known as cipher text. Data is
encrypted with an algorithm and a
cryptographic key. Cipher text is then
converted back to plaintext at its
destination.

http://msdn.microsoft.com/en-
us/library/aa480570.aspx

Message Replay Detection
Message Replay
Detection

Cache an identifier for incoming messages,
and use message replay detection to
identify and reject messages that match an
entry in the replay detection cache.

http://msdn2.microsoft.com/en-
us/library/aa480598.aspx

Message Signing
Data Origin
Authentication

Use data origin authentication, which
enables the recipient to verify that

http://msdn2.microsoft.com/en-
us/library/aa480571.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 29

messages have not been tampered with in
transit (data integrity) and that they
originate from the expected sender
(authenticity).

Message Validation
Message
Validator

The message validation logic enforces a
well-defined policy that specifies which
parts of a request message are required for
the service to successfully process it. It
validates the XML message payloads against
an XML schema (XSD) to ensure that they
are well-formed and consistent with what
the service expects to process. The
validation logic also measures the messages
against certain criteria by examining the
message size, the message content, and the
character sets that are used. Any message
that does not meet the criteria is rejected.

http://msdn2.microsoft.com/en-
us/library/aa480600.aspx

Deployment
Perimeter
Service Router

Design a Web service intermediary that acts
as a perimeter service router. The
perimeter service router provides an
external interface on the perimeter
network for internal Web services. It
accepts messages from external
applications and routes them to the
appropriate Web service on the private
network.

http://msdn2.microsoft.com/en-
us/library/aa480606.aspx

Bindings in WCF
The following table summarizes common bindings in WCF.

Binding Description
basicHttpBinding Configures and exposes endpoints that are able to

communicate with ASP.NET Web Services (ASMX)–based Web
services and clients and other services that conform to the
WS-I Basic Profile 1.1 specification. By default, it has security
disabled.

wsHttpBinding Defines a secure, reliable, interoperable binding suitable for
non-duplex service contracts. The binding implements the
following specifications: WS-Reliable Messaging for reliability,
and WS-Security for message security and authentication. The

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 30

transport is HTTP, and message encoding is text/XML
encoding. By default, it provides message security with
Windows authentication.

ws2007HttpBinding Defines a secure, reliable, interoperable binding suitable for
non-duplex service contracts. The binding implements the
following specifications: WS-Reliable Messaging for reliability,
and WS-Security for message security and authentication. The
transport is HTTP, and message encoding is text/XML
encoding. The ws2007HttpBinding provides binding similar to
wsHttpBinding but uses the standard for OASIS (Organization
for the Advancement of Structured Information Standards).
By default, it provides message security with Windows
authentication.

netTcpBinding Specifies a secure, reliable, optimized binding suitable for
cross-machine communication. By default, it generates a run-
time communication stack with transport security and
Windows authentication as default security settings. It uses
TCP protocol for message delivery, and binary message
encoding.

netNamedPipeBinding Defines a binding that is secure, reliable, optimized for cross-
process communication on the same machine. By default, it
generates a run-time communication stack with WS-
ReliableMessaging for reliability, transport security for
transfer security, named pipes for message delivery, and
binary message encoding. It is not secured by default.

netMsmqBinding Defines a queued binding suitable for cross-machine
communication.

wsFederationHttpBinding Defines a binding that supports federated security. It helps
implement federation, which is the ability to flow and share
identities across multiple enterprises or trust domains for
authentication and authorization. WCF implements
federation over message and mixed mode security but not
over transport security. Services configured with this binding
must use the HTTP protocol as transport.

ws2007FederationHttpBinding Defines a binding that derives from wsFederationHttpBinding
and supports federated security. It helps implement
federation, which is the ability to flow and share identities
across multiple enterprises or trust domains for
authentication and authorization. WCF implements
federation over message and mixed mode security but not
over transport security. Services configured with this binding
must use the HTTP protocol as transport. The
ws2007FederationHttpBinding provides binding similar to

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 31

ws2007FederationHttpBinding but uses the OASIS standard.
wsDualHttpBinding Defines a secure, reliable, and interoperable binding that is

suitable for duplex service contracts or communication
through Simple Object Access Protocol (SOAP) intermediaries.

customBinding Allows you to create a custom binding with full control over
the message stack.

Transport Security
When using transport security, the user credentials and claims are passed by using the
transport layer. In other words, user credentials are transport-dependent, which allows fewer
authentications options compared to message security. Each transport protocol (TCP, IPC,
MSMQ, or HTTP) has its own mechanism for passing credentials and handling message
protection. The most common approach is to use Secure Sockets Layer (SSL) for encrypting and
signing the contents of the packets sent over HTTPS.

Transport security is used to provide point-to-point security between the two endpoints
(service and client). If there are intermediary systems between client and the service, each
intermediate point must forward the message over a new SSL connection.

Transport Transport

Client Service

Platform and channel
provides security
Caller authentication

Message Integrity
Message Confidentiality

XML XML

XML XMLSecure Transport

Figure 4. Transport Security

Use transport security for the following scenarios:

• You are sending a message directly from your application to a WCF service, and the
message will not be routed through intermediate systems.

• You have both the service and the client in an intranet.

Using transport security offers the following advantages:

• It provides interoperability, meaning that communicating parties do not need to understand
the WS-Security specifications.

• It may result in better performance.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 32

• Hardware accelerators can be used to further improve performance.

Using transport security has the following disadvantages:

• Security is applied on a point-to-point basis, with no provision for multiple hops or routing
through intermediate application nodes.

• It supports a limited set of credentials and claims compared to message security.
• It is transport-dependent upon the underlying platform, transport mechanism, and security

service provider, such as NTLM or Kerberos.

Message Security
When using message security, the user credentials and claims are encapsulated in every
message by using the WS-Security specification to secure messages. This option gives the most
flexibility from an authentication perspective. You can use any type of security credentials you
want, largely independent of transport, as long as both the client and service agree.

Transport TransportAny Transport

Client Service

XML XML

XML messages convey
security information

Credentials
 Digital signatures

Messages can be
encrypted

Security is independent from
transport protocol

XML XML

Figure 5. Message Security

Use message security for the following scenarios:

• You are sending a message to a WCF service, and the message is likely to be forwarded to
other WCF services or may be routed through intermediate systems.

• Your WCF clients are accessing the WCF service over the Internet.

Using message security offers following advantages:

• It provides end-to-end security; because message security directly encrypts and signs the
message, having intermediaries does not break the security.

• It allows partial or selective message encryption and signing, thus improving overall
application performance.

• Message security is transport-independent and thus can be used with any transport
protocol.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 33

• It supports a wide set of credentials and claims, including issue tokens, which enable
federated security.

Using message security has following disadvantages:

• This option may reduce performance compared to transport security because each
individual message is encrypted and signed.

• It does not support interoperability with older ASMX clients since it requires both the client
and service to support WS-Security specifications.

Authentication

Transport Security
The follow authentication options are available when using transport security mode:

• None. When using this option, the WCF service does not authenticate the callers. This is not
the recommended option from security perspective — avoid using this option wherever
possible.

• Basic. This option is available with the HTTP protocol only. The client is authenticated by
using the username and password against Active Directory. The client credentials are
transported by using Base64 encode string, which is literally like clear string and therefore is
not the most secure option. The service is authenticated by the SSL certificate used for
secure communication.

• NTLM. This option is available with the HTTP protocol only. The client is authenticated by
using a challenge-response scheme against Windows accounts. The NTLM option is well
suited for a workgroup environment. NTLM authentication is more secure than either
Digest or Basic authentication. The service is authenticated by using the Windows
credentials of the process identity, or by using an SSL certificate if you are using the HTTP
protocol.

• Windows. The Windows option tells the WCF service to use Kerberos when in a domain or
NTLM when deployed in a workgroup environment. This option uses a Windows token
presented by the caller to authenticate against Active Directory. This is the most secure
option compared to Basic, Digest, or NTLM authentication. The service is authenticated by
using the Windows credentials of the process identity or an SSL certificate if you are using
the HTTP protocol.

• Certificate. When using this option, the caller presents an X.509 client certificate that the
WCF service either validates with peer trust or trusts based on the issuer of the certificate.
This option should be used when Windows authentication is not possible, as in the case of
business-to-business (B2B) scenarios. The service is authenticated with the service
certificate or by using an SSL certificate if you are using the HTTP protocol.

Message Security
The follow authentication options are available when using message security mode:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 34

• None. When using this option, the WCF service does not authenticate the callers. This is not
the recommended option from security perspective — avoid using this option wherever
possible.

• Windows. When using this option, the WCF service uses Kerberos when in a domain or
NTLM when deployed in workgroup environment. This option uses the Windows token
presented by the caller to authenticate against Active Directory. The service is
authenticated by using the Windows credentials of the process identity.

• Username. When using this option, the caller provides a username and password to the
service. The service can then authenticate against Windows, use a membership providers
such as SqlMembershipProvider, or use a custom validator to validate against the custom
store. You should choose this option only when Windows authentication is not possible. The
service is authenticated with a service certificate.

• Certificate. When using this option, the caller presents an X.509 client certificate. The WCF
service then looks up the certificate information on the host side and either validates it
(peer trust) or trusts the issuer (chain trust) of the client certificate. This option should be
used when Windows authentication is not possible, or in case of B2B scenarios. Service is
authenticated with the service certificate.

• Issue token. When using this option, the client and service depend on STS to issue tokens
that the client and service trusts. CardSpace is a typical example of STS.

Authorization Options in WCF
WCF supports three basic authorization approaches:

• Role-based. Access to WCF operations is secured based on the role membership of the
caller. Roles are used to partition your application’s user base into sets of users that share
the same security privileges within the application; for example, Senior Managers,
Managers, and Employees .Users are mapped to roles, and if the user is authorized to
perform the requested operation, the application uses fixed identities with which to access
resources. These identities are trusted by the respective resource managers; for example,
databases, the file system. and so on.

• Identity-based. WCF supports an Identity Model feature, which is an extension of role-
based authorization. Identity Model enables you to manage claims and policies in order to
authorize clients. With this approach, you can verify claims contained within the
authenticated users’ credentials. These claims can be compared with the set of
authorization policies for the WCF service. Depending on the claims provided by the client,
the service can either grant or deny access to the operation or resources. Identity Model is
useful for fine-grained authorization and is most beneficial when using issue token
authentication.

• Resource-based. Individual resources are secured by using Windows access control lists
(ACLs). The WCF service impersonates the caller prior to accessing resources, which allows
the operating system to perform standard access checks. All resource access is performed
by using the original caller’s security context. This impersonation approach severely impacts

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 35

application scalability, because it means that connection pooling cannot be used effectively
within the application’s middle tier.

In enterprise-level applications where scalability is essential, a role-based or identity based
approach to authorization represents the best choice. For small-scale intranet applications that
serve per-user content from resources (such as files) that can be secured with Windows ACLs, a
resource-based approach may be appropriate.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 36

PART I

Security Fundamentals for
Web Services

In This Part:

 Security Fundamentals for Web Services

 Threats and Countermeasures for Web Services

 Security Design Guidelines for Web Services

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 37

Chapter 1 – Security Fundamentals for Web Services

Objectives
• Understand the key security requirements.
• Understand the difference between threats, attacks, vulnerabilities, and countermeasures.
• Understand the key distinctions for Service-Oriented Architecture (SOA).
• Understand the Web Services Security Frame.
• Understand the key principles and patterns for building secure services.

Overview
Building secure services includes knowing the threats you face, making effective trade-offs, and
integrating security throughout your software development life cycle. One of the most effective
ways to deal with security is to leverage proven principles, patterns, and practices. The key is to
know which principles, patterns, and practices are effective for your particular situation.
Techniques such as threat modeling and security inspections can you help you shape your
software to meet your specific security objectives.

What Do We Mean by Security?
Security is fundamentally about protecting assets. Assets may be tangible items, such as
operations or your customer database — or they may be less tangible, such as your company’s
reputation.

It is important to recognize that security is a path, not a destination. As you analyze your
infrastructure and applications, you identify potential threats and understand that each threat
presents a degree of risk. Security is about risk management and implementing effective
countermeasures. One of the most important concepts in security is that effective security is a
combination of people, process, and technology.

The Foundations of Security
Security relies on the following elements:

• Authentication. Authentication addresses the question: who are you? It is the process of
uniquely identifying the clients of your applications and services. These might be end users,
other services, processes, or computers. In security parlance, authenticated clients are
referred to as principals.

• Authorization. Authorization addresses the question: what can you do? It is the process
that governs the resources and operations that the authenticated client is permitted to
access. Resources include files, databases, tables, rows, and so on, together with system-
level resources such as registry keys and configuration data. Operations include performing
transactions such as purchasing a product, transferring money from one account to
another, or increasing a customer’s credit rating.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 38

• Auditing. Effective auditing and logging is the key to non-repudiation. Non-repudiation
guarantees that a user cannot deny performing an operation or initiating a transaction. For
example, in an e-commerce system, non-repudiation mechanisms are required to make
sure that a consumer cannot deny ordering 100 copies of a particular book.

• Confidentiality. Confidentiality, also referred to as privacy, is the process of making sure
that data remains private and confidential, and that it cannot be viewed by unauthorized
users or eavesdroppers who monitor the flow of traffic across a network. Encryption is
frequently used to enforce confidentiality. Access control lists (ACLs) are another means of
enforcing confidentiality.

• Integrity. Integrity is the guarantee that data is protected from accidental or deliberate
(malicious) modification. Like privacy, integrity is a key concern, particularly for data passed
across networks. Integrity for data in transit is typically provided by using hashing
techniques and message authentication codes.

• Availability. From a security perspective, availability means that systems remain available
for legitimate users. The goal for many attackers with denial of service (DoS) attacks is to
crash an application or to make sure that the application is sufficiently overwhelmed so that
other users cannot access it.

Threats, Vulnerabilities, and Attacks Defined
When thinking about security, it is helpful to think in terms of assets, threats, vulnerabilities,
and attacks.

• Asset. An asset is something related to your application that is worth protecting. Sensitive
data, intellectual property, and access to critical operations are all assets. For example, user
credit card numbers are an asset worth protecting in your application.

• Threat. A threat is any potential occurrence, malicious or otherwise, that could harm an
asset. In other words, a threat is any bad thing that can happen to your assets.

• Vulnerability. A vulnerability is a weakness that makes a threat possible. This may be
because of poor design, configuration mistakes, or inappropriate and insecure coding
techniques. Weak input validation is an example of an application layer vulnerability, which
can result in input attacks.

• Attack. An attack is an action that exploits vulnerability or enacts a threat. Examples of
attacks include sending malicious input to an application, or flooding a network in an
attempt to deny service.

To summarize, a threat is a potential event that can adversely affect an asset, whereas a
successful attack exploits vulnerabilities in your system.

What Is a Service?
A service is a public interface that provides access to a unit of functionality. Services literally
provide some programmatic ‘service’ to the caller who consumes them. Services are loosely
coupled and can be combined from within a client or from within other services to provide
more complex functionality. Services are distributable and can be accessed from a remote

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 39

machine as well as from the local machine on which they are running. Services are message-
oriented, meaning that service interfaces are defined by a Web Services Description Language
(WSDL) file and operations are called using XML-based message schemas that are passed over a
transport. Services support a heterogeneous environment by focusing interoperability at the
message/interface definition. If components can understand the message and interface
definition, they can use the service regardless of their base technology.

Common Services Scenarios
Services are flexible by nature and can be used in a wide variety of scenarios and combinations.
The following are key scenarios that we will return to many times over the course of this guide:

• Service exposed over the Internet. This scenario describes a service that is consumed by
Web applications or smart client applications over the Internet. Authentication and
authorization decisions have to be made based upon Internet trust boundaries and
credentials options. For example, username authentication is more likely in the Internet
scenario than the intranet scenario. This scenario includes business-to-business as well as
consumer-focused services. For example, a Web site that allows scheduling of your family’s
doctor visits could be included in this scenario.

• Service exposed over an intranet. This scenario describes a service that is consumed by
Web applications or smart client applications over an intranet. Authentication and
authorization decisions have to be made based upon intranet trust boundaries and
credentials options. For example, an Active Directory user store is more likely in the intranet
scenario than in the Internet scenario. An enterprise Web-mail application could be
included in this scenario.

• Service exposed on the local machine. This scenario describes a service that is consumed
by an application on the local machine. Transport and message protection decisions must
be based on local machine trust boundaries and users.

• Mixed scenario. This scenario describes a service that is consumed by multiple applications
over the Internet, an intranet, and/or the local machine. For example, a line-of-business
(LOB) application that is consumed internally by a thick client application and over the
Internet by a Web application could be included in this scenario.

Service-Oriented Architecture (SOA)
Service-Oriented Architecture (SOA) is an architecture of loosely coupled components that can
be distributed across platform, technology, and physical topologies. Service components can be
combined to provide a business process, or to provide more complex services for a client
application. Services are the preferred communication technique across application boundaries,
including platform, deployment, and trust boundaries.

The key attributes of SOA are:

• Interoperable. Components can be interoperable across platform and technology
boundaries.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 40

• Componentized. Services are exposed as autonomous components that can be versioned
and managed independently.

• Composable. Services can be composed by an application to perform more complex
operations or to enact a business process.

• Message-based interfaces. Interfaces are defined by message contracts and schemas.
Operation calls and parameters are passed in XML message envelopes.

• Distributable. Service components can be consumed from the same machine or distributed
to remote machines. The service interface and logic is independent of the transport and
protocol used to access the service.

• Discoverable. Services publish their metadata as WSDL so that client applications can
discover the interfaces and schemas and generate a client-side proxy to consume the
service.

SOA Tenants
You can further define the SOA attributes based on a set of four SOA tenets. Microsoft architect
Don Box was the first to provide this set of design tenets that govern SOA:

• Boundaries are explicit. Operations are called over well-defined boundaries, passing
explicitly defined messages.

• Services are autonomous. Each service is maintained, developed, deployed, and versioned
autonomously.

• Services share schema and contract, not class. Services share contracts and schemas to
communicate.

• Compatibility is based upon policy. Policy in this case means definition of transport,
protocol, security, etc.

Service Orientation vs. Object Orientation
Services are the preferred communication technique to use across application boundaries,
including platform, deployment, and trust boundaries. If you are building a distributed
application, consider using a service-oriented approach. Although object orientation provides a
pure view of what a system should look like and is effective for producing logical models, an
object-based approach can fail to consider real-world factors, such as physical distribution, trust
boundaries, and network communication, as well as nonfunctional requirements, such as
performance and security.

Object orientation Service orientation
Assumes a homogeneous platform and
execution environment.

Assumes a heterogeneous platform and
execution environment.

Shares types, not schemas. Shares schemas, not types.
Assumes cheap, transparent communication. Assumes variable cost, explicit communication.
Objects are linked: object identity and
lifetime are maintained by the infrastructure.

Services are autonomous: security and failure
isolation are a necessity.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 41

Typically requires synchronized deployment
of both client and server.

Allows continuous, separate deployment of
client and server.

Is easy to conceptualize and thus provides a
natural model to follow.

Builds on ideas from component software and
distributed objects. Dominant theme is to
manage/reduce sharing between services.

Provides no explicit guidelines for state
management and ownership.

Owns and maintains state or uses the reference
state.

Assumes a predictable sequence, timeframe,
and outcome of invocations.

Assumes message-oriented, potentially
asynchronous, and long-running
communications.

Goal is to transparently use functions and
types remotely.

Goal is to provide inter-service isolation and
wire interoperability based on standards.

Application Boundaries
Common application boundaries include platform, deployment, trust, and evolution
boundaries. (Evolution refers to whether or not you develop and upgrade applications
together.) When evaluating architecture and design decisions that affect your application
boundaries, consider the following:

• Objects and remote procedure calls (RPC) are appropriate within boundaries.
• Services are appropriate across and within boundaries.

Enterprise SOA vs. Application SOA
Because SOA is an architectural style, it can be helpful to think of SOA in terms of two different
scopes. For the purposes of this guide, we factor SOA in terms of individual application
scenarios and larger enterprise scenarios.

Enterprise SOA
At the enterprise level, you consider SOA from the standpoint of your enterprise architecture.
This is where your enterprise architects come into play. The following are key SOA
considerations at the enterprise level:

• How can you compose application services to create a business process?
• What is your portfolio of capabilities that are candidates for services?
• How can you push common application features to a common services infrastructure?
• How can you provide common services across your portfolio of applications?
• How can you connect your heterogeneous systems through common services?
• How can you provide a common security infrastructure for your services?

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 42

Application SOA
At the application level, you consider SOA from the standpoint of your application’s
architecture and architectural style. This is where your application architects come into play.
The following are key SOA considerations at the application level:

• How can you design, create, and consume services within your application?
• How can you leverage service-oriented approaches within your application’s architecture?
• How can you design for effective message-oriented communication?

This guides focuses on application-level SOA.

SOA Security in Practice
Effective SOA security in practice includes the following measures:

• Coordinating people, process, and technology.
• Integrating and leveraging various levels of standards (general security standards, XML

security standards, Web services security standards).
• Integrating and leveraging various user stores and role stores.
• Making trade-offs between user experience, technical, and business perspectives.

WS-Security Standards / Web Services Security Concepts
The WS-* architecture is a set of standards-based protocols designed to secure Web service
communication. The WS-* security standards include:

• WS-Policy. WS-Policy allows Web services to define policy requirements for endpoints.
These requirements include privacy rules, encryption rules, and security tokens.

• WS-Security. WS-Security allows Web services to apply security to Simple Object Access
Protocol (SOAP) messages through encryption and integrity checks on all or part of the
message.

• WS-Trust. WS-Trust allows Web services to use security tokens to establish trust in a
brokered security environment.

• WS-SecureConversation. WS-SecureConversation builds on top of WS-Policy, WS-Security,
and WS-Trust to enable secure communications between client and service.

• WS-ReliableMessaging. WS-ReliableMessaging allows Web services and clients to trust that
when a message is sent, it will be delivered to the intended party.

• WS-AtomicTransactions. WS-AtomicTransactions allows transaction-based Web services in
which transactions can be rolled back in the event of a failure.

How Do You Build Secure Services?
The keys to building secure services include:

• Identify your security objectives. This includes identifying your security requirements.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 43

• Know your threats. Know which threats are relevant for your particular scenarios and
context. Threat modeling is an effective technique for helping you identify relevant threats
and vulnerabilities. Your objectives will help you prioritize your threats and vulnerabilities.
Using the threat model, developers address vulnerabilities, and testers verify that the
developers closed the issues.

• Apply proven principles, patterns, and practices. Principles, patterns, and practices are a
good starting point for building secure services. By using proven principles, patterns, and
practices, you can eliminate classes of security problems. You can also leverage lessons
learned. Patterns are effectively reusable solutions and typically encapsulate underlying
principles. While principles, patterns, and practices are a good starting point, you should
never blindly adopt them — you need to evaluate whether they make sense for your
scenario.

• Apply effective security engineering throughout the application life cycle. You should
consider security throughout your application life cycle. You should start with security
objectives. Threat modeling will help you shape your design and make key trade-offs.
Security design, code, and deployment inspections, along with testing, will improve your
overall security posture.

Additional Resources
• For more information on security engineering, see “patterns & practices Security

Engineering Explained” at 3TUhttp://msdn.microsoft.com/en-us/library/ms998382.aspxU3T .
• For more information on threat modeling, see “Threat Modeling Web Applications” at

3TUhttp://msdn.microsoft.com/en-us/library/ms978516.aspxU3T.

patterns & practices Security Engineering
The Microsoft patterns & practices Security Engineering approach includes specific security-
related activities that help you meet your application security objectives.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 44

Planning

Requirements
and Analysis

Architecture
and Design

Development

Testing

Deployment

Maintenance

Functional Requirements
Non Functional Requirements
Technology Requirements

Design Guidelines
Architecture and Design Review

Unit Tests
Code Review
Daily Builds

Integration Testing
System Testing

Deployment Review

Core Security

Security Objectives

Security Design Guidelines
Threat Modeling
Security Design Inspection

Security Code Inspection

Security Testing

Security Deployment Inspection

Activities

Figure 1 - Key Security Engineering Activities

Summary of Key Security Engineering Activities
This patterns & practices Security Engineering approach extends these proven core activities to
create security-specific activities. These activities include:

• Security objectives. Setting objectives helps you scope and prioritize your work by setting
boundaries and constraints. Setting security objectives helps you identify where to start,
how to proceed, and when you are done.

• Threat modeling. Threat modeling is an engineering technique that can help you identify
threats, attacks, vulnerabilities, and countermeasures that could affect your application.
You can use threat modeling to shape your application’s design, meet your company’s
security objectives, and reduce risk.

• Security design guidelines. Creating design guidelines is a common practice at the start of
an application project to guide development and share knowledge across the team.
Effective design guidelines for security organize security principles, practices, and patterns
by actionable categories.

• Security design inspection. Security design inspections are an effective way to identify
problems in your application design. By using pattern-based categories and a question-
driven approach, you simplify evaluating your design against root-cause security issues.

• Security code inspection. Many security defects are found during code reviews. Analyzing
code for security defects includes knowing what to look for and how to look for it. Security
code inspections optimize inspecting code for common security issues.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 45

• Security testing. Use a risk-based approach and use the output from the threat-modeling
activity to help establish the scope of your testing activities and define your test plans.

• Security deployment inspection. When you deploy your application during your build
process or staging process, you have an opportunity to evaluate run-time characteristics of
your application in the context of your infrastructure. Deployment reviews for security
focus on evaluating your security design and configuration of your application, host, and
network.

For more information on security engineering, see “patterns & practices Security Engineering
Explained” at 3TUhttp://msdn.microsoft.com/en-us/library/ms998382.aspx#U3T

Web Services Security Principles
Recommendations made throughout this guide are based on a core set of security principles.
These principles have proven effective across many different technologies and scenarios,
including Web services in SOA. Use the following list to apply a principle-based approach to
Web service security when building your WCF application.

Principle Concepts

Apply defense in
depth

Use multiple gatekeepers to keep attackers at bay. Defense in depth
means you do not rely on a single layer of security, or you consider that
one of your layers may be bypassed or compromised.

Check at the gate Authenticate and authorize callers early — at the first gate.

Compartmentalize Isolate and contain a problem. Apply the principle of separation of
concerns. If an attacker takes over your application, what resources can
he or she access? Can an attacker access network resources? How are
you restricting potential damage? Firewalls, least-privileged accounts,
and least-privileged code are examples of compartmentalizing.

Create secure
defaults

Is the default account set up with least privilege? Is the default account
disabled by default and then explicitly enabled when required? Does the
configuration use a password in plaintext? When an error occurs, does
sensitive information leak back to the client, to potentially be used
against the system?

Do not trust user
input

Keep user input out of the control path. Your application’s user input is
the attacker’s primary weapon when targeting your application. Assume
that all input is malicious until proven otherwise, and apply a defense-in-
depth strategy to input validation, taking particular precautions to make
sure that input is validated whenever a trust boundary in your
application is crossed. You need to validate input at both entry points
and exit points in your application.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 46

Establish trust
boundaries

Trust boundaries indicate where trust levels change. You can think of
trust from the perspective of confidentiality and integrity. For example, a
change in access control levels in your application, where a specific role
or privilege level is required to access a resource or operation, would be
a change in trust level. Another example would be at an entry point in
your application where you might not fully trust the data passed to the
entry point. Identify trust boundaries from a data flow perspective. For
each subsystem, consider whether the upstream data flow or user input
is trusted, and if it is not, consider how the data flow and input can be
authenticated and authorized. Knowing which entry points exist between
trust boundaries allows you to focus your threat identification on these
key entry points. For example, you are likely to have to perform more
validation on data passed through an entry point at a trust boundary.

Fail securely If an application fails, do not leave sensitive data accessible. Return
friendly errors to end users that do not expose internal system details.
Do not include details that may help attackers exploit vulnerabilities in
your application.

Reduce your attack
surface

If you do not use it, remove it or disable it. Reduce the surface area of
attack by disabling or removing unused services, protocols, and
functionality. Does your server need all those services and ports? Does
your application need all those features?

Secure the weakest
link

Is there vulnerability at the network layer that an attacker can exploit?
What about the host? Is your application secure? Any weak link in the
chain is an opportunity for breached security.

Use least privilege By running processes using accounts with minimal privileges and access
rights, you significantly reduce the capabilities of an attacker if the
attacker manages to compromise security and run code.

Web Services Security Frame
The following key security concepts provide a frame for thinking about security when designing
and architecting services. This helps you turn core security features such as authentication,
authorization, auditing, confidentiality, integrity, and availability into action.

Category Description
Auditing and Logging Auditing and logging refers to how security-related events are

recorded, monitored, and audited.
Authentication Authentication is the process where an entity proves the identity

of another entity, typically through credentials, such as a
username and password.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 47

Authorization Authorization is how your service provides access controls for
resources and operations.

Configuration
Management

Configuration management refers to how your service handles
database connections, administration, and other configuration
settings.

Exception Management Exception management refers to how you handle exceptions
within your application, including fault contracts.

Impersonation/Delegation Impersonation and delegation refers to how your service
impersonates users and passes identity information downstream
for authorization purposes.

Message Encryption Message encryption refers to protecting a message by converting
the contents to cipher-text using cryptographic methods.

Message Replay Detection Message replay detection refers to identifying and rejecting
messages that are resubmitted.

Message Signing Message signing refers to signing a message with a digital
signature using cryptographic methods, to confirm the source of
the message and detect if the contents have been tampered with
(i.e., authentication and integrity of the message).

Message Validation Message validation refers to how you verify the message payload
against a schema, as well as message size, content, and character
sets. This includes how your service filters, scrubs, and rejects
input and output before additional processing. Input and output
includes input from clients consuming the service as well as file-
system input, in addition to input from network resources, such as
databases. Output typically includes the return values from your
service or disk/database writes, among others.

Sensitive Data Sensitive data is user and application data whose integrity and
confidentiality need to be protected. This includes how you
protect sensitive data from being stolen from memory, from
configuration files, or when transmitted over the network.

Session Management A session refers to a series of related interactions between a client
and your service.

Using the Web Services Security Frame
The Web Services Security Frame serves as a foundation for the rest of this guide. Guidelines,
checklists, and other guidance are all organized around the categories represented in this
frame. You can use this frame to help wrap your mind around WCF security and better organize
the key decisions you need to make when considering security for your application. Through
practice and experience, we have learned that the frame is most useful when combined with a
question-driven approach to security. This approach will help you transition from security
understanding to actionable steps you can take to improve the security stance of your
application.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 48

Category Key questions
Auditing and Logging • What events are important for the security of your

application?
• In the event of an attack, what trail of evidence would you

want left behind for your investigation?
• What user management or sensitive business operations do

you want to track?
Authentication • What credentials will your users present to your service?

• From what types of clients and locations (Internet versus
intranet) will they be calling?

• How do you want to store user account information?
• Do you want to map authentication to pre-existing Windows

accounts in your domain?
Authorization • What roles will be defined for your service?

• What operations in your service should require explicit
authorization?

• Do you want to authorize the original caller in your service,
before your service, or in the business layers called by your
service?

• Do you need to use the original caller to access resources on
the back end?

• Where do you want to store role information?
• Do you already have roles defined, such as Windows groups,

that you want your service to interact with?
Configuration
Management

• Under what security context does your application run?
• Which databases does it connect to and under what security

context?
• How is your application administered?
• What settings are sensitive and should be secured?

Exception Management • When a method call in your application fails, what does your
application do?

• How much do you reveal?
• Do you return friendly error information to end users?
• Do you pass valuable exception information back to the caller?
• Does your application fail gracefully?

Impersonation/Delegation • What tiers and layers of your application need access to the
original caller’s identity and credentials?

• Do you need to flow the original caller to back-end resources?
• Do you need to authorize the original caller at the service level

or in a downstream component?
• Do you need to access the database using the original caller’s

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 49

security context?
• Which operations in your service will need to use

impersonation to flow the original caller’s identity?
Message Encryption • Is there sensitive data transmitted in your messages that

needs to be protected from exposure to an attacker?
Message Replay Detection • How do you protect a service from an attacker who replays an

intercepted message?
Message Signing • Is it important that the message source can be verified and

that the contents have not been modified?
Message Validation • How will you validate incoming SOAP messages on your

service?
• How will you validate input parameters on your service?
• How will you validate information that is returned to your

client?
• How will you validate data that comes from other sources

such as your database or the file system?
• How will you make your outbound data safe?

Sensitive Data • How does your application handle sensitive data? (Sensitive
data refers to any data that must be protected either in
memory, over the network, or in persistent stores, and how
your application handles that data.)

• How are you keeping secrets (confidentiality)?
• How are you tamper-proofing your data or libraries

(integrity)?
• How are you providing seeds for random values that must be

cryptographically strong? (Cryptography refers to how your
application enforces confidentiality and integrity.)

Session Management • How does your application handle and protect client sessions?

Web Services Security Patterns
The following Web services security patterns from the Microsoft patterns & practices Web
Services Security guide (3TUhttp://msdn.microsoft.com/en-us/library/aa480545.aspxU3T) are helpful
for addressing various security concerns, such as authentication, authorization, etc.

• Brokered Authentication
• Brokered Authentication: Kerberos
• Brokered Authentication: X.509 PKI
• Brokered Authentication: STS
• Data Confidentiality
• Data Origin Authentication
• Direct Authentication
• Exception Shielding

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 50

• Message Replay Detection
• Message Validator
• Perimeter Service Router
• Protocol Transition with Constrained Delegation
• Trusted Subsystem

Web Services Security Patterns Organized by the Web Services Security
Frame
The following table summarizes the Web Services Security patterns organized by the Web
Services Security Frame.

Pattern Description Reference
Authentication
Direct
Authentication

The Web service acts as an authentication
service to validate credentials from the
client. The credentials, which include
proof-of-possession that is based on
shared secrets, are verified against an
identity store.

3TUhttp://msdn.microsoft.com/en-
us/library/aa480566.aspxU3T

Brokered
Authentication

The Web service validates the credentials
presented by the client, without the need
for a direct relationship between the two
parties. An authentication broker that
both parties trust independently issues a
security token to the client. The client can
then present credentials, including the
security token, to the Web service.

3TUhttp://msdn2.microsoft.com/en-
us/library/aa480560.aspxU3T

Brokered
Authentication:
Kerberos

Use the Kerberos protocol to broker
authentication between clients and Web
services.

3TUhttp://msdn2.microsoft.com/en-
us/library/aa480562.aspxU3T

Brokered
Authentication:
X.509 PKI

Use brokered authentication with X.509
certificates issued by a certificate
authority (CA) in a public key
infrastructure (PKI) to verify the
credentials presented by the requesting
application.

3TUhttp://msdn2.microsoft.com/en-
us/library/aa480565.aspxU3T

Brokered
Authentication:
STS

Use brokered authentication with a
security token issued by a Security Token
Service (STS). The STS is trusted by both
the client and the Web service to provide
interoperable security tokens.

3TUhttp://msdn2.microsoft.com/en-
us/library/aa480563.aspxU3T

Authorization

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 51

Protocol
Transition with
Constrained
Delegation

Use the Kerberos protocol extensions in
Microsoft Windows Server®. The
extensions require the user ID but not the
password. You still need to establish trust
between the client application and the
Web service; however, the application is
not required to store or send passwords.

3TUhttp://msdn.microsoft.com/en-
us/library/aa480585.aspxU3T

Trusted
Subsystem

The Web service acts as a trusted
subsystem to access additional resources.
It uses its own credentials instead of the
user’s credentials to access the resource.

3TUhttp://msdn2.microsoft.com/en-
us/library/aa480587.aspxU3T

Exception Management
Exception
Shielding

Sanitize unsafe exceptions by replacing
them with exceptions that are safe by
design. Return only those exceptions to
the client that have been sanitized, or
exceptions that are safe by design.
Exceptions that are safe by design do not
contain sensitive information in the
exception message, and they do not
contain a detailed stack trace, either of
which might reveal sensitive information
about the Web service’s inner workings.

3TUhttp://msdn2.microsoft.com/en-
us/library/aa480591.aspxU3T

Message Encryption
Data
Confidentiality

Use encryption to protect sensitive data
that is contained in a message.
Unencrypted data, which is known as
plaintext, is converted to encrypted data,
which is known as ciphertext. Data is
encrypted with an algorithm and a
cryptographic key. Ciphertext is then
converted back to plaintext at its
destination.

3TUhttp://msdn.microsoft.com/en-
us/library/aa480570.aspxU3T

Message Replay Detection
Message
Replay
Detection

Cache an identifier for incoming
messages, and use message replay
detection to identify and reject messages
that match an entry in the replay
detection cache.

3TUhttp://msdn2.microsoft.com/en-
us/library/aa480598.aspxU3T

Message Signing
Data Origin
Authentication

Use data origin authentication, which
enables the recipient to verify that
messages have not been tampered with in

3TUhttp://msdn2.microsoft.com/en-
us/library/aa480571.aspxU3T

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 52

transit (data integrity) and that they
originate from the expected sender
(authenticity).

Message Validation
Message
Validator

The message validation logic enforces a
well-defined policy that specifies which
parts of a request message are required
for the service to successfully process it. It
validates the XML message payloads
against an XML schema (XSD) to ensure
that they are well-formed and consistent
with what the service expects to process.
The validation logic also measures the
messages against certain criteria by
examining the message size, the message
content, and the character sets that are
used. Any message that does not meet
the criteria is rejected.

3TUhttp://msdn2.microsoft.com/en-
us/library/aa480600.aspxU3T

Deployment
Perimeter
Service Router

Design a Web service intermediary that
acts as a perimeter service router. The
perimeter service router provides an
external interface on the perimeter
network for internal Web services. It
accepts messages from external
applications and routes them to the
appropriate Web service on the private
network.

3TUhttp://msdn2.microsoft.com/en-
us/library/aa480606.aspxU3T

Summary
The foundations of WCF security include authentication, authorization, auditing, confidentiality,
integrity, and availability. When you think about security in your service, you should first
understand the distinctions between threats, attacks, vulnerabilities, and countermeasures. To
build secure services, you will identify your security objectives; identify your threats and
vulnerabilities; apply principles, patterns, and practices; and use security engineering
techniques throughout your application life cycle. By using the Web Services Security Frame,
you can better organize and use your security knowledge.

Additional Resources
For more information, see the following resources:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 53

• For more information on applying security throughout the life cycle, see “patterns &
practices Security Engineering Explained” at 3 TUhttp://msdn.microsoft.com/en-
us/library/ms998382.aspxU3T .

• For more information on how to perform effective threat modeling, see “patterns &
practices Threat Modeling Web Applications” at 3 TUhttp://msdn.microsoft.com/en-
us/library/ms978516.aspxU3T .

• For more information on Web Services Security patterns, see “patterns & practices Web
Services Security: Scenarios, Patterns, and Implementation Guidance for Web Services
Enhancements (WSE) 3.0” at 3TUhttp://msdn.microsoft.com/en-us/library/aa480545.aspxU3T .

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 54

Chapter 2 – Threats and Countermeasures for Web Services

Objectives

• Understand the difference between a threat, an attack, a vulnerability, and a
countermeasure

• Understand common vulnerabilities in Web services.
• Understand how to implement effective countermeasures for dealing with common Web

services threats and attacks.

Overview

It is important to think like an attacker when designing and implementing your service. Putting
yourself in the attacker’s mindset will make you more effective at designing mitigations for
vulnerabilities and coding defensively.

Threats, Attacks, Vulnerabilities, and Countermeasures

This chapter analyzes security for Web services from the perspectives of threats, vulnerabilities,
attacks, and countermeasures. These terms are defined as follows:

• Asset. A resource of value such as the data in a database, data on the file system, or a
system resource.

• Threat. A potential occurrence – malicious or otherwise – that can harm an asset.
• Vulnerability. A weakness that makes a threat possible.
• Attack. An action taken to exploit vulnerability and realize a threat.
• Countermeasure. A safeguard that addresses a threat and mitigates risk.

Web Services Security Frame

The following key security concepts provide a frame for thinking about security when designing
and architecting services. Understanding these concepts helps you put core security features
such as authentication, authorization, auditing, confidentiality, integrity, and availability in
action.

Category Description
Auditing and logging Auditing and logging refers to how security-related events are

recorded, monitored, and audited.
Authentication Authentication is the process in which an entity proves the

identity of another entity, typically through credentials, such as a
username and password.

Authorization Authorization is the means by which your service provides access
controls for resources and operations.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 55

Configuration
Management

Configuration management refers to how your service handles
database connections, administration, and other configuration
settings.

Exception management Exception management refers to how you handle exceptions
within your application, including fault contracts.

Impersonation/delegation Impersonation and delegation refers to how your service
impersonates users and passes identity information downstream
for authorization purposes.

Message encryption Message encryption refers to protecting a message by converting
the contents to cipher-text using cryptographic methods.

Message replay detection Message replay detection refers to identifying and rejecting
messages that are resubmitted.

Message signing Message signing refers to signing a message with a digital
signature using cryptographic methods, to confirm the source of
the message and detect if the contents have been tampered with
(i.e., authentication and integrity of the message).

Message validation Message validation refers to how you verify the message payload
against a schema, as well as message size, content, and character
sets. This includes how your service filters, scrubs, and rejects
input and output before additional processing. Input and output
includes input from clients consuming the service as well as file-
system input, in addition to input from network resources, such as
databases. Output typically includes the return values from your
service or disk/database writes among others.

Sensitive data Sensitive data refers to user and application data whose integrity
and confidentiality you need to protect. You need to protect
sensitive data from being stolen from memory or configuration
files, or when it is transmitted over the network.

Session management A session refers to a series of related interactions between a client
and your service.

Auditing and Logging

Auditing and logging is used to monitor and record important activity, such as transactions or
user management events, on both the client and the service. Logged information should be
recorded and stored to enable efficient auditing of events in the case of an attack or a
suspected attack.

Threats and attacks include:

• Repudiation. An attacker denies performing an operation, exploits an application without
trace, or covers his or her tracks.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 56

• Denial of service (DoS). An attacker overwhelms logs with excessive entries or very large log
entries.

• Disclosure of confidential information. An attacker gathers sensitive information from log
files.

Vulnerabilities include:

• Failing to audit failed logons.
• Failing to secure log files.
• Storing sensitive information in log files.
• Failing to audit across application tiers.
• Failure to throttle log files.

Countermeasures include:

• Identify malicious behavior.
• Know your baseline (know what good traffic looks like).
• Use application instrumentation to expose behavior that can be monitored.
• Throttle logging.
• Strip sensitive data before logging.

Authentication

Authentication is the mechanism by which your clients can establish their identity with your
service, using a set of credentials that prove that identity. A username is an example of an
identity, while a password is an example of a credential.

Threats and attacks include:

• Network eavesdropping. An attacker steals identity and/or credentials off the network by
reading network traffic not intended for them.

• Brute force attacks. An attacker guesses identity and/or credentials through the use of
brute force.

• Dictionary attacks. An attacker guesses identity and/or credentials through the use of
common terms in a dictionary designed for that purpose.

• Cookie replay attacks. An attacker gains access to an authenticated session through the
reuse of a stolen cookie containing session information.

• Credential theft. An attacker gains access to credentials through data theft; for instance,
phishing or social engineering.

Vulnerabilities:

• Using weak passwords.
• Storing clear text credentials in configuration files.
• Passing clear text credentials over the network.
• Permitting prolonged session lifetime.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 57

• Mixing personalization with authentication.
• Using weak authentication mechanisms (e.g., using basic authentication over an untrusted

network).

Countermeasures include:

• Use strong password policies.
• Do not store credentials in an insecure manner.
• Use authentication mechanisms that do not require clear text credentials to be passed over

the network.
• Encrypt communication channels to secure authentication tokens.
• Use Secure HTTP (HTTPS) only with forms authentication cookies.
• Separate anonymous from authenticated pages.
• Using cryptographic random number generators to generate session IDs.

Authorization

Authorization is the mechanism by which you control the operations and resources an
authenticated client can access. Authorization controls may be enforced at the class level, the
method level, or in fine-grained business logic if needed.

Threats and attacks include:

• Elevation of privilege. An attacker enters a system as a lower-level user, but is able to
obtain higher-level access.

• Disclosure of confidential data. An attacker accesses confidential information because of
authorization failure on a resource or operation.

• Data tampering. An attacker modifies sensitive data because of authorization failure on a
resource or operation.

• Luring attacks. An attacker lures a higher-privileged user into taking an action on their
behalf. This is not an authorization failure but rather a failure of the system to properly
inform the user.

• Token stealing. An attacker steals the credentials or token of another user in order to gain
authorization to resources or operations they would not otherwise be able to access.

Vulnerabilities include:

• Relying on a single gatekeeper (e.g., relying on client-side validation only).
• Failing to lock down system resources against application identities.
• Failing to limit database access to specified stored procedures.
• Using inadequate separation of privileges.
• Connection pooling.
• Permitting overprivileged accounts.

Countermeasures include:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 58

• Use least-privileged accounts.
• Tie authentication to authorization on the same tier.
• Consider granularity of access.
• Enforce separation of privileges.
• Use multiple gatekeepers.
• Secure system resources against system identities.

Configuration Management

Security settings, authentication, authorization, logging, and other parameters can usually be
set in configuration files. Improper configuration can lead to security vulnerabilities, as can a
lack of protection on the files themselves, which can lead to improper modification or theft of
connection strings and other sensitive information.

Threats and attacks include:

• Unauthorized access to configuration stores. An attacker gains access to configuration files
and is able to modify binding settings, etc.

• Retrieval of clear text configuration secrets. An attacker gains access to configuration files
and is able to retrieve sensitive information such as database connection strings.

Vulnerabilities include:

• Using insecure custom administration interfaces.
• Failing to secure configuration files on the server.
• Storing sensitive information in the clear text.
• Having too many administrators.
• Using overprivileged process accounts and service accounts.

Countermeasures include:

• Use access control lists (ACLs).
• Encrypt sensitive sections of configuration files.
• Use secure settings for various operations of Web services using configuration files.

Exception Management

Exception management is the means by which you expose and consume exception information
within your service and send it back to your clients. In most cases, exceptions should be
shielded from the client entirely and handled with a sanitized error message. In addition, fault
contracts should be negotiated beforehand so that the client and the Web service agree on a
course of action when a failure occurs.

Threats and attacks include:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 59

• Information disclosure. Sensitive system or application details are revealed through
exception information.

• Denial of service. An attacker uses error conditions to stop your service or place it in an
unrecoverable error state.

• Elevation of privilege. Your service encounters an error and fails to an insecure state; for
instance, failing to revert impersonation.

Vulnerabilities include:

• Failure to use structured exception handling (try/catch).
• Revealing too much information to the client.
• Failure to specify fault contracts with the client.
• Failure to use a global exception handler.

Countermeasures include:

• Use structured exception handling (by using try/catch blocks).
• Catch and wrap exceptions only if the operation adds value/information.
• Do not reveal sensitive system or application information.
• Implement a global exception handler.
• Do not log private data such as passwords.

Impersonation/Delegation

Impersonation and delegation are techniques used to flow the original caller to back-end
resources. Impersonation is used to access resources on the same machine where the service
code is running. Delegation is used to access network resources on other machines.

Threats and attacks include:

• Elevation of privilege. An attacker is able to run in the context of a higher-privileged user.
• Disclosure of confidential information. An attacker gains access to data that should only be

available to another user.

Vulnerabilities include:

• Failure to revert to a lower privilege after using impersonation.
• Improper use of global impersonation across the entire service.

Countermeasures include:

• Use Using statement to automatically revert impersonation.
• Granularly impersonate only those operations that need it.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 60

Message Encryption

Message encryption is used to protect sensitive data in-transport over the network. Encryption
does not protect the integrity of the data, but only its confidentiality. Message encryption can
be provided by either message security or transport security. Message security encrypts each
message individually, while transport security encrypts the entire communication channel (e.g.,
with SSL).

Threats and attacks include:

• Failure to encrypt messages. An attacker is able to read message content off the network
because it is not encrypted.

• Theft of encryption keys. An attacker is able to decrypt sensitive data because he or she has
the keys.

• Man-in-the-middle attack. An attacker can read and then modify messages between the
client and the service.

Vulnerabilities include:

• Not encrypting messages.
• Using custom cryptography.
• Distributing keys insecurely.
• Managing or storing keys insecurely.

Countermeasures include:

• Use message security or transport security to encrypt your messages.
• Use proven platform-provided cryptography.
• Periodically change your keys.

Message Replay Detection

Message replay detection is a feature that allows your code to detect some instances in which
an attacker is trying to replay messages in order to steal a session from one of your clients.

Threats and attacks include:

• Session replay. An attacker steals messages off the network and replays them in order to
steal a user’s session.

Vulnerabilities include:

• Failure to use a mechanism to detect message replays.

Countermeasures include:

• Use any platform-provided replay detection features.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 61

• Consider creating custom code if the platform does not provide a detection mechanism.

Message Signing

Message signing is used to protect the integrity of messages in transit over the network and to
provide proof of the original sender. Signing does not protect the confidentiality of the data,
but only its integrity and confidence in the original sender. Message signing can be provided by
either message security or transport security. Message security signs each message individually,
while transport security protects the entire communication channel (e.g., with SSL).

Threats and attacks include:

• Data tampering. An attacker modifies the data in a message in order to attack the client or
the service.

Vulnerabilities include:

• Not using either message or transport security.

Countermeasures include:

• Turn on message or transport security.

Message Validation

Message validation is used to protect your service from malformed messages and message
parameters. Message schemas can be used to validate incoming messages, while custom
validators can be used to validate parameter data before your service consumes it.

Threats and attacks include:

• Canonicalization attacks. Canonicalization attacks can occur anytime validation is
performed on a different form of the input than that which is used for later processing. For
instance, a validation check may be performed on an encoded string, which is later decoded
and used as a file path or URL.

• Cross-site scripting. Cross-site scripting can occur if you fail to encode user input before
echoing back to a client that will render it as HTML.

• SQL injection. Failure to validate input can result in SQL injection if the input is used to
construct a SQL statement, or if it will modify the construction of a SQL statement in some
way.

• XPath injection. XPath injection can result if the input sent to the Web service is used to
influence or construct an XPath statement. The input can also introduce unintended results
if the XPath statement is used by the Web service as part of some larger operation, such as
applying an XQuery or an XSLT transformation to an XML document.

• XML bomb. XML bomb attacks occur when specific, small XML messages are parsed by a
service resulting in data that feeds on itself and grows exponentially. An attacker sends an

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 62

XML bomb with the intent of overwhelming a Web service’s XML parser, thus resulting in a
denial of service (DoS) attack.

Vulnerabilities include:

• Using non-validated input used to generate SQL queries.
• Relying only on client-side validation.
• Using input file names, URLs, or usernames for security decisions.
• Using application-only filters for malicious input.
• Looking for known bad patterns of input.
• Trusting data read from databases, file shares, and other network resources.
• Failing to validate input from all sources including cookies, Simple Object Access Protocol

(SOAP) headers, SOAP parameters, databases, and network resources.

Countermeasures include:

• Do not trust client input.
• Validate input: length, range, format, and type.
• Validate XML streams.
• Constrain, reject, and sanitize input.
• Encode output.
• Restrict the size, length, and depth of parsed XML messages.

Sensitive Data

Sensitive data refers to any confidential information that your service processes or transmits.
Protection of sensitive data includes protecting the information over the network, in
configuration files, in local memory or file storage, or in databases and log files. Sensitive
information includes user identity and credentials as well as any personally identifiable
information such as social security number.

A more complete definition of sensitive data is:

• Information that either contains personally identifiable information or can be used to derive
personally identifiable information that should not be shared with users.

• Information that a user provides that they would not want shared with other users of the
application.

• Information that comes from an external trusted source that is not designed to be shared
with users.

Threats and attacks include:

• Memory dumping. An attacker is able to read sensitive data out of memory or from local
files.

• Network eavesdropping. An attacker listens to and intercepts unencrypted sensitive data
off the network.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 63

• Configuration file sniffing. An attacker steals sensitive information, such as connection
strings, out of configuration files.

Vulnerabilities include:

• Storing secrets when you do not need to.
• Storing secrets in code.
• Storing secrets in clear text in files, registry, or configuration.
• Passing sensitive data in clear text over networks.

Countermeasures include:

• Do not store secrets in software.
• Encrypt sensitive data over the network.
• Secure the channel.
• Encrypt sensitive data in configuration files.

Session Management

Sessions are the means by which an application maintains stateful communication with a client
over time. This is usually supported through the use of a session ID, token, or cookie. If a
session is supported in such a way that credentials are not required for every interaction, an
attacker could potentially steal the session and act on the original user’s behalf.

Threats and attacks include:

• Session hijacking. An attacker steals the session ID of another user in order to gain access to
resources or operations they would not otherwise be able to access.

• Session replay. An attacker steals messages off the network and replays them in order to
steal a user’s session.

• Man-in-the-middle attack. An attacker can read and then modify messages between the
client and the service.

• Inability to log out successfully. An application leaves a communication channel open
rather than completely closing the connection and destroying any server objects in memory
relating to the session.

• Cross-site request forgery. Cross-site request forgery (CSRF) is where an attacker tricks a
user into performing an action on a site where the user actually has a legitimate authorized
account.

• Session fixation. An attacker uses CSRF to set another person’s session identifier and thus
hijack the session after the attacker tricks a user into initiating it.

• Load balancing and session affinity. When sessions are transferred from one server to
balance traffic among the various servers, an attacker can hijack the session during the
handoff.

Vulnerabilities include:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 64

• Passing session IDs over unencrypted channels.
• Permitting prolonged session lifetime.
• Having insecure session state stores.
• Placing session identifiers in query strings.

Countermeasures include:

• Partition the site by anonymous, identified, and authenticated users.
• Reduce session timeouts.
• Avoid storing sensitive data in session stores.
• Secure the channel to the session store.
• Authenticate and authorize access to the session store.

Threats and Attacks Explained

The following explanations briefly describe some of the threats and attacks mentioned above:

• Brute force attacks. Attacks that use the raw computer processing power to try different
permutations of any variable that could expose a security hole. For example, if an attacker
knew that access required an 8-character username and a 10-character password, the
attacker could iterate through every possible combination (256 multiplied by itself 18 times)
in order to attempt to gain access to a system. No intelligence is used to shape or filter likely
combinations.

• Buffer overflows. The maximum size of a given variable (string or otherwise) is exceeded,
forcing unintended program processing. In this case, the attacker uses this behavior to
cause insertion and execution of code in such a way that the attacker gains control of the
program in which the buffer overflow occurs. Depending on the program’s privileges, the
seriousness of the security breach will vary.

• Canonicalization attacks. There are multiple ways to access the same object and an
attacker uses a method to bypass any security measures instituted on the primary intended
methods of access. Often, the unintended methods of access can be less secure deprecated
methods.

• Cookie manipulation. Through various methods, an attacker will alter the cookies stored in
the browser. Attackers will then use the cookie to fraudulently authenticate themselves to a
service or Web site.

• Cookie replay attacks. Reusing a previously valid cookie to deceive the server into believing
that a previously authenticated session is still in progress and valid.

• Credential theft. Stealing the verification part of an authentication pair (identity +
credentials = authentication). Passwords are a common credential.

• Cross-site scripting. An attacker is able to inject executable code (script) into a stream of
data that will be rendered in a browser. The code will be executed in the context of the
user’s current session and will gain privileges to the site and information that it would not
otherwise have.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 65

• Connection pooling. The practice of creating and then reusing a connection resource as a
performance optimization. In a security context, this can result in either the client or server
using a connection previously used by a highly privileged user being used for a lower-
privileged user or purpose. This can potentially expose vulnerabilities if the connection is
not reauthorized when used by a new identity.

• Data tampering. An attacker violates the integrity of data by modifying it in local memory,
in a data-store, or on the network. Modification of this data could provide the attacker with
access to a service through a number of the different methods listed in this document.

• Denial of service. Denial of service (DoS) is the process of making a system or application
unavailable. For example, a DoS attack might be accomplished by bombarding a server with
requests to consume all available system resources, or by passing the server malformed
input data that can crash an application process.

• Dictionary attack. Use of a list of likely access methods (usernames, passwords, coding
methods) to try and gain access to a system. This approach is more focused and intelligent
than the “brute force” attack method, so as to increase the likelihood of success in a shorter
amount of time.

• Disclosure of sensitive/confidential data. Sensitive data is exposed in some unintended
way to users who do not have the proper privileges to see it. This can often be done
through parameterized error messages, where an attacker will force an error and the
program will pass sensitive information up through the layers of the program without
filtering it. This can be personally identifiable information (PII) or system data.

• Elevation of privilege. EA user with limited privileges assumes the identity of a privileged
user to gain privileged access to an application. For example, an attacker with limited
privileges might elevate his or her privilege level to compromise and take control of a highly
privileged and trusted process or account.

• Encryption. The process of taking sensitive data and changing it in such a way that it is
unrecognizable to anyone but those who know how to decode it. Different encryption
methods have different strengths based on how easy it is for an attacker to obtain the
original information through whatever methods are available.

• Information disclosure. Unwanted exposure of private data. For example, a user views the
contents of a table or file that he or she is not authorized to open, or monitors data passed
in plaintext over a network. Some examples of information disclosure vulnerabilities include
the use of hidden form fields, comments embedded in Web pages that contain database
connection strings and connection details, and weak exception handling that can lead to
internal system-level details being revealed to the client. Any of this information can be very
useful to the attacker.

• Luring attacks. An attacker lures a higher-privileged user into taking an action on his or her
behalf. This is not an authorization failure but rather a failure of the system to properly
inform the user.

• Man-in-the-middle attacks. A person intercepts both the client and server communications
and then acts as an intermediary between the two without each ever knowing. This gives
the “middle man” the ability to read and potentially modify messages from either party in
order to implement another type of attack listed here.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 66

• Network eavesdropping. Listening to network packets and reassembling the messages
being sent back and forth between one or more parties on the network. While not an attack
itself, network eavesdropping can easily intercept information for use in specific attacks
listed in this document.

• Password cracking. If the attacker cannot establish an anonymous connection with the
server, he or she will try to establish an authenticated connection. For this, the attacker
must know a valid username and password combination. If you use default account names,
you are giving the attacker a head start. Then the attacker only has to crack the account’s
password. The use of blank or weak passwords makes the attacker’s job even easier.

• Repudiation. The ability of users (legitimate or otherwise) to deny that they performed
specific actions or transactions. Without adequate auditing, repudiation attacks are difficult
to prove.

• Session hijacking. Also known as man-in-the-middle attacks, session hijacking deceives a
server or a client into accepting the upstream host as the actual legitimate host. Instead,
the upstream host is an attacker’s host that is manipulating the network so the attacker’s
host appears to be the desired destination.

• Session replay. An attacker steals messages off of the network and replays them in order to
steal a user’s session.

• Session fixation. An attacker sets (fixates) another person’s session identifier artificially. The
attacker must know that a particular Web service accepts any session ID that is set
externally; for example, the attacker sets up a URL such as
http://unsecurewebservice.com/?sessionID=1234567. The attacker then sends this URL to a
valid user, who clicks on it. At this point, a valid session with the ID 1234567 is created on
the server. Because the attacker determines this ID, he or she can now hijack the session,
which has been authenticated using the valid user’s credentials.

• Spoofing. An attempt to gain access to a system by using a false identity. This can be
accomplished by using stolen user credentials or a false IP address. After the attacker
successfully gains access as a legitimate user or host, elevation of privileges or abuse using
authorization can begin.

• SQL injection. Failure to validate input in cases where the input is used to construct a SQL
statement or will modify the construction of a SQL statement in some way. If the attacker
can influence the creation of a SQL statement, he or she can gain access to the database
with privileges otherwise unavailable and use this in order to steal or modify information or
destroy data.

• Throttling. The process of limiting resource usage to keep a particular process from bogging
down and/or crashing a system. Relevant as a countermeasure in DoS attacks, where an
attacker attempts to crash the system by overloading it with input.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 67

Chapter 3 – Security Design Guidelines for Web Services

Contents
• Security Architecture and Design Issues for Web Services
• Deployment Considerations
• Auditing and Logging
• Authentication
• Authorization
• Configuration Management
• Exception Management
• Message Protection
• Message Validation
• Sensitive Data
• Session Management

Overview
Designing a Web service with security in mind presents developers and architects with an
interesting set of challenges. Some are unique to service-oriented architecture and some are
similar to the challenges that face enterprise Web application development teams.

A Web service is most commonly implemented as a wrapper – that is, as an interface between
a client consuming the service and back-end business logic components doing the actual work.
A Web service acts as a trust boundary in your application architecture. By its nature, a Web
service acts as a gateway between trusted business components and less trusted or untrusted
client components. For this reason, it is impossible to think about the security of a Web service
without also thinking about authentication, authorization, protection of sensitive data on the
network, and handling potentially malicious input. Each of these areas represents key decisions
you will need to make in order to maintain the security of your application.

By following security best practices in the design of your Web service, you can use proven
practices to improve your decision-making capabilities and make a cascading positive impact on
the overall security of your application. Use the following design guidelines to reduce wasted
effort trying to solve security problems for which there are already best practices in place to
improve the security of your service.

Security Architecture and Design Issues for Web Services
During the design phase, it is important to think like an attacker and consider potential
vulnerabilities that can impact your service. A clear understanding of attacks and vulnerabilities
will put you in the right mindset to mitigate potential problems and create a design that is
resistant to malicious attack. The following table outlines key problem areas for each category
in the Web service security frame.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 68

Vulnerability category Potential problem due to bad design
Auditing and logging • Failure to observe signs of intrusion

• Inability to prove a user’s actions
• Difficulties in problem diagnosis

Authentication • Identity spoofing
• Password cracking
• Elevation of privileges
• Unauthorized access

Authorization • Access to confidential or restricted data,
• Tampering
• Execution of unauthorized operations

Configuration
management

• Unauthorized access to administration interfaces
• Unauthorized ability to update configuration data
• Unauthorized access to user accounts and account profiles

Exception management • Denial of service (DoS) attacks
• Disclosure of sensitive system level details
• Elevation of privilege.

Message encryption • Sniffing of confidential data off the network
• Stealing users’ credentials or session information

Message replay
detection

• Replaying user messages to gain unauthorized access to
resources or data

Message signing • Tampering with messages on the network without
detection. Failure to mutually authenticate allows attacker
to send messages as if they were a legitimate user.

Message validation • Messages containing malicious input.
• Cross-site scripting or SQL injection attacks on the service or

clients that rely on the service.
Sensitive data • Confidential information disclosure and data tampering.
Session management • Session hijacking and/or identity spoofing due to Capture of

session ID.

Deployment Considerations
During the application design phase, you should review your corporate security policies and
procedures together with the infrastructure on which your application is to be deployed.
Frequently, the target environment is rigid, and your application design must reflect its
restrictions. Sometimes design tradeoffs are required; for example, because of protocol or port
restrictions or specific deployment topologies. Identify constraints early in the design phase in
order to avoid surprises later, and involve members of the network and infrastructure teams to
help with this process.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 69

Fig. 1 – Deployment Considerations

Consider the following guidelines before deploying your Web service:

• Identify security policies and procedures. A security policy determines what your
applications are allowed to do and what the users of the application are permitted to do.
More importantly, a security policy defines restrictions to determine what applications and
users are not allowed to do. When designing your applications, identify and work within the
framework defined by your corporate security policy to make sure you do not breach any
policy that might prevent the application from being deployed.

• Understand network infrastructure components. Make sure you understand the network
structure provided by your target environment, as well as the baseline security
requirements of the network in terms of filtering rules, port restrictions, supported
protocols, and so on.

• Identify how firewalls and firewall policies are likely to affect your application’s design
and deployment. If present, firewalls separating the Internet-facing applications from the
internal network, as well asadditional firewalls in front of the database, can affect your
possible communication ports. Consequently, the firewall configuration can affect
authentication options from the Web server to remote application and database servers.
For example, Windows authentication requires additional ports.

• Identify protocols, ports, and services. At the design stage, consider what protocols, ports,
and services are allowed to access internal resources from the Web servers in the perimeter
network. Also identify the protocols and ports that the application design requires, and
analyze the potential threats that can occur from opening new ports or using new
protocols.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 70

• Communicate assumptions. Communicate and record any assumptions made about
network and application-layer security and which component will handle what task. This
prevents security controls from being overlooked when both the development and network
teams assume that the other team is addressing the issue. Pay attention to the security
defenses that your application relies on the network to provide. Consider the implications
of a change in network configuration. For example, how much security would you lose if you
implement a specific network change?

• Analyze deployment topologies. Your application’s deployment topology, and whether you
have a remote application tier, are key considerations that must be incorporated into your
design. If you have a remote application tier, you need to consider how to secure the
network between servers in order to address the network eavesdropping threat and
provide privacy and integrity for sensitive data.

• Consider identity flow. Also consider identity flow and identify the accounts that will be
used for network authentication when your application connects to remote servers. A
common approach is to use a least-privileged process account and create a duplicate
(mirrored) account on the remote server with the same password. Alternatively, you might
use a domain process account, which provides easier administration but is more
problematic to secure because of the difficulty of limiting the account’s use throughout the
network. An intervening firewall or separate domains without trust relationships often
makes the local account approach the only viable option.

• Understand intranet, extranet, and Internet considerations. Intranet, extranet, and
Internet application scenarios each present design challenges. Questions that you should
consider include: How will you flow caller identity through multiple application tiers to
back-end resources? Where will you perform authentication? Can you trust authentication
at the front end and then use a trusted connection to access back-end resources? In
extranet scenarios, you also must consider whether you trust partner accounts.

Additional Resources
For more information, see “Perimeter Service Router” at http://msdn2.microsoft.com/en-
us/library/aa480606.aspx .

Auditing and Logging
Auditing and logging are used to monitor and record important activities, such as transactions
or user management events, on both the client and the service. Ensure that your logging design
allows for the effective auditing of security-critical operations such as user management events
or important business operations such as financial transactions. Be careful not to log sensitive
information because the access rights to your log files may be different from access rights to
protected operations in your service. Protect your log files so that an attacker cannot access or
tamper with your logs.

Consider the following guidelines:

• Audit and log access across application tiers.
• Back up and analyze log files regularly.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 71

• Consider identity flow.
• Do not log sensitive information.
• Instrument for significant business operations.
• Instrument for unusual activity.
• Instrument for user management events.
• Know your baseline.
• Log key events.
• Protect and audit log files.
• Use log throttling.

Each of these guidelines is briefly described in the following sections.

Audit and Log Access Across Application Tiers
Audit and log access across the tiers of your application for the purpose of non-repudiation. Use
a combination of application-level logging and platform auditing features.

Back Up and Analyze Log Files Regularly
There is no point in logging activity if the log files are never analyzed. Log files should be
removed from production servers on a regular basis. The frequency of removal depends on
your application’s level of activity. Your design should consider the way that log files will be
retrieved and moved to offline servers for analysis. Any additional protocols and ports opened
on the Web server for this purpose must be securely locked down.

Consider Identity Flow
Consider how your application will flow caller identity across multiple application tiers. You
have two basic choices:

• You can flow the caller’s identity at the operating system level by using the Kerberos
protocol delegation. This allows you to use operating system–level auditing. The
drawback to this approach is that it affects scalability because it means there can be no
effective database connection pooling at the middle tier.

• Alternatively, you can flow the caller’s identity at the application level and use trusted
identities to access back-end resources. With this approach, you have to trust the
middle tier, which brings a potential repudiation risk. You should generate audit trails in
the middle tier that can be correlated with back-end audit trails.

Do Not Log Sensitive Information
Do not include sensitive information in your log entries. The access rights for your log files may
be different than the access rights for sensitive operations and data in your service. Strip out
sensitive data such as passwords, credit card numbers, or personally identifiable information
(PII) before logging an error or an event to your log files.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 72

Instrument for Significant Business Operations
Track significant business operations. For example, instrument your application to record access
to particularly sensitive methods and business logic.

Instrument for Unusual Activity
Instrument your application and monitor events that might indicate unusual or suspicious
activity. This enables you to detect and react to potential problems as early as possible. Unusual
activity might be indicated by:

• Replays of old authentication tickets.
• Too many login attempts over a specific period of time.

Instrument for User Management Events
Instrument your application and monitor user management events such as password resets,
password changes, account lockout, user registration, and authentication events. Doing this
helps you to detect and react to potentially suspicious behavior. It also enables you to gather
operations data; for example, to track who is accessing your application and when user account
passwords need to be reset.

Know Your Baseline
Before deploying your application, audit your log files so you know what normal application
behavior looks like. Knowing your baseline can help you identify an attack in progress early on
and limit damage to your system.

Log Key Events
The types of events that should be logged include successful and failed logon attempts,
modification of data, retrieval of data, network communications, and administrative functions
such as the enabling or disabling of logging. Logs should include the time of the event, the
location of the event (including the machine name), the identity of the current user, the
identity of the process initiating the event, and a detailed description of the event.

Protect and Audit Log Files
Protect and audit and log files using Windows access control lists (ACLs), and restrict access to
the log files. If you log events to Microsoft SQL Server® or to some custom event sink, use
appropriate access controls to limit access to the event data. For example, grant write access to
the account or accounts used by your application, grant full control to administrators, and grant
read-only access to operators.

This makes it more difficult for attackers to tamper with log files in order to cover their tracks.
Minimize the number of individuals who can manipulate the log files. Authorize access only to
highly trusted accounts such as administrators.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 73

Additional Considerations
Also keep in mind the following additional considerations:

• Log application events on a separate, protected server. This helps to ensure that attackers
cannot tamper with logs.

• Assign appropriate permissions to the log files. Logs should be written by a process with
write permission only. Logs should be read by users with administrative access.

• Log application events in sufficient detail. Provide sufficient detail to permit reconstruction
of system activity.

• Use performance counters for high-volume, per-request events. This helps to minimize the
impact on performance.

Use Log Throttling
Use log throttling to limit the number of logs as well as the size of the log entries that a single
user can generate. Log throttling can protect your application from a denial of service (DoS)
attack that may overwhelm your logging infrastructure and negatively impact the availability of
your service.

Authentication
Authentication is the mechanism by which your clients can establish their identity with your
service using a set of credentials that prove that identity. Protect your user’s credentials when
they are sent over the network, as well as when they are stored on the client or the server. Do
not store the user’s password directly but instead store a salted hash. If you use cookies or
some other token to store authentication information for the client, protect that cookie as
strongly as you would protect the original credentials.

Consider the following guidelines:

• Be able to disable accounts.
• Do not send passwords over the wire in plaintext.
• Do not store passwords in user stores.
• Protect authentication cookies.
• Require strong passwords.
• Support password expiration periods.
• Use account lockout policies for end-user accounts.

Be Able to Disable Accounts
If the system is compromised, being able to deliberately invalidate credentials or disable
accounts can prevent additional attacks.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 74

Do Not Send Passwords over the Wire in Plaintext
Plaintext passwords sent over a network are vulnerable to eavesdropping. To address this
threat, secure the communication channel; for example, by using Secure Sockets layer (SSL) to
encrypt the traffic.

Do Not Store Passwords in User Stores
If you must verify passwords, it is not necessary to actually store the passwords. Instead, store a
one-way hash value and then recompute the hash using the user-supplied passwords. To
mitigate the threat of dictionary attacks against the user store, use strong passwords and
incorporate a random salt value with the password.

Protect Authentication Cookies
A stolen authentication cookie is a stolen logon. Protect authentication tickets using encryption
and secure communication channels. Also limit the time interval in which an authentication
ticket remains valid, to counter the spoofing threat that can result from replay attacks, where
an attacker captures the cookie and uses it to gain illicit access to your site. Reducing the cookie
timeout does not prevent replay attacks but does limit the amount of time the attacker has to
access the site using the stolen cookie.

Require Strong Passwords
Do not make it easy for attackers to crack passwords. There are many guidelines available, but a
general practice is to require a minimum of eight characters and a mixture of uppercase and
lowercase characters, numbers, and special characters. Whether you are using the platform to
enforce these requirements for you, or you are developing your own validation, this step is
necessary to counter dictionary attacks where an attacker tries to crack a password through
systematic trial and error. Use regular expressions to help with strong password validation.

Support Password Expiration Periods
Passwords should not be static and should be changed as part of routine password
maintenance through password expiration periods. Consider providing this type of facility
during application design.

Use Account Lockout Policies for End-user Accounts
Disable end-user accounts or write events to a log after a set number of failed logon attempts.
If you are using Windows authentication, such as NTLM or the Kerberos protocol, these policies
can be configured and applied automatically by the operating system. With Forms
authentication, these policies are the responsibility of the application and must be incorporated
into the application design. Be careful to ensure that account lockout policies cannot be abused
in DoS attacks.

Additional Resources
For information on key authentication patterns, see the following resources:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 75

• “Direct Authentication” at http://msdn.microsoft.com/en-us/library/aa480566.aspx .
• “Brokered Authentication” at http://msdn.microsoft.com/en-us/library/aa480560.aspx .
• “Brokered Authentication: Kerberos” at http://msdn.microsoft.com/en-

us/library/aa480562.aspx .
• “Brokered Authentication: X.509 PKI” at http://msdn.microsoft.com/en-

us/library/aa480565.aspx .
• “Brokered Authentication: Security Token Service (STS)” at http://msdn.microsoft.com/en-

us/library/aa480563.aspx .

Authorization
Authorization is the mechanism by which you control the operations and resources an
authenticated client can access. Where possible, authenticate your users on the same
application tier where you authorize your users. Run your application in a least-privileged
account and use impersonation to increase privileges only when necessary and for the shortest
time possible. Use ACLs to restrict the system resources that your application and its users can
access.

Consider the following guidelines:

• Tie authentication to authorization on the same tier.
• Consider authorization granularity.
• Know your authorization options.
• Enforce separation of privileges.
• Restrict user access to system-level resources.
• Use least-privileged accounts.
• Use multiple gatekeepers.

Tie Authentication to Authorization on the Same Tier
Where possible, authenticate your users on the same application tier where you authorize your
users. The further you separate the time of check (authentication) from the time of use
(authorization), the larger window of opportunity you give an attacker to subvert your
authorization mechanism.

Consider Authorization Granularity
There are three common authorization models, each with varying degrees of granularity and
scalability:

• The most granular approach relies on impersonation. Resource access occurs using the
security context of the caller. Windows ACLs on the secured resources (typically files or
tables, or both) determine whether the caller is allowed to access the resource. If your
application provides access primarily to user-specific resources, this approach may be valid.
It has the added advantage that operating system–level auditing can be performed across
the tiers of your application, because the original caller’s security context flows at the
operating system level and is used for resource access. However, the approach suffers from

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 76

poor application scalability because effective connection pooling for database access is not
possible. As a result, this approach is most frequently found in limited scale intranet-based
applications.

• The least granular but most scalable approach uses the application’s process identity for
resource access. This model is referred to as the trusted subsystem or sometimes as the
trusted server model. Although this approach supports database connection pooling, it
means that the permissions granted to the application’s identity in the database are
common, irrespective of the identity of the original caller. The primary authorization is
performed in the application’s logical middle tier using roles, which group together users
who share the same privileges in the application. Access to classes and methods is restricted
based on the role membership of the caller. To support the retrieval of per-user data, a
common approach is to include an identity column in the database tables and to use query
parameters to restrict the retrieved data. For example, you may pass the original caller's
identity to the database at the application (not operating system) level through stored
procedure parameters.

• The third option is to use a limited set of identities for resource access based on the role
membership of the caller. This is really a hybrid of the two models described earlier. Callers
are mapped to roles in the application’s logical middle tier, and access to classes and
methods is restricted based on role membership. Downstream resource access is performed
using a restricted set of identities determined by the current caller’s role membership.

Know Your Authorization Options
Know your authorization options and choose the most appropriate one for your scenario. First
decide if you want to use resource-based or role-based authorization. Resource-based
authorization uses ACLs on the resource to authorize the original caller. Role-based
authorization allows you to authorize access to service operations or resources based on the
group a user is in.

• If you choose to use role-based authorization, you can store your roles in Windows groups
or in ASP.NET roles.

• If you are using Active Directory, consider using Windows groups based on ease of
maintenance and the fact that you maintain both roles and credentials in the Active
Directory store. If you are not using Active Directory, consider using ASP.NET roles and the
ASP.NET role provider.

Restrict User Access to System-level Resources
System-level resources include files, folders, registry keys, Active Directory objects, database
objects, event logs, and so on. Use ACLs to restrict which users can access what resources and
the types of operations that they can perform. Pay particular attention to anonymous Internet
user accounts; lock these down with ACLs on resources that explicitly deny access to
anonymous users.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 77

Use Least-privileged Accounts
You might need to create a custom service account to isolate your application from other
applications on the same server, or to be able to audit each application separately.

Use Multiple Gatekeepers
On the server side, you can use IP Security Protocol (IPSec) policies to provide host restrictions
to restrict server-to-server communication. For example, an IPSec policy might restrict any host
apart from a nominated Web server from connecting to a database server. Internet Information
Services (IIS) provides Web permissions and Internet Protocol/ Domain Name System (IP/DNS)
restrictions. IIS Web permissions apply to all resources requested over HTTP regardless of the
user. The permissions do not provide protection if an attacker manages to log on to the server.
For this, NTFS permissions allow you to specify per-user ACLs. Finally, ASP.NET provides URL
authorization and File authorization together with principal permission demands. By combining
these gatekeepers, you can develop an effective authorization strategy.

Additional Resources
For more information, see “Trusted Subsystem” at http://msdn.microsoft.com/en-
us/library/aa480587.aspx

Configuration Management
Security settings, authentication, authorization, logging, and other parameters can be set in
configuration files. Encrypt configuration sections that contain sensitive data such as
connection strings to your SQL database. Protect access to your configuration settings so that
an attacker cannot modify security settings for your service.

Consider the following guidelines:

• Consider your key storage location.
• Encrypt sensitive sections of configuration files.
• Use ACLs to protect your configuration files.
• Use secure settings for various operations of Web services.

Consider Your Key Storage Location
If you need to store keys, choose platform features over creating your own mechanism. The
Data Protection API (DPAPI)– and RSA-protected configuration providers used to encrypt
sensitive data in configuration files can use either machine stores or user stores for key storage.
You can either store the key in the machine store and create an ACL for your specific
application identity, or store the key in a user store. In the latter case, you need to load the user
account’s profile to access the key.

Use machine-level key storage when:

• Your application runs on its own dedicated server with no other applications.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 78

• You have multiple applications on the same server that run using the same identity, and you
want those applications to be able to share sensitive information and the same encryption
key.

Use user-level key storage if you run your application in a shared hosting environment and you
want to ensure that your application’s sensitive data is not accessible to other applications on
the server. In this scenario, each application should have a separate identity so that they all
have their own individual and private key stores.

Encrypt Sensitive Sections of Configuration Files
Configuration files may contain sensitive information, such as connection strings to your
database. Encrypt sensitive information in your configuration files using the DPAPI provider
with the machine-key store. You can use the aspnet_regiis command-line tool to encrypt
sections of your configuration file.

Use ACLs to Protect Your Configuration Files
Use ACLs to lock your configuration files down and restrict inappropriate access. Modifications
to your configuration settings, especially binding options, can have a major impact on the
security of your service.

Use Secure Settings for Various Operations of Web Services
Set your configuration options to take advantage of features such as message and transport
security, which protect the communication channel between your client and your service.

Exception Management
Exception management is the means by which you expose and consume exception information
within your service and send it back to your clients. Be careful not to reveal internal application
details to your clients as this information could assist an attacker trying to exploit your service.
Catch and handle exceptions so that error conditions do not lead to a service crash and a DoS
condition for your clients. Fail to a secure state so that an error condition does not result in
your application running at higher privilege or accessing resources insecurely.

Consider the following guidelines:

• Catch exceptions.
• Do not log private data such as passwords.
• Do not reveal sensitive system or application information.
• Log detailed error messages.

Catch Exceptions
Use structured exception handling and catch exception conditions with try/catch blocks. Doing
so avoids leaving your application in an inconsistent state that may lead to information
disclosure. It also helps protect your application from DoS attacks. Decide how to propagate

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 79

exceptions internally in your application and give special consideration to what occurs at the
application boundary. Catch and wrap exceptions only where it adds value or will provide
additional information relevant to the exception.

Do Not Log Private Data Such as Passwords
Exception handlers often will result in an error log entry. Be careful not to log sensitive
information such as passwords, credit card numbers, or privately identifiable information (PII).
This information may make it easier to decipher error logs; however, sensitive data is not
secure in log files and could be accessed by users who would not normally have access to this
information.

Do Not Reveal Sensitive System or Application Information
In the event of a failure, do not expose information that could lead to information disclosure.
For example, do not expose stack trace details that include function names and line numbers in
the case of debug builds (which should not be used on production servers). Instead, return
generic error messages to the client.

Log Detailed Error Messages
Send detailed error messages to the error log. Send minimal information to the consumer of
your service or application, such as a generic error message and custom error log ID that
subsequently can be mapped to a detailed message in the event logs. Make sure that you do
not log passwords or other sensitive data.

Additional Resources
For more information on how to handle exceptions, see “Exception Shielding” at
http://msdn.microsoft.com/en-us/library/aa480591.aspx .

Message Protection
Message protection covers the mechanisms used to protect sensitive data in transit over the
network from unauthorized access or modification. Use message or transport security to
protect your messages in transit. Do not try to create your own cryptographic routines; use the
platform-provided cryptography instead.

Consider the following guidelines:

• Use message security or transport security to encrypt and sign your messages.
• Use platform-provided cryptography.
• Use platform features for key management.
• Periodically change your keys.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 80

Use Message Security or Transport Security to Encrypt and Sign Your
Messages
Use message security or transport security to encrypt your messages on the network. Message
security encrypts each individual message to protect sensitive data. Transport security secures
the end-to-end network connection to protect the network traffic. Message encryption
protects the contents of your message from being stolen and read. Message signing protects
the integrity of your message and guarantees the authenticity of the sender.

Use Platform-Provided Cryptography
Cryptography is notoriously difficult to develop. The Windows crypto APIs have been proven to
be effective. These APIs are implementations of algorithms derived from years of academic
research and study. Some developers believe that a less well-known algorithm can provide
more security, but this is not true. Cryptographic algorithms are mathematically proven;
therefore, the more scrutiny they receive, the better. An obscure algorithm will not protect a
flawed cryptographic implementation from a determined attacker.

• For hashing, use SHA1. For integrity checking, use HMACSHA1 or a digital signature
mechanism.

• Consider using the XMLEncryption mechanisms when you need to encrypt different
parts of a document under different keys, or if you only want to encrypt small sections
of a document.

• Use X.509 and S/MIME encryption if you are using an internal or external public key
infrastructure (PKI) based on digital certificates.

Use Platform Features for Key Management
Use platform features where possible to avoid managing keys yourself. For example, by using
DPAPI, the encryption key is derived from an account’s password, so Windows handles this for
you.

Periodically Change Your Keys
You should change your encryption keys from time to time because a static secret is more likely
to be discovered over time. Did you write it down somewhere? Did the administrator with
access to the secrets change positions in your company or leave the company? Are you using
the same session key to encrypt communication for a long time? Also, do not overuse keys.

Additional Resources
For more information, see the following resources:
• “Data Confidentiality” at http://msdn.microsoft.com/en-us/library/aa480570.aspx .
• “Data Origin Authentication” at http://msdn2.microsoft.com/en-us/library/aa480571.aspx .

Message Validation
Message validation is used to protect your service from malformed messages and message
parameters. Message schemas can be used to validate incoming messages, and custom

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 81

validators can be used to validate parameter data before your service consumes it. Do not trust
input from any source that the client can influence, such as cookies, headers, IP address, or the
content of messages sent to your service. Do trust input from a database, the file system, or
anything else outside the trust boundary of your service. Use message schemas and data
validators to check for format, range, length, and type. Do not rely on client-side validation;
make all security decisions based on server-side validation.

Consider the following guidelines:

• Do not trust input.
• Verify the message payload against a schema.
• Verify the message size, content, and character sets.
• Filter, scrub, and reject input and output before additional processing.

Do Not Trust Input
An attacker passing malicious input can attempt SQL injection, cross-site scripting, and other
injection attacks that aim to exploit your application’s vulnerabilities. Check for known good
data and constrain input by validating it for type, length, format, and range.

Verify the Message Payload Against a Schema
If you need to validate parameters, message contracts, or data contracts passed to operations,
use schemas to validate the incoming message. Schemas provide a wide range of input
validation without the need for custom code or validation routines.

Verify the Message Size, Content, and Character Sets
Validate incoming messages to ensure that they match your expectations regarding size,
content, and character encoding. If a message is much larger than expected or contains
encoding other than what your service expects, you may be under attack. Reject the message
and log the occurrence so that auditing can determine if an attack is underway.

Filter, Scrub, and Reject Input and Output Before Additional Processing
Filter and reject input before allowing the data to be processed by downstream components.
Because malicious input may target the routines that process your input, it is important to
detect and reject malformed input early before additional processing occurs. Scrub your output
before sending to the client as it may include potentially dangerous input from sources such as
the file system or your database that is outside of your service trust boundary.

Additional Resources
For more information, see “Message Validator” at http://msdn2.microsoft.com/en-
us/library/aa480600.aspx .

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 82

Sensitive Data
Sensitive data refers to confidential information that your service processes, transmits, or
stores. Protect sensitive data on the network, in configuration files, in local memory or file
storage, and in databases and log files. Ensure that you are aware of all sensitive information
your service transmits or processes. Sensitive data includes user identity and credentials as well
as any personally identifiable information (PII) such as social security number.

Consider the following guidelines:

• Do not store database connections, passwords, or keys in plaintext.
• Do not store secrets if you can avoid it.
• Do not store secrets in code.
• Encrypt sensitive data in configuration files.
• Encrypt sensitive data over the network.
• Retrieve sensitive data on demand.

Do Not Store Database Connections, Passwords, or Keys in Plaintext
Avoid storing secrets such as database connection strings, passwords, and keys in plaintext. Use
encryption and store encrypted strings.

Do Not Store Secrets if You Can Avoid It
Storing secrets in software in a completely secure fashion is not possible. An administrator, who
has physical access to the server, can access the data. For example, it is not necessary to store a
secret when all you need to do is verify whether a user knows the secret. In this case, you can
store a hash value that represents the secret and compute the hash using the user-supplied
value to verify whether the user knows the secret.

Do Not Store Secrets in Code
Do not hard-code secrets in code. Even if the source code is not exposed on the Web server, it
is possible to extract string constants from compiled executable files. A configuration
vulnerability may allow an attacker to retrieve the executable.

Encrypt Sensitive Data in Configuration Files
Configuration files may contain sensitive information, such as connection strings to your
database. Encrypt sensitive information in your configuration files by using the DPAPI provider
with the machine-key store. You can use the aspnet_regiis command-line tool to encrypt
sections of your configuration file.

Encrypt Sensitive Data over the Network
Consider where items of sensitive data, such as credentials and application-specific data, are
transmitted over a network link. If you need to send sensitive data between the Web server
and browser, consider using SSL. If you need to protect server-to-server communication, such
as between your Web server and database, consider IPSec or SSL.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 83

Retrieve Sensitive Data on Demand
The preferred approach is to retrieve sensitive data on demand when it is needed instead of
persisting or caching it in memory. For example, retrieve the encrypted secret when it is
needed, decrypt it, use it, and then clear the memory (variable) used to hold the plaintext
secret.

Session Management
Sessions are the means by which an application maintains stateful communication with a client
over time. Protect your session tokens or identifiers so that an attacker cannot gain access and
steal a user’s session. Reduce the timeouts on your sessions to lower the chances of an attacker
being able to steal a session after a user has finished using your application.

Consider the following guidelines:

• Authenticate and authorize access to the session store.
• Avoid storing sensitive data in session stores.
• Reduce session timeouts.
• Secure the channel to the session store.

Authenticate and Authorize Access to the Session Store
Authenticate and authorize access to your session store. The session store contains identifiers
that maintain session state for your users. This information can be used by an attacker to hijack
user sessions and take actions on their behalf. Use authentication and authorization to restrict
direct access to this store so that only your service can get at the information stored within.

Avoid Storing Sensitive Data in Session Stores
Avoid storing sensitive information, such as user credentials, in your session store. The
permissions required to access your session store may be different than the permissions
necessary to access sensitive data or operations in your service. The session store should
contain the bare minimum of information to track a session ID and maintain the session state
for your users.

Reduce Session Timeouts
Reduce the lifetime of sessions to mitigate the risk of session hijacking and replay attacks. The
shorter the session, the less time an attacker has to capture a session cookie and use it to
access your application.

Secure the Channel to the Session Store
Consider how session state is to be stored. For optimum performance, you can store session
state in the Web application’s process address space. However, this approach has limited
scalability and implications in Web farm scenarios, where requests from the same user cannot
be guaranteed to be handled by the same server. In this scenario, an out-of-process state store
on a dedicated state server or a persistent state store in a shared database is required. You

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 84

should secure the network link from the Web application to state store by using IPSec or SSL to
mitigate the risk of eavesdropping.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 85

PART II

WCF Security Fundamentals

In This Part:

 WCF Security Fundamentals

 Authentication, Authorization and Identities in WCF

 Impersonation and Delegation in WCF

 Message and Transport Security in WCF

 WCF Bindings Fundamentals

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 86

Chapter 4 – WCF Security Fundamentals

Objectives
• Understand basic security-related concepts in WCF.
• Understand what bindings and behaviors are and how they are used in WCF.
• Understand the differences between transport security and message security.
• Understand authorization and roles in the context of WCF.
• Understand impersonation and delegation in the context of WCF.
• Understand, at a high level, what auditing is and what options are available for auditing in

WCF.

Overview
Securing your WCF service requires knowledge of the WCF security features related to auditing
and logging, authentication, authorization, confidentiality, and integrity. Use behaviors and
bindings to configure security for your WCF service. Bindings and behaviors allow you to
configure transfer security, authentication, authorization, impersonation, and delegation as
well as auditing and logging. Transfer security is the means by which WCF secures messages
over the network. WCF gives you two options to implement transfer security: transport security
and message security. Transport security secures the entire communication channel (e.g., by
using SSL), while message security secures each message individually. WCF supports a variety of
authentication options including username, Windows, and certificate authentication.
Depending on your authentication method, you can choose to authorize your users by using
role-based security or resource-based security. Use WCF impersonation and delegation to flow
the identity and security context of your client-side original caller to the back end in order to
support a granular authorization approach.

Key Security Features
Any Service-Oriented Architecture (SOA) needs to support security features that provide
auditing, authentication, authorization, confidentiality, and integrity for the messages
exchanged between the client and the service. Windows Communication Foundation (WCF)
provides these security features by default for any application that is built on top of the WCF
framework.

Key security features include:

• Auditing. Effective auditing and logging is the key to non-repudiation. Non-repudiation
guarantees that a user cannot deny performing an operation or initiating a transaction.

• Authentication. Authentication allows you to confidently identify the clients of your service.
These might be end users, other services, processes, or computers. WCF supports mutual
authentication, which identifies both the client and the service in tandem, to help in
preventing man-in-the-middle attacks.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 87

• Authorization. Authorization determines what system resources and operations can be
accessed by the authenticated user. This allows you to grant specific application and
resource permissions for authenticated users.

• Confidentiality. Confidentiality, also referred to as privacy, is the process of making sure
that data remains private and confidential, and that it cannot be viewed by unauthorized
users. Encryption is frequently used to enforce confidentiality. Privacy is a key concern,
particularly for data / messages passed across networks.

• Integrity. Integrity is the guarantee that data is protected from accidental or deliberate
modification. Like privacy, integrity is a key concern, particularly for data / messages passed
across networks. Integrity for data in transit is typically provided by using hashing
techniques and message authentication codes.

Scope of WCF Security
The above fundamental security features are covered in the following WCF features:

• Transfer security. Responsible for providing message confidentiality, data integrity, and
authentication of communicating parties.

• Authorization. Responsible for providing a framework for making authorization decisions.
• Auditing. Responsible for logging security-related events to the audit log.

WCF provides access to these features through bindings and behavior configuration.

Bindings and Behaviors
When you create an overall security policy – for example, transfer security with authentication
and authorization for your services – you can use bindings and behaviors to configure the
required settings.

Bindings and behaviors are described as follows:

• Bindings. Bindings control the security mode, client credential type, and other security
settings.

• Behaviors. Service behaviors control impersonation levels, how client credentials are
authenticated and authorized, and service credentials.

You can configure bindings and behaviors, or you can program against the object model. Your
binding selection determines the available security options for WCF. The following able
summarizes the most commonly used bindings in WCF.

Binding Common scenarios Default security settings
basicHttpBinding Legacy Web service protocols No security
netTcpBinding Binary TCP communication

between machines
Transport security with
Windows authentication

wsFederationHttpBinding Federated security scenarios Message security with issue
token authentication

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 88

wsHttpBinding Leveraging security standards
(WS-Security)

Message security with
Windows authentication

By default, every WCF binding will provide transfer security and user authentication except for
BasicHttpBinding. If necessary, you can change the security settings to suit your scenario
requirements.

Transfer Security
After selecting a binding, you can decide which type of transfer security, otherwise known as
security mode, to use for your WCF service. You can provide security on the transport level or
the message level. Each option has its own advantages and disadvantages. For instance,
transport security secures the entire communication channel (e.g., by using SSL) and therefore
only supports point-to-point communication over a single transport. Message security protects
each message individually and therefore supports multipoint communication, multiple
transports, or even partial message encryption if necessary. Most scenarios are best supported
by using transport security. The following security modes are available across the standard
bindings.

Mode Description
None No security is provided; all information is passed in clear

text.
Transport Mutual authentication and message protection are

provided at the transport level.
Message Mutual authentication and message protection are

provided at the message level
Both Mutual authentication and message protection are

provided at both the transport and message levels. This is
far more than is necessary for most scenarios.

TransportWithMessageCredential Client authentication is provided at the message level, and
message protection and service authentication are
provided at the transport level.

TransportCredentialOnly Mutual authentication is provided at the transport level; no
message protection is provided. This option is available
only on basicHttpBinding.

Transport Security
When using transport security, the user credentials and claims are passed using the transport
layer. In other words, user credentials are transport-dependent, which allows fewer
authentication options compared to message security. Each transport protocol (TCP, IPC,
MSMQ, or HTTP) has its own mechanism for passing credentials and handling message

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 89

protection. The most common approach for this is to use Secure Sockets Layer (SSL) for
encrypting and signing the contents of the packets sent over Secure HTTP (HTTPS).

Transport security is used to provide point-to-point security between the two endpoints
(service and client). If there are intermediary systems between the client and the service, each
intermediate point must forward the message over a new SSL connection.

Transport Transport

Client Service

Platform and channel
provides security
Caller authentication

Message Integrity
Message Confidentiality

XML XML

XML XMLSecure Transport

Figure 1. Transport Security

Use transport security for the following scenarios:

• You are sending a message directly from your application to a WCF service and the message
will not be routed through intermediate systems.

• You have both the service and the client in an intranet.

Using transport security has the following advantages:

• It provides interoperability, meaning that communicating parties do not need to understand
the WS-Security specification.

• It may result in better performance.
• Hardware accelerators can be used to further improve performance.

Using transport security has the following disadvantages:

• Because security is applied on a point-to-point basis, there is no provision for multiple hops
or routing through intermediate application nodes.

• It supports a limited set of credentials and claims compared to message security.
• It is transport-dependent upon the underlying platform, transport mechanism, and security

service provider such as NTLM or Kerberos.

Message Security
When using message security, the user credentials and claims are encapsulated in every
message using the WS-Security specification to secure messages. This option gives the most

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 90

flexibility from an authentication perspective. You can use any type of security credentials you
want, largely independent of transport, as long as both the client and the service agree.

Transport TransportAny Transport

Client Service

XML XML

XML messages convey
security information

Credentials
 Digital signatures

Messages can be
encrypted

Security is independent from
transport protocol

XML XML

Figure 2. Message Security

Use message security for the following scenarios:

• You are sending a message to a WCF service, and the message is likely to be forwarded to
other WCF services or may be routed through intermediate systems.

• Your WCF clients are accessing the WCF service over the Internet, it’s possible that other
intermediate systems may be used in between, and security is your top consideration.

Using message security has following advantages:

• It provides end-to-end security. Because message security directly encrypts and signs the
message, having intermediaries does not break the security.

• It allows partial or selective message encryption and signing, thus improving overall
application performance.

• Message security is transport-independent and can be used with any transport protocol.
• It supports a wide set of credentials and claims, including issue token, which enables

federated security.

Using message security has following disadvantages:

• This option may reduce performance compared to transport security because each
individual message is encrypted and signed.

• It does not support interoperability with older ASP.NET Web Services (ASMX) clients
because it requires both the client and service to support WS-Security specifications.

Protection Levels
The following table shows the various protection levels available with message security.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 91

Mode Description
None Disables message protection.
Sign Signs but does not encrypt the message; should be used when data

integrity is important.
EncryptAndSign Signs and encrypts the message.

If you are using message security, you can configure message protection to sign but not encrypt
each message. This allows you to verify the integrity of a message without the overhead of
encryption in case there is no sensitive data requiring protection. With transport security, you
cannot modify the level of protection because it is transport-dependent and the WCF
framework does not control transport standards.

Configuring the Protection Level
Consider turning off encryption and only signing your message when you just need to validate
the integrity of the information without concerns of confidentiality. This may be useful for
operations or service contracts in which you need to validate the original sender but no
sensitive data is transmitted. When reducing the protection level, be careful that the message
does not contain any Personally Identifiable Information (PII). Configuring the service and the
operation to only sign the message is shown in the following examples:

Service Contract Example of ProtectionLevel.Sign

The following is an example of using ProtectionLevel.Sign at the Service Contract level:

[ServiceContract(ProtectionLevel=ProtectionLevel.Sign]
public interface IService
{
 string GetData(int value);
}

Operation Contract Example of ProtectionLevel.Sign (For Granular Control)

The following is an example of using ProtectionLevel.Sign at the OperationContract level:

[OperationContract(ProtectionLevel=ProtectionLevel.Sign]
string GetData(int value);

Service Credentials Negotiation
In addition to client authentication, a WCF service needs to provide its credentials to the clients
in order to support mutual authentication. Service credentials should be negotiated for mutual
authentication.

By default, message security supports negotiation of service credentials for mutual
authentication, where the service is requested for its security token at run time before any
messages are exchanged.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 92

In message security, you can configure your service to not negotiate service credentials. If you
configure your service to not negotiate service credentials:

• The client and service needs to be in the same domain when using Windows authentication.
• The service certificate should be accessible to the client when using non-Windows

authentication such as username or certificate authentication.

Not negotiating the service credentials improves security because clients who do not have
access to the service certificate cannot access the service. However, this increases the
administrative overhead of distributing the service certificates to trusted clients out-of-band.

Note: When using transport security, the service credentials are always negotiated and you
have no control over configuration.

Secure Session
A secure session is a message security feature that reduces the overhead of one-off key
exchange and validation. By default, secure sessions are enabled for message security. Secure
sessions are more efficient if the caller makes multiple calls to the service; if the caller makes a
single call, it may be more efficient to disable secure sessions.

A secure session can be established between the client and server by creating a security context
token. All subsequent message exchanges will use this token, thereby creating a secure session.
By default, the lifetime for this token is 15 minutes when issued, and the token is reissued if it is
required beyond 15 minutes. Therefore, when multiple messages are exchanged in a 15-minute
lifespan, both the messages will be secured by using the same security context token, so
security in this case will be weaker. To overcome this vulnerability, you can use derived keys,
where two keys are derived from a symmetric key. You can use one of the keys to sign the
Simple Object Access Protocol (SOAP) message and the other to encrypt various parts of the
SOAP message.

Authentication
The WCF authentication options available to you depend on the transfer security mode you
use. Your choice of binding will also play a role in the authentication options because not all
transport or message user credentials are supported in every binding.

Transport Security Mode Authentication Options
The follow authentication options are available when using transport security mode:

• None. When using this option, the WCF service does not authenticate the callers. This is not
the recommended option from a security perspective – avoid using this option wherever
possible.

• Basic. This option is available with the HTTP protocol only. The client is authenticated using
the username and password against Active Directory. The client credentials are transported
using the Base64 encode string, which is literally like a clear string and therefore is not the

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 93

most secure option. The service is authenticated by the SSL certificate used for secure
communication.

• NTLM. This option is available with the HTTP protocol only. The client is authenticated using
a challenge-response scheme against Windows accounts. The NTLM option is well suited for
a workgroup environment. NTLM authentication is more secure than either Digest or Basic
authentication. The service is authenticated using the Windows credentials of the process
identity or using an SSL certificate if you are using the HTTP protocol.

• Windows. The Windows option tells the WCF service to use Kerberos when in a domain, or
NTLM when deployed in a workgroup environment. This option uses a Windows token
presented by the caller to authenticate against Active Directory. This is the most secure
option compared to Basic, Digest, or NTLM authentication. The service is authenticated
using the Windows credentials of the process identity or an SSL certificate if you are using
the HTTP protocol.

• Certificate. When using this option, the caller presents an X.509 client certificate that the
WCF service either validates with peer trust or trusts based on the issuer of the certificate.
This option should be used when Windows authentication is not possible, as in the case of
business-to-business (B2B) scenarios. The service is authenticated with the service
certificate or by using an SSL certificate if you are using the HTTP protocol.

Message Security Mode Authentication Options
The follow authentication options are available when using message security mode:

• None. When using this option, the WCF service does not authenticate the callers. This is not
the recommended option from a security perspective – avoid using this option wherever
possible.

• Windows. When using this option, the WCF service uses Kerberos when in a domain, or
NTLM when deployed in a workgroup environment. This option uses the Windows token
presented by the caller in order to authenticate against the Active Directory. The service is
authenticated using the Windows credentials of the process identity.

• Username. When using this option, the caller provides the username and password to the
service. The service can authenticate against Windows, use membership providers such as
SqlMembershipProvider, or use a custom validator to validate against the custom store.
You should choose this option only when Windows authentication is not possible. The
service is authenticated with a service certificate.

• Certificate. When using this option, the caller presents an X.509 client certificate; the WCF
service looks up the certificate information on the host side and either validates it (peer
trust) or trusts the issuer (chain trust) of the client certificate. This option should be used
when Windows authentication is not possible, or in B2B scenarios. Service is authenticated
with a service certificate.

• Issue token. When using this option, the client and service depend on a secure token
service (STS) to issue tokens that the client and service trusts. Microsoft Windows
CardSpace™ is a typical example of an STS.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 94

Authorization in WCF
WCF supports the following three basic authorization approaches:

• Role-based. Access to WCF operations is secured based on the role membership of the
caller. The role store can be Windows groups, ASP.NET roles, or a custom role store.

• Identity-based. WCF supports an Identity Model feature, which is an extension to role-
based authorization. Identity Model enables you to manage claims and policies to authorize
clients. With this approach, you can verify claims contained within the authenticated users’
credentials.

• Resource-based. Individual resources are secured using Windows access control lists (ACLs).
The WCF service impersonates the caller prior to accessing resources, which allows the
operating system to perform standard access checks. All resource access is performed using
the original caller’s security context.

Role-based Authorization
WCF provides the following options for role-based authorization:

• Windows groups. If your WCF services and clients are deployed in the same Windows
domain, you can use Windows groups for authorization.

• ASP.NET roles. Use ASP.NET roles if you have fine-grained roles requirements, or if the
users cannot be mapped to Windows domain accounts. This option uses the Role Manager
feature and provides three different role providers based on the role store:

o SqlRoleProvider. If your role information is stored in a Microsoft SQL Server®
database, consider using the SqlRoleProvider for role-based authorization.

o WindowsTokenRoleProvider. If your roles are Window groups, and you want to
leverage the Role Manager feature as a consistent way to check the role
membership of your users, regardless of the underlying data store, consider using
the WindowsTokenRoleProvider for role-basedauthorization.

o AuthorizationStoreRoleProvider. If your role information is stored using the AzMan
policy store in an XML file, in Active Directory, or in Active Directory Application
Mode (ADAM), consider using the AuthorizationStoreRoleProvider for role-based
authorization.

• Custom Roles. If your role information is stored in a custom store such as a SQL Server
database, create a custom authorization policy to authorize your users.

Note: It is recommended that you implement a custom role provider, using the Role Manager
feature, for your custom role store rather than using the custom roles option.

Impersonation / Delegation
Impersonation is a technique that WCF services use to assume the original caller’s identity in
order to authorize access to service resources (such as files or database tables). Service
resources can be resources that are local to the service machine, or they can be resources that
are remote to the service machine. Impersonation is used to access resources on the same

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 95

machine as the service, while delegation is used to access resources that are remote to the
service.

Delegation allows you to use an impersonation token to access network resources. Your ability
to use delegation depends on the authentication mechanism in use and appropriate account
configuration.

Controlling Impersonation at the Service Side
You can control impersonation at the service side by using declarative impersonation. You can
use the ImpersonationOption

• NotAllowed. Impersonation is not performed in a particular operation.

 enumeration along with the OperationBehaviorAttribute
attribute to control impersonation. The following impersonation options are available:

• Allowed. Impersonation is performed if the original Windows token is available and the
service is configured to impersonate on all operations using
ImpersonateCallerForAllOperations in ServiceAuthorizationBehavior.

• Required. Impersonation is performed; the Windows identity token is required to be
available.

Controlling Impersonation at the Client Side
You can control impersonation at the client side and prevent WCF services from using client
identities to access local resources. Windows credentials have an AllowedImpersonationLevel
property that is set to one of the following TokenImpersonationLevel options in order to
control the impersonation level:

• None. The WCF service cannot authenticate or impersonate the user.
• Anonymous. The WCF service authenticates clients as anonymous, but cannot obtain

information for identification or impersonation.
• Identification. The WCF service can authenticate clients and get information for

identification, but cannot impersonate the clients. This is the default value.
• Impersonation. The WCF service can authenticate, get information for identification, and

impersonate clients on local systems.
• Delegation. The WCF service can authenticate, get information for identification, and

impersonate clients on local as well as remote systems.

Auditing
WCF Auditing allows you to audit security events such as authentication and authorization
failures. WCF service auditing can allow you to detect an attack that has occurred or is in
progress. In addition, auditing can help you debug security-related problems.

Auditing can be enabled via configuration by using the ServiceSecurityAuditBehavior element.
The event log location for auditing the events can be specified in the auditLogLocation
attribute.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 96

WCF allows you to log the events that succeed or fail or both for auditing purpose. WCF
provides auditing of these events both at the message authentication level and the service
authorization level by using messageAuthenticationAuditLevel and
serviceAuthorizationAuditLevel attributes, respectively. You can also suppress the failures that
occur during auditing by setting the suppressAuditFailure property to true, which prevents an
exception from being thrown if auditing fails (for instance, if the log files fill up).

WCF Message Logging allows you to log malformed SOAP messages or to trace incoming
messages. Message Logging allows you to specify different logging levels that you can use to
diagnose and analyze your applications in case of any problems. It also allows you to log the
message at the Service level or the Transport level.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 97

Chapter 5 – Authentication, Authorization. and Identities in WCF

Objectives
• Understand the WCF authentication options for security: message, transport, mixed, and

both.
• Understand the WCF authorization options based on role, identity, and resource.
• Understand the various WCF identities and the meaning of process identity, security

principle, and ServiceSecurityContext.
• Understand common implementation models that employ specific authentication,

authorization, and identity options.

Overview
Your choice of an appropriate authentication and authorization option for your WCF service
should be based on your particular deployment scenario, including credential store, location of
clients on the Internet or intranet, and authorization constraints. Use authentication to
positively identify the client consuming your service. Use authorization to restrict access to
resources, or to make business decisions based on user roles.

Client Authentication and Service Authentication
When considering authentication, you may be used to thinking primarily of the client identity.
However, in the context of WCF, authentication typically refers to mutual authentication.
Mutual authentication not only allows positive identification of the clients, but also allows
clients to positively identify the WCF services to which they are connected. Mutual
authentication is especially important for Internet-facing WCF services, because an attacker
may be able to spoof the WCF service and hijack the client’s calls in order to reveal sensitive
data.

The service credentials to be used depend largely on the client authentication scheme you
choose. Typically, if you are using non-Windows client authentication such as username or
certificate authentication, a service certificate is used for both service authentication and
message protection. If you are using Windows client authentication, the Windows credentials
of the process identity can be used for both service authentication and message protection.

Transfer Security Modes
Your WCF authentication options depend on the transfer security mode being used. For this
reason, your authentication choices are partly determined by your transfer security mode. WCF
offers the following transfer security modes:

• Message security. When using message security, the user credentials and claims are
encapsulated in every message by using the WS-Security specification to secure messages.
This option gives the most flexibility from an authentication perspective. You can use any

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 98

type of authentication credentials you want, largely independent of transport, as long as
both client and service agree.

• Transport security. When using transport security, the user credentials and claims are
passed by using the transport layer. In other words, user credentials are transport-
dependent, which allows fewer authentication options compared to message security.

• Mixed security. Mixed security gives you the best of both worlds: transport security ensures
the integrity and confidentiality of the messages, while the user credentials and claims are
encapsulated in every message as in message security. This allows you to use a variety of
user credentials that are not possible with strict transport security mechanisms, and to
leverage transport security’s performance.

• Both security. When using this option, the user credentials and claims are transferred at
both the transport layer and message level. Similarly, message protection is provided at
both the transport layer and message level. Note that this is not a common scenario, and
only bindings that support the Microsoft Message Queuing (MSMQ) protocol support this
security mode.

Your choice of binding will also affect your authentication options, as not all the transport or
message user credentials are supported in every binding.

Authentication Options with Transport Security
The follow authentication options are available when using transport security:

• None. When using this option, the WCF service does not authenticate the callers. This is not
the recommended option from a security perspective – avoid using this option wherever
possible.

• Basic. This option is available with the HTTP protocol only. The client is authenticated by
using the username and password against Active Directory. The client credentials are
transported by using a Base64 encode string, which is very similar to a clear string and
therefore not the most secure option. The service is authenticated by the Secure Sockets
Layer (SSL) certificate used for secure communication.

• NTLM. This option is available with the HTTP protocol only. The client is authenticated by
using a challenge-response scheme against Windows accounts. NTLM authentication is well
suited for a workgroup environment and is more secure than Basic authentication. The
service is authenticated by using an SSL certificate.

• Windows. When using this option, the WCF service uses Kerberos authentication when in a
domain, or NTLM authentication when deployed in a workgroup environment. This option
uses a Windows token presented by the caller to authenticate against the Active Directory.
This is the most secure option compared to Basic or NTLM authentication. The service is
authenticated by using the Windows credentials of the process identity, or an SSL certificate
if you are using the HTTP protocol.

• Certificate. When using this option, the caller presents an X.509 client certificate that the
WCF service validates by trusting the certificate (peer trust) or trusting the issuer of the
certificate (chain trust). This option should be used when Windows authentication is not

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 99

possible, as in the case of business-to-business (B2B) scenarios. The service is authenticated
with the service certificate, or by using an SSL certificate if you are using the HTTP protocol.

Authentication Options with Message Security
The following authentication options are available when using message security:

• None. When using this option, the WCF service does not authenticate the callers. This is not
the recommended option from a security perspective – avoid using this option wherever
possible.

• Windows. When using this option, the WCF service uses Kerberos authentication when in a
domain, or NTLM authentication when deployed in a workgroup environment. This option
uses the Windows token presented by the caller to authenticate against the Active
Directory. Service is authenticated by using the Windows credentials of the process identity.

• Username. When using this option, the caller provides a username and password to the
service. The service can either authenticate against Windows credentials, use a membership
provider such as the SQL Server membership provider, or use a custom validator to validate
against the custom store. You should choose this option only when Windows authentication
is not possible. The service is authenticated by using a service certificate.

• Certificate. When using this option, the caller presents an X.509 client certificate. The WCF
service looks up the certificate information on the host side and validates it (peer trust), or
trusts the issuer of the client certificate (chain trust). This option should be used when
Windows authentication is not possible, or in the case of B2B scenarios. The service is
authenticated by using a service certificate.

• Issue token. When using this option, the client and service depend on the Secure Token
Service (STS) to issue tokens that the client and service trusts. CardSpace is a typical
example of an STS.

Authorization Options in WCF
WCF supports three basic authorization approaches:

• Role-based. Access to WCF operations is secured based on the role membership of the
caller. Roles are used to partition your application’s user base into sets of users that share
the same security privileges within the application; for example, Senior Managers,
Managers, and Employees. Users are mapped to roles, and if the user is authorized to
perform the requested operation, the application executes the operation.

• Identity-based. WCF supports an Identity Model feature, which is an extension of role-
based authorization. Identity Model enables you to manage claims and policies in order to
authorize clients. With this approach, you can verify claims contained within the
authenticated users’ credentials. These claims can be compared with the set of
authorization policies for the WCF service. Depending on the claims provided by the client,
the service can either grant or deny access to the operation or resources. Identity Model is
useful for fine-grained authorization and is most beneficial when using issue token
authentication.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 100

• Resource-based. With this option, individual resources are secured by using Windows
access control lists (ACLs). The WCF service impersonates the caller prior to accessing
resources, which allows the operating system to perform standard access checks. All
resource access is performed using the original caller’s security context. This authorization
approach severely impacts application scalability, because it means that connection pooling
cannot be used effectively within the application’s middle tier.

In enterprise-level applications where scalability is essential, a role-based or identity-based
approach for authorization is the best choice. For small-scale intranet applications that serve
per-user content from resources (such as files) that can be secured with Windows ACLs, a
resource-based approach may be appropriate.

Role-based Authorization Options in WCF
WCF rovides the following options for role-based authorization:

• Windows groups. For WCF services and clients that are deployed in the same Windows
domain, you can use Windows groups for role authorization. Typically, this option is suitable
when you have a small number of coarse role requirements.

• ASP.NET roles. Use ASPNET roles if you have fine-grained roles requirements, or if the users
cannot be mapped to Windows domain accounts. This option uses the Role Manager
feature and provides three different role providers, based on the role store:

o SqlRoleProvider. If your role information is stored in a SQL Server database,
consider using SqlRoleProvider for roles authorization.

o WindowsTokenRoleProvider. If your roles are Window groups, and you want to
leverage the Role Manager feature as a consistent way of checking the role
membership of your users, regardless of the underlying data store, consider using
WindowsTokenRoleProvider for roles authorization.

o AuthorizationStoreRoleProvider. If your role information is stored using an AzMan
policy store in an XML file, in Active Directory, or in Active Directory Application
Mode (ADAM), consider using AuthorizationStoreRoleProvider for role
authorization.

• Custom roles. If your role information is stored in a custom store such as a SQL Server
database, create a custom authorization policy to authorize your users.

Note: It is recommended that you implement a custom role provider, using the Role Manager
feature, for your custom role store rather than using the custom roles option.

Imperative Authorization
Imperative authorization supports fine-grained authorization choices based on business logic.
Imperative role-based authorization is written into your code and processed at run time.
Imperative security is useful when the resource to be accessed or action to be performed is not
known until run time, or when you require finer-grained access control beyond the level of a
code method.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 101

Imperative Check Example
The following is an example of an Imperative check using the ASP.NET role provider:

if (Roles.IsUserInRole(@"accounting"))
{
 //authorized
}
else
{
 //authorization failed
}

Declarative Authorization
Declarative authorization can be added to application code at design time by specifying
required access for a particular method or class declared as an attribute on the operation.
Declarative role-based authorization is best for authorizing access to WCF at the operation
level. Because attribute metadata is discoverable using reflection, it is easier to track the
security principals that are allowed to access each method. Declarative authorization checks
will work if you are using the ASP.NET role provider or Windows groups.

PrincipalPermission Example
The following code example shows how to use the PrinciplePermission attribute to perform
declarative authorization:

[PrincipalPermission(SecurityAction.Demand, Role = "accounting")]
public double Add(double a, double b)
{
 return a + b;
}

Identity-based Authorization Options in WCF
WCF uses the Identity Model feature to create claims from incoming messages. Identity Model
classes can be extended to support new claim types for custom authorization schemes. Identity
Model and claim-based authorization are outside the scope of this guide.

For more information, see “Managing Claims and Authorization with the Identity Model” at
http://msdn.microsoft.com/en-us/library/ms729851.aspx.

Resource-based Authorization Options in WCF
A resource-based approach tends to work best for applications that provide access to resources
that can be individually secured with Windows ACLs, such as files and other local resourcesThe
approach starts to break down in cases where the requested resource consists of data that
needs to be obtained and consolidated from a number of different sources; for example,
multiple databases, database tables, external applications, or Web services. If the resources
are remote, you have to use delegation.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 102

The resource-based approach relies on the original caller’s security context flowing through the
application to the back-end resource managers. This can require complex configuration and
significantly reduces the ability of a multi-tiered application to scale to large numbers of users,
because it prevents the efficient use of pooling (for example, database connection pooling)
within the application’s middle tier.

The two most commonly used resource-based security models are:

• The trusted subsystem model
• The impersonation/delegation model

The Trusted Subsystem Model
With this model, the WCF service uses a fixed identity to access downstream services and
resources.

Web or Application
Server

Database
Server

SQL
Server

A
B
C
D
E

Trusted
Service
Identity

Trust Boundary

Role-Based
Authorization

Database trusts the Web
server. Web server
authorizes users.

Figure 1. Trusted-Subsystem Model

A variation on this model may use a fixed identity per role in order to map multiple users to a
set of permissions on a downstream resource.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 103

Web or Application Server Database Server

SQL
Server

A
B
C
D
E

Trust Boundary

Role Mapping

Role1

Role2

Trusted Identity 1

Trusted Identity 2

Identity1 has read permissions
Identity2 has read/write permissions

Figure 2. Trusted Subsystem Model with Fixed Role Identity

The security context of the original caller will not flow through the service at the operating-
system level. You can flow the identity of the caller at the application level by passing it to the
downstream resource manually for auditing purposes. For example, you can pass it as a string
in the header of the message or a s a parameter in a stored procedure, etc.

It may need to do so in order to support back-end auditing requirements, or to support per-
user data access and authorization.

The pattern for resource access in the trusted subsystem model is as follows:

1. Authenticate users.
2. Map users to roles.
3. Authorize based on role membership.
4. Access the downstream resource manager using a single or multiple fixed trusted identities.

The Impersonation / Delegation Model
With this model, the WCF service impersonates the client’s identity before it accesses the next
downstream service.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 104

Web or Application
Server Database Server

SQL
Server

A
B
C
D
E

A
B
C
D
E

Caller Impersonation/
Delegation

Figure 3. Impersonation/Delegation Model

If the next service in line is on the same computer, impersonation is sufficient. Delegation is
required if the downstream service is located on a remote computer.

The delegation mechanism is a powerful feature. Use the constrained delegation feature
available in Windows 2003 when possible. With it, you can limit access to a particular
service on a specific machine.

As a result of the delegation, the security context used for the downstream resource access is
that of the client. This model is typically used for one of the following two reasons:

• It allows the downstream service to perform per-caller authorization using the original
caller’s identity.

• It allows the downstream service to use operating system–level auditing features.

For more information about the impersonation options, see “Chapter 6 – Impersonation and
Delegation in WCF.”

Identities in WCF
When designing your authentication and authorization strategies, you need to consider the
following identity types:

• Process identity. This is the identity of the process hosting the WCF service. When the WCF
service is hosted in Internet Information Services (IIS), it typically is NETWORK SERVICE by
default.
This means that the machine account credentials of the service host are presented to
downstream resources. The process identity is important because it identifies what

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 105

Windows resources and back-end the service can access, when the WCF service is not
impersonating the original caller. If a certificate is used to protect the transport, the process
identity also needs access to the certificate’s private keys in order to provide for message
security or transport security with netTcpBinding.

• Security principal. The executing thread includes a security principal that contains the user
identity and associated roles. The roles can be Windows roles if the principal is a Windows
Principal; an ASP.NET role if it is a role Principal; or a custom role if it is a generic Principal.
To be able to authorize – either with the Roles.IsinRole call, with IPrincipals.IsInRole, or
with declarative authorization checks – a security principal must be present in the thread
executing the WCF business logic. If a custom authentication is used in WCF, the security
principals must be set in a class that derives from IAuthorizationPolicy, and this custom
authorization policy must be configured in WCF.

• ServiceSecurityContext. This identity type, available in the WCF run time, contains all of the
security-related objects available in the WCF context. These objects are the user identity
and authorization context and polices. The service security context is available on both the
service and the client side. In the authorization context, you can extract the claim set
associated with a security token, whether it is a certificate, issue token, username, or
Windows token. To get the service security context on the client side, you need to use the
operation context instead.

Design Strategy for Authentication and Authorization
The following steps help you to develop an authentication and authorization strategy for your
application:

• Step 1 – Identify resources
• Step 2 – Choose an authorization approach
• Step 3 – Choose the identities to be used for resource access
• Step 4 – Choose an authentication approach

Step 1 – Identify Resources
Identify resources that your application needs to expose to clients.

Typical resources include:

• Server resources such as contracts, service metadata, and static resources
• Database resources such as per-user data or application-wide data
• Network resources such as remote file system resources and data from directory stores

such as Active Directory

You must also identify the system resources your application needs to access. This is in contrast
to resources that are exposed to clients. Examples of system resources include the registry,
event logs, and configuration files.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 106

Step 2 – Choose an Authorization Approach
When choosing an authorization strategy, first decide if you want to use resource-based or role-
based authorization. Next, consider what user store your users belong to.

Resource-based authorization uses ACLs on the resource to authorize the original caller. Role-
based authorization allows you to authorize access to service operations or resources based on
the group to which user belongs.

If scalability is essential to your application, consider a role-based approach. The following are
the most common scenarios for role-based authorization:

• User store is in Windows Active Directory. Consider using role-based authorization with
Windows groups for ease of maintenance as both roles and credentials reside in the Active
Directory store.

o If your roles are Windows groups and you want to leverage the Role Manager
feature as a consistent way of checking your users’ role membership, consider using
WindowsTokenRoleProvider for role authorization.

o If your application requires finely granular roles, using Windows groups might not be
the best option. Instead, consider using ASP.NET roles with role providers such as
SqlRoleProvider or AuthorizationStoreRoleProvider.

• User store is in a SQL Server database. Consider using role-based authorization with
ASP.NET roles.

o If your role information is stored in a SQL Server database along with the user
information, consider using ASP.NET roles with SqlRoleProvider.

o If your role information is stored in a custom store, consider using custom role
authorization.

• User information is stored in certificates. Consider doing authorization by using the claims
provided by the certificate, such as subject name, thumbprint, etc.

o If the user certificates can be mapped to a Windows account, consider using
Windows groups for role authorization.

o If your certificates can be mapped to a Windows account, and if your application
requires finely granular roles, consider using ASP.NET roles with role providers such
as SqlRoleProvider or AuthorizationStoreRoleProvider.

• User information is in a custom store. Consider using custom roles for authorization by
creating a custom authorization policy.

Consider using a resource-based approach for smaller-scale intranet applications that serve per-
user content from resources (such as files) that can be secured with Windows ACLs.

You must also consider whether you want to use impersonation and delegation:

• If your technical requirement is to use the original caller’s identity to access back-end
resources on the same computer that is running the service, use Impersonation.

• If your technical requirement is to use the original caller’s identity to access back-end
resources on computers other than the computer running the service, use delegation.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 107

Step 3 – Choose the Identities to Be Used for Resource Access
Choose the identity or identities that should be used to access resources across the various
tiers of your application. The identities can be:

• Original caller’s identity. This assumes an impersonation/delegation model in which the
original caller’s identity can be obtained and then flowed through each layer of your system.
The delegation factor is a key criterion used to determine your authentication mechanism.

• Process identity. This is the default case (without specific impersonation). Local resource
access and downstream calls are made using the current process identity. The feasibility of
this approach depends on the boundary being crossed, because the process identity must
be recognized by the target system.
This implies that calls are made in one of the following ways:

o Within the same Windows security domain
o Across Windows security domains (using trust and domain accounts, or duplicated

user names and passwords where no trust relationship exists)
• Service account. This approach uses a (fixed) service account. For example, for database

access, this might be a fixed SQL user name and password presented by the component
connecting to the database.

Step 4 – Choose an Authentication Approach
The choice of an authentication approach is influenced by the nature of your application’s user
base, and impersonation/delegation and auditing requirements. The available authentication
options depend on both the security mode and the binding.

An authentication strategy is based on available client credentials, networking strategy, system
maintenance, and security-level requirements. You can decide on an appropriate
authentication strategy by considering the following factors.

Transfer Security
Because WCF authentication options depend on the transfer security mode being used, you
should first select the appropriate transfer security mode for your WCF application.

WCF offers two security modes: transport and message. If you are using transport security, you
cannot use negotiate, username, or Kerberos direct authentication. If you are using message
security, you cannot use Basic or Digest authentication.

Transport Security
Use the following criteria to determine whether you should use transport security:

• Point-to-point. Transport security supports point-to-point communication and does not
support intermediary scenarios or protocol transition.

• Streaming. Transport security can support streaming data scenarios.
• Binding limitations. Transport security does not work with the wsDualHttpBinding binding.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 108

• Authentication limitations. Transport security does not work with negotiation, username,
or Kerberos direct authentication.

Message Security
Use the following criteria to determine whether you should use message security:

• Intermediaries. Message security supports scenarios with intermediaries or protocol
transition.

• Encryption flexibility. Message security allows you to encrypt part of a message while
leaving other parts in clear text format.

• Binding limitations. Message security does not work with the netNamedPipeBinding
binding.

• Secure conversations. Secure conversations only work with message security.
• Authentication limitations. Message security does not work with Basic or Digest

authentication.

Bindings
The choice of binding also plays an important role in your authentication options because not
all transport or message security authentication options are supported across all bindings.

The following bindings typically work well over the Internet:

• If your service is interacting with WCF clients, use wsHttpBinding because it provides the
best WS-* interoperability features, including WS-SecureConversation, WS-Addressing, and
WS-AtomicTransaction. The combination of features offered by wsHttpBinding makes for
the most reliable connection offered by WCF over the Internet.

• If your service is interacting with ASP.NET Web Services (ASMX) clients, you must use
basicHttpBinding because it is the only WCF binding that supports ASMX clients.

• Clients and services that require full-duplex communication should use wsDualHttpBinding
because it is the only binding that supports full-duplex.

• If your service is interacting with WSE clients, you must use customBinding. The service
must use a custom binding to be compatible with the August 2004 version of the WS-
Addressing specification.

Most of the bindings also work in an intranet scenario, but netTcpBinding provides the best
throughput performance. On an intranet, you generally do not need to worry as much about
the connection going down as with an Internet connection, so some of the WS-* advantages
that are supplied with wsHttpBinding may not be as necessary on an intranet.

Bindings Summary
The following table resents a list of bindings and details each binding’s support for transfer
security modes.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 109

Name None Transport Message Mixed Both
basicHttpBinding √

(Default)
√ √ √ X

netTCPBinding √ √
(Default)

√ √ X

netPeerTCPBinding √ √
 (Default)

√ √ X

netNamedPipeBinding √ √
(Default)

X X X

wsHttpBinding /
ws2007HttpBinding

√ √ √
(Default)

√ X

wsFederationHttpBinding
/wsfederationHttpBinding

√ X √
(Default)

X X

wsDualHttpBinding √ X √
(Default)

X X

netMsmqBinding √ √
(Default)

√ X √

User Store and Credential Management
Your authentication choice will depend greatly on whether you already have a user store in
place:

• User store is in Windows Active Directory. Consider using Windows authentication for ease
of maintenance as both roles and credentials reside in the Active Directory store. One of the
key advantages of Windows authentication is that it enables you to let the operating system
take care of credential management. By using Windows authentication with Active
Directory, you benefit from a unified identity store, centralized account administration,
enforceable account and password policies, and strong authentication that avoids sending
passwords over the network.

• User store is in a SQL server database. Consider using username authentication and
configure your application to use the ASP.NET membership feature. You can use username
authentication when you need client username/password authentication (vs. client
computer-level authentication) and the client and service are not in trusted domains; for
example, clients are connecting over the Internet.

• User information is stored in certificates. Consider using certificate authentication, which
works best when you need computer-level authentication vs. user-level authentication.
Client certificates are used to authenticate the client computer connection, but not at a
user level. Server certificates are used when you need to authenticate the server
credentials to client connections.

• User information is in a custom store. Consider using custom roles for authorization by
creating a custom authorization policy.

The following are some other factors to consider when choosing an authentication strategy:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 110

• Determine which client credentials are available and map the credentials to the available
WCF authentication methods.

• Determine if the client-service communication is within an intranet only or across the
Internet. Integrated Windows authentication does not map well to Internet authentication
scenarios.

• Consider total cost of ownership (TCO) when choosing an authentication scheme. Client
certificates mapped to each user will be the most time-consuming to maintain. Windows
accounts are easiest to maintain because they are built into the operating system, with
maintenance tools and security supplied and tested by default.

• Consider whether you need user-level or machine-level authentication. Certificates work
well for machine-level authentication.

Key Authentication and Authorization Scenarios
The following scenarios help illustrate best practices for authentication and authorization
choices in common WCF deployment scenarios. Use these scenarios to help you choose your
authentication and authorization strategy based on your user credential store location and the
location of your clients on an intranet or the Internet.

Intranet Scenarios
The most common authentication scenario for intranet applications is where one or more client
computers connect to a WCF service. Here the service acts as an intermediary to supply data
back to the clients from resources to which it has access to resources on other computers.

A basic assumption for an intranet scenario is that your users have Windows accounts in the
server’s domain or in a trusted domain accessible by the server.

Authentication
Use Windows authentication when both the client and service are in trusted domains, such as
in an intranet scenario. Windows authentication works with resource-based authorization by
default.

Authorization
In an intranet scenario, if you are using Windows Active Directory for authentication, use
Windows groups for role authorization in WCF. You can choose this option when you have very
coarse or fewer role requirements.

If you have fine-grained role requirements, consider using ASP.NET roles. If your roles are
Windows groups, consider using the WindowsTokenRoleProvider for role authorization.

Internet Scenarios
The most common authentication scenario for Internet applications is where one or more client
computers connect to a WCF service. Here the service acts as an intermediary to supply data

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 111

back to the clients from resources to which it has access from resources on other computers
within its network.

The basic assumptions for Internet scenarios are:

• Your users do not have Windows accounts in the server’s domain or in a trusted domain
accessible by the server.

• Your users have Windows accounts, but cannot access directly over the Internet.

If you want to access downstream services and resources on the Internet, use the Trusted
Subsystem model.

Authentication
Keep in mind the following considerations related to authentication types:

• Username authentication. Use username authentication in the following scenarios:

o If your users are in a custom store, use username authentication with a custom
validator, or use username authentication with a membership provider by
implementing a custom membership provider against the custom store.

o If your users are in a SQL Server database, use username authentication with
SqlMembershipProvider.

o If your users are in Active Directory, use username authentication mapped to
Windows.

• Certificate authentication. Use certificate authentication in the following scenarios.
o If your service needs to be consumed by partner (B2B) applications. In this scenario,

the client certificates can authenticate a machine account or multiple users to a WCF
service.

o If you have initial certificate investment.
o If your users are in Active Directory, but you cannot use Windows authentication,

use certificate authentication and map the certificates to a Windows account.

Authorization
You can implement role authorization either by using declarative or imperative authorization as
follows:

• If you are using username authentication with SqlMembershipProvider, use
SqlRoleProvider for role authorization.

• If you are using username authentication mapped to Windows, use
WindowsTokeRoleProvider for role authorization using Windows groups.

• If you are using username authentication mapped to Windows, an AzMan policy store in an
XML file, in Active Directory, or in Active Directory Application Mode (ADAM), consider
using AuthorizationStoreRoleProvider for role authorization.

• If you are using certificate authentication with certificates mapped to Windows accounts,
use WindowsTokeRoleProvider for role authorization using Windows groups.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 112

• If you are using certificate authentication with certificates mapped to Windows accounts,
an AzMan policy store in an XML file, in Active Directory, or in Active Directory Application
Mode (ADAM), consider using AuthorizationStoreRoleProvider for role authorization.

Additional Resources
• For more information on authorization, see “Authorization” at

http://msdn2.microsoft.com/en-us/library/ms733071.aspx
• For more information on authentication, see “Authentication” at

http://msdn.microsoft.com/en-us/library/ms733082.aspx
• For more information see the list of related How To articles at

http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=How%20Tos&referringTitle=
Home

• For more general information, see “WCF 3.5 Security Questions and Answers“ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20Answe
rs&referringTitle=Home

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 113

Chapter 6 – Impersonation and Delegation in WCF

Objectives

• Understand the different WCF authentication security options: message security, transport
security, mixed, and both.

• Understand the different authentication methods that are available when using these
options.

• Understand the WCF authorization options based on role, identity, and resource.
• Understand the various WCF identities and the meaning of process identity, security

principle, and ServiceSecurityContext.
• Understand common implementation models that use specific authentication,

authorization, and identity choices.

Overview

Impersonation is a common technique that WCF services use to assume the original caller’s
identity in order to authorize access to service resources (such as files or database tables).
Service resources can be resources that are either local to the service machine or remotely
hosted. Impersonation is used to access resources on the same machine as the service, while
delegation is used to access resources that are remotely hosted.

By default, impersonation is disabled and resources are accessed by using the WCF service’s
process identity. Impersonation allows you to access local resources and perform other
operations using the authenticated user's identity or a specific Windows identity. You can
enable impersonation either programmatically or by applying appropriate attributes at
operation or service levels.

You can impersonate imperatively or declaratively. Imperative impersonation is performed
programmatically at run time and can vary depending on business logic or other conditions.
Declarative impersonation is applied with a static attribute that can be associated with an
operation or an entire interface. In general, you should use imperative impersonation when you
need the fine granularity made possible by writing the impersonation logic into your code. If
you do not need such fine granularity, you can use declarative impersonation.

Delegation allows you to use an impersonation token to access network resources. Your ability
to use delegation depends on the authentication mechanism in use and appropriate account
configuration.

Impersonation Scenarios

The most common impersonation and delegation scenarios are:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 114

• Impersonate the original caller. You want to access Windows resources that are protected
with access control lists (ACLs) configured for your application’s domain user accounts.

• Impersonate the original caller temporarily. You want to access resources predominantly
by using the WCF service’s process identity, but specific methods need to use the original
caller’s identity.

• Impersonate a specific Windows identity. You need to use a specific identity or several
Windows identities to access particular resources.

• Use delegation to access network resources. You need to use an impersonated identity to
access remote resources.

Impersonate the Original Caller

You should impersonate the original caller if you need to control access to Windows resources
that are protected by ACLs that apply to the original callers of your service.

To impersonate the original caller for a specific operation or entire service, you need to use the
declarative impersonation, for which you need to enable Windows authentication on the WCF
service.

If you need to access specific resources such as local files by using the process identity, you can
temporarily remove the impersonation token from the WCF request thread.

Impersonate the Original Caller Temporarily

If you need access to specific resources inside the scope of a service operation, you can use
programmatic impersonation to limit the amount of time your service runs in the higher-
privileged context of the original caller. There are three options for temporarily impersonating
the original caller:

• Use Windows authentication. To temporarily impersonate the original caller within a
particular operation, you need to obtain the WindowsIdentity object that represents the
authenticated user, and then call its Impersonate method. To use this option, you need to
enable Windows authentication on the WCF service.

• Use the WindowsIdentity constructor (S4U Kerberos extensions) Use this option if your
users have Windows domain accounts, but you are using non-Windows authentication, such
as certificate authentication. To impersonate the caller in this instance, you must
programmatically create a WindowsIdentity object for the caller, which you can use to
impersonate. Create a WindowsIdentity object by using the
WindowsIdentity(userPrincipalName) constructor that takes a single parameter of a user
principal name (UPN). With this approach, you do not need the account’s password. See
later sections in this chapter for information on S4U Kerberos.

• Use the LogonUser API. Use this option if your users have Windows domain accounts, but
you are using non-Windows authentication, such as custom authentication. To impersonate
the caller in this instance, you must programmatically create a WindowsIdentity object for

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 115

the caller, which you can use to impersonate. Create a WindowsIdentity object by using a
logon token returned from the Win32 LogonUser API.

Impersonate a Specific Windows Identity

If you need to access local resources (such as the file system or a local database) while
assuming the identity of the specific Windows account for the entire duration of the operation,
configure the WCF service to run under that Windows identity.

If you need to use the process identity for most resource access, and then impersonate the
specific Windows identity to perform specific operations or access specific resources, you can
use programmatic impersonation. There are two options for impersonating a specific Windows
identity temporarily:

• Use the WindowsIdentity constructor (S4U Kerberos extensions). To impersonate the
specific Windows identity, create a WindowsIdentity object by using the
WindowsIdentity(userPrincipalName) constructor that takes a single parameter of a UPN.
With this approach, you do not need the account’s password.U See Additional Resources
section in this chapter for S4U Kerberos informationU.

• Use the LogonUser API. To impersonate the specific Windows identity, create a
WindowsIdentity object by using a logon token returned from the Win32 LogonUser API.

Use Delegation to Access Network Resources

If your service needs to access remote / network resources, you can access the resources on
behalf of the original caller or a fixed identity in the following ways:

• Use Kerberos authentication and delegation. If you use Kerberos to authenticate your
users, you can impersonate the original caller by using the techniques described in the
sections “Impersonating the Original Caller” and “Impersonating the Original Caller
Temporarily,” and then use Kerberos delegation to gain access to network resources as
follows:
• If your WCF service runs under the Network Service account, configure your computer

account in Active Directory to be trusted for delegation.
• If your application runs under a custom domain account, you must register a service

principal name (SPN) in Active Directory to associate the domain account with the HTTP
service on your WCF server. You then configure your domain account in Active Directory
to be trusted for delegation.

• Use protocol transition. With this approach, you use a non-Kerberos authentication

mechanism, such as client certificates, to authenticate your users, and then use the new
WindowsIdentity constructor to obtain a Windows token for the user on the server. Use

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 116

this approach when you cannot use Kerberos authentication to authenticate your users.
Keep in mind the following considerations:
• If your WCF service runs under the Network Service account, configure your computer

account in Active Directory to be trusted for delegation and protocol transition.
• If your application runs under a custom domain account, you must register an SPN in

Active Directory to associate the domain account with the HTTP service on your WCF
server. You then configure your domain account in Active Directory to be trusted for
delegation and protocol transition.

• Call LogonUser and request an Interactive logon session. An interactive logon session has

network credentials that allow you to authenticate against network servers. Use this
approach when you cannot use Kerberos authentication to authenticate your users, and
when you cannot use protocol transition.

Note that you must have access to both the username and password to call LogonUser. You can
only use the token to access network resources over a single hop, whereas Kerberos delegation
allows the impersonated identity to flow across multiple tiers.

Impersonation Options

There are three options available for impersonation:

• Impersonate using the WindowsIdentity token with Windows authentication.
• Impersonate using the WindowsIdentity constructor (S4U Kerberos extensions).
• Impersonate using the LogonUser API.

Impersonate Using the WindowsIdentity Token With Windows
Authentication

With this option, you impersonate using the Windows token, obtained from the Security
Support Provider Interface (SSPI) or Kerberos authentication, which is then cached on the
service.

You can use this option when using Windows authentication or username authentication where
users can be mapped to valid Windows accounts. This impersonation option supports
programmatic and declarative impersonation in WCF.

Impersonate Using the WindowsIdentity Constructor (S4U Kerberos
Extensions)

You can use this option when your clients are authenticated by using non-Windows
authentication such as client certificates, which supports mapping to Windows accounts, or
when you want to impersonate a Windows service account. This impersonation option supports
programmatic impersonation in WCF.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 117

With this option, you need to create a WindowsIdentity object by using the
WindowsIdentity(userPrincipalName) constructor that takes a single parameter of a UPN. With
this approach, you do not need the account’s password.

The WindowsIdentity constructor relies on a Windows Server 2003 extension to the Kerberos
protocol known as Service for User to Self (S4U2Self). You can use this approach if your
application runs on Windows Server 2003 in a Windows Server 2003 domain. The advantage of
this approach is that you do not have to store credentials as you do for LogonUser. However,
the disadvantage is that if your code needs to access local resources, you must grant the “Act as
part of the operating system” privilege to your Web application process account to get an
impersonation-level token.

Token Types

The type of token generated by the S4U2Self extension determines what you can do with the
token while impersonating. You can obtain the following token types:

• Identify-level token – This is returned by default. With this type of token, you can check to
see what groups are contained in the token, but you cannot use it as an impersonation
token to access local or remote resources.

• Impersonation-level token – If you grant your process account the "Act as part of the
operating system" user right, you get this type of token from the WindowsIdentity
constructor. With this type of token, you can impersonate and access local resources.
Note: This places your process within the trusted computing base (TCB) of the WCF server,
which makes your WCF service process very highly privileged. Where possible, you should
avoid this approach because an attacker who manages to inject code and compromise your
WCF application will have almost unrestricted capabilities on the local computer.

• Delegate-level token – If you configure your service or machine account in Active Directory
to be trusted for constrained delegation and protocol transition, you will get a token that
you can use to access network resources.

Impersonate Using the LogonUser API

You can use this option when you want to access network resources (delegation) but you do
not have the “trusted for delegation” permission. You can also use this option if you want to
access local resources but you do not want to grant higher privileges to your WCF process
identity. This places the responsibility for maintaining the user credentials on the WCF service.
This impersonation option supports programmatic impersonation in WCF.

You can create a Windows token and associated logon session for a domain or local account by
using the Win32 LogonUser API. You must pass the user name and password to this API,
together with other parameters including the type of logon session you require.

Note: You should protect the credentials passed to LogonUser by encrypting them.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 118

Whether you can access local resources or network resources depends on the logon session
type that you request. (You specify the logon session type in the third argument of LogonUser.)
The most commonly used logon session types when calling this API are the following:

• Interactive logon – If you need to access remote resources, request an interactive logon
session. This results in a logon session that has network credentials. The user account
passed to LogonUser must be granted the “Log on locally” user right.

• Network logon – This establishes a logon session with no network credentials. This means
you can impersonate the token and access local resources only. The user account passed to
logon user must be granted the “Access this computer from the network” user right. By
default, all accounts have this right because it is granted to the Everyone group.

Impersonation Methods

There are three methods used for impersonation:

• Impersonate the original caller declaratively on specific operations.
• Impersonate the original caller declaratively for the entire service.
• Impersonate the original caller programmatically within an operation.

Impersonate the Original Caller Declaratively on Specific Operations

You can impersonate declaratively on an operation when you want to impersonate the original
caller for the entire duration of a specific operation. Use impersonation selectively and only on
the operations that need it, since by nature it increases the potential attack surface of your
application.

You can impersonate declaratively by applying the OperationBehavior attribute on any
operation that requires client impersonation. The following example shows how to
impersonate for a specific operation.

[OperationBehavior(Impersonation = ImpersonationOption.Required)]
public string GetData(int value)
{
 return “test”;
}

Impersonate the Original Caller Declaratively for the Entire Service

Impersonate declaratively on a service when you want to impersonate the original caller for all
of the operations in your service. However, you should be careful with this option because it
can significantly increase the attack surface of your application by running all of your code
under a higher-privileged account.

You can impersonate the entire service by setting the impersonateCallerForAllOperations
attribute to "true" in the WCF configuration file. The following example shows how to
impersonate for entire service:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 119

...
<behaviors>
 <serviceBehaviors>
 <behavior name="ServiceBehavior">
 <serviceMetadata httpGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="false" />
 <serviceAuthorization impersonateCallerForAllOperations="true" />
 </behavior>
 </serviceBehaviors>
</behaviors>
...

If you are impersonating all operations in the service, the Impersonation property of the
OperationBehaviorAttribute applied to each operation will be overriden. Therefore if the
property on the operation is set to something other than Allowed or Required, impersonation
will be turned off for that operation.

Note: When a service has higher credentials than the remote client, the credentials of the
service are used if the Impersonation property is set to Allowed. That is, if a low-privileged user
provides its credentials, a higher-privileged service executes the method with the credentials of
the service, and can use resources that the low-privileged user would otherwise not be able to
use.

Impersonate the Original Caller Programmatically Within an Operation

Impersonate programmatically when you want to impersonate the original caller for a short
duration in a service operation. You can impersonate programmatically by calling the
Impersonate() method on the Windows identity that you want to impersonate, as follows:

public string GetData(int value)

{

 using (ServiceSecurityContext.Current.WindowsIdentity.Impersonate())

 {

 // return the impersonated user (original users identity)

 return string.Format("Hi, {0}, you have entered: {1}",

 WindowsIdentity.GetCurrent().Name, value);

 }

}

Note: It is important to revert to impersonation. Failure to do so can form the basis for denial of
service (DoS) or elevation of privilege attacks. In the example above, the using statement
ensures that the impersonation is reverted after execution of the using block.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 120

Controlling Impersonation on the Service Side

You can control impersonation on the service side by using declarative impersonation. You can
use the ImpersonationOption enumeration along with the OperationBehaviorAttribute
attribute to control impersonation. The following impersonation options are available:

• NotAllowed. Impersonation is not performed in a particular operation.
• Allowed. Impersonation is performed if the original Windows token is available and the

service is configured to impersonate on all operations using the
ImpersonateCallerForAllOperations in the ServiceAuthorizationBehavior attribute.

• Required. Impersonation is performed; the Windows identity token is required to be
available.

The following example uses declarative impersonation to control impersonation on the service
side:

[OperationBehavior(Impersonation = ImpersonationOption.Required)]
public string GetData(int value)
{
 return “test”;
}

Controlling Impersonation on the Client Side

You can control impersonation on the client side and prevent WCF services from using client
identities to access local resources. Windows credentials have an AllowedImpersonationLevel
property that is set to one of the following TokenImpersonationLevel options in order to
control the impersonation level:

• None. The WCF service cannot authenticate or impersonate the user.
• Anonymous. The WCF service authenticates clients as anonymous, but cannot obtain

information for identification or impersonation.
• Identification. The WCF service can authenticate clients and get information for

identification, but cannot impersonate the clients. This is the default value.
• Impersonation. The WCF service can authenticate, get information for identification, and

impersonate clients on local systems.
• Delegation. The WCF service can authenticate, get information for identification, and

impersonate clients on local as well as remote systems.

The following example shows how to configure the impersonation level on the client side:

<behaviors>

 <endpointBehaviors>

 <behavior name="NewBehavior">

 <clientCredentials>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 121

 <windows allowedImpersonationLevel="Impersonation" />

 </clientCredentials>

 </behavior>

 </endpointBehaviors>

</behaviors>

Note: The impersonation level obtained by the server when it impersonates the client token is
not solely a function of this setting. It is also a function of the associated privileges and domain
settings for the account in which the service is running.

Pitfalls and Issues with Impersonation

Impersonation and delegation are powerful tools that should be used cautiously and
selectively. Improper use of impersonation and delegation can easily lead to serious security
vulnerabilities. The following are examples of common mistakes to avoid:

• Using impersonation by default. Only use impersonation when you need to. Using

impersonation can introduce security vulnerabilities, particularly in multi-threaded
applications. The use of impersonation prevents the efficient use of connection pooling if
you are accessing downstream databases using the impersonated identity. Be diligent when
choosing to impersonate and think about other alternatives; for example, if downstream
auditing is your goal, you might choose to pass the user identity as part of the method calls
rather than using delegation.

• Using callbacks when impersonating. Avoid using callbacks when impersonating, as you do
not have control over what code will be executed under the impersonated identity.

• Failure to revert impersonation. When using programmatic impersonation, be sure to
explicitly revert the impersonation. If you do not remember to revert, your application’s
attack surface will be increased because it will continue to run under higher privileges.

• Using the WindowsIdentity constructor (S4U Kerberos extensions). Using S4U is
sometimes necessary but requires you to place your process within the trusted computing
base (TCB) of the WCF server. This has the side effect of making your WCF service process
very highly privileged. Where possible, you should avoid this approach because an attacker
who manages to inject code and compromise your WCF application will have almost
unrestricted capabilities on the local computer.

• Using the LogonUser API. Using LogonUser requires you to maintain user credentials on the
WCF service. If you must use this API, be sure to protect the credentials passed to
LogonUser by encrypting the credentials.

Related Items

• For more information, see “How To – Use Delegation for Flowing the Original Caller
Credentials to Back-end in WCF Calling from Windows Forms.”

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 122

• For more information, see “How To – Use Protocol Transition for Impersonating and
Delegating the Original Caller in WCF.”

Additional Resources

• For more information, see “Delegation and Impersonation with WCF” at
3TUhttp://msdn.microsoft.com/en-us/library/ms730088.aspxU3T

• For more information, see “How To: Use Impersonation and Delegation in ASP.NET 2.0” at
3TUhttp://msdn.microsoft.com/en-us/library/ms998351.aspxU3T

• For more information on S4U Kerberos Extensions, see http://msdn.microsoft.com/en-
us/magazine/cc188757.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 123

Chapter 7 – Message and Transport Security

Objectives

• Understand the differences between message security and transport security in WCF.
• Understand how to use message and transport security together.
• Understand the benefits and tradeoffs involved in using each security type.
• Understand how to decide when to use each option.

Overview

When working with WCF or Web services, securing communication between the client and the
service is important. Transfer security is concerned with guaranteeing the integrity and
confidentiality of WCF service messages as they flow from application to application across the
network. Use encryption to enforce confidentiality and protect your messages from
eavesdropping. Use integrity checks, such as a signature-based checksum, to protect your
message from tampering.

In WCF, transfer security is also responsible for providing authentication. In the context of WCF,
authentication refers to mutual authentication, where clients are not only uniquely identified to
the service, but the service is also uniquely identified to the client.

Transfer security in WCF is achieved through the use of either transport security or message
security.

Transport Security

When using transport security, the user credentials and claims are passed by using the
transport layer. In other words, user credentials are transport-dependent, which allows fewer
authentication options compared to message security. Each transport protocol (TCP, IPC,
MSMQ, or HTTP) has its own mechanism for passing credentials and handling message
protection. The most common approach for this is to use Secure Sockets Layer (SSL) for
encrypting and signing the contents of the packets sent over Secure HTTP (HTTPS).

Transport security is used to provide point-to-point security between the two endpoints
(service and client). If there are intermediary systems between client and the service, each
intermediate point must forward the message over a new SSL connection.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 124

Transport Transport

Client Service

Platform and channel
provides security
Caller authentication

Message Integrity
Message Confidentiality

XML XML

XML XMLSecure Transport

Figure 2. Transport Security

Use transport security in the following scenarios:

• You are sending a message directly from your application to a WCF service and the message
will not be routed through intermediate systems.

• Both the service and the client are located in an intranet.

Using transport security offers the following advantages:

• It provides interoperability, meaning that communicating parties do not need to understand
WS-Security specifications.

• It may result in better performance.
• Hardware accelerators can be used to further improve the performance.

Using transport security has the following disadvantages:

• Security is applied on a point-to-point basis, with no provision for multiple hops or routing
through intermediate application nodes.

• It supports a limited set of credentials and claims compared to message security.
• It is transport-dependent upon the underlying platform, transport mechanism, and security

service provider, such as NTLM or Kerberos.

Message Security

When using message security, the user credentials and claims are encapsulated in every
message using the WS-Security specification to secure messages. This option gives the most
flexibility from an authentication perspective. You can use any type of security credentials you
want, largely independent of transport, as long as both the client and service agree.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 125

Transport TransportAny Transport

Client Service

XML XML

XML messages convey
security information

Credentials
 Digital signatures

Messages can be
encrypted

Security is independent from
transport protocol

XML XML

Figure 1. Message Security

Use message security in the following scenarios:

• You are sending a message to a WCF service, and the message is likely to be forwarded to
other WCF services or may be routed through intermediate systems.

• Your WCF clients are accessing the WCF service over the Internet and messages may be
routed through intermediate systems.

Using message security offers the following advantages:

• It provides end-to-end security. Because message security directly encrypts and signs the
message, having intermediaries does not break the security.

• It allows partial or selective message encryption and signing, thus improving overall
application performance.

• Message security is transport-independent and therefore can be used with any transport
protocol.

• It supports a wide set of credentials and claims, including the issue token that enables
federated security.

Using message security has following disadvantages:

• This option may reduce performance compared to transport security because each
individual message is encrypted and signed.

• It does not support interoperability with older ASMX clients, as it requires both the client
and service to support WS-Security specifications.

Transfer Security Modes

In WCF, you have two primary choices for providing transfer security: either you provide the
transfer security on the transport level, or on the message level. Each option has its own
advantages and disadvantages. The following table details the security modes available across
most of the standard bindings.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 126

Mode Description
None No security is provided; you should not use this option.
Transport Mutual authentication and message protection are

provided at the transport level.
Message Mutual authentication and message protection are

provided at the message level.
Both Mutual authentication and message protection are

provided at both the transport and message level. This is
far more than is needed for most scenarios.

TransportWithMessageCredential Client authentication is provided at the message level, and
message protection and service authentication are
provided at the transport level.

TransportCredentialOnly Mutual authentication is provided at the transport level,
but no message protection is provided. This option is
available only on BasicHttpBinding.

Transport Security in WCF

In WCF, transport security depends on the binding and subsequent transport being used. Each
protocol (TCP, HTTP, MSMQ, NamedPipes) has its own mechanism for passing credentials and
handling message protection. Typically, you can use transport security when your client is
deployed within an intranet, as it provides point-to-point security and better performance
compared to message security. Note the following considerations:

• With transport security, the service credentials are negotiated by default.
• Transport security is available on all of the bindings except for wsDualHttpBinding.
• When using HTTP bindings, the WCF service typically is hosted in Internet information

Services (IIS) and the transport security is provided by SSL. The SSL certificate is used to
provide the message protection.

• With netTcpBinding, when using Windows authentication, the binding uses the service’s
Windows token to provide message protection. When using non-Windows
authentication such as certificate authentication, you have to configure a service
certificate as service credentials. The binding uses the service certificate for message
protection.

Use the <Security mode> attribute to configure transport security on your binding. The
following example shows how a wsHttpBinding binding is configured to use transport security:

…
<bindings>
 <wsHttpBinding>
 <binding name="wsHttpEndpointBinding">
 <security mode="Transport">
 </security>
 </binding>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 127

 </wsHttpBinding>
</bindings>
…

Intranet Scenarios

The following are the authentication types and bindings that can be used in a typical intranet
scenario:

• Windows authentication with netTcpBinding – By default, netTcpBinding uses Windows
authentication and transport security. It uses the service account’s Windows identity token
to provide message protection. The credentials are negotiated with the Security Support
Provider Interface (SSPI).

• Certificate authentication with netTcpBinding – By default, netTcpBinding uses transport
security, which means you will have to configure the client credentials to use a certificate.
To provide message protection at the transport level, you will have to configure a service
certificate as service credentials. The certificate will negotiate a session key and service
public key during the handshake, which will allow you to encrypt the content with the
service certificate public key and sign the content with the private session key.

Note: In an intranet scenario, it is recommended that you use netTcpBinding unless you have a
specific requirement to use other bindings such as wsHttpBinding. By default, netTcpBinding
uses binary encoding and transport security, which delivers better performance.

Internet Scenarios

The following are the authentication types and bindings that can be used in a typical Internet
scenario:

• Basic authentication with basicHttpBinding – By default, basicHttpBinding does not
support any security, so you will need to configure the binding to use transport security.
This is a good option when you want to support interoperability with non-WCF or non-
Windows clients. In this scenario, you need to install a SSL certificate on IIS and then
configure the virtual directory to require SSL. SSL will then negotiate a session key and
service public key during the handshake, which will allow you to encrypt the content with
the service certificate public key and sign the content with the private session key.

• Certificate authentication with wsHttpBinding – By default, wsHttpBinding uses message
security and Windows authentication, so you will have to configure the binding to use
transport security and configure the client credentials to use the certificate. To provide
message protection at the transport level, install an SSL certificate on IIS and configure the
virtual directory to require SSL.

Note: In an Internet scenario, you can only use the HttpBinding option.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 128

Message Security in WCF

Message security uses the WS-Security specification to secure messages. The specification
describes enhancements to Simple Object Access Protocol (SOAP) messaging to ensure
confidentiality, integrity, and authentication at the SOAP message level (instead of the
transport level). Typically, you can use transport security when your client is deployed over the
Internet, as it provides end-to-end security.

With transport security, the service credentials are negotiated by default, but you can configure
the message security to avoid service credential negotiation if you want to restrict clients from
accessing your service. This is especially important when you are in partner scenario where
your service is exposed to a number of clients. When you configure message security to not
negotiate credentials, you have to make sure that the service credentials are available out-of-
band to the client application.

Transport security is available on all of the bindings except for netNamedPipeBinding.

When using Windows authentication, message security uses the service’s Windows token to
provide message security. When using non-Windows authentication such as username,
certificate, or issue token authentication, you have to configure a service certificate as service
credentials. Message security uses the service certificate for message protection.

Use the <Security mode> attribute to configure message security on your binding. The
following example shows netTcpBinding configured to use message security:

…
<bindings>
 <wsHttpBinding>
 <binding name="netTcpEndpointBinding">
 <security mode="message">
 </security>
 </binding>
 </wsHttpBinding>
</bindings>
…

By default, message security encrypts and signs the messages. Although it is not recommended,
with message security you can lower the protection level or disable it based on your
requirements.

Protection Level

You can use the [ServiceContract(ProtectionLevel)] attribute to specify message security
protection levels on the interface or operation level. The available protection level options are:

• None – Use None to turn off signing and encryption on the operation or interface.
• Sign – Use Sign to sign the interface or operation but not encrypt it.
• EncryptAndSign – Use EncryptAndSign to both encrypt and sign the interface or operation.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 129

The following code snippet creates an interface with the protection level set to Sign.

 [ServiceContract(ProtectionLevel=ProtectionLevel.Sign]
public interface IService
{
 string GetData(int value);
}
The following code snippet specifies an operation with the protection level set to Sign.

 [OperationContract(ProtectionLevel=ProtectionLevel.Sign]
string GetData(int value);

Intranet Scenarios

Message security is not the best choice in an intranet scenario, but if your requirements force
you to use message security, the following authentication types and bindings can be used in a
typical intranet scenario:

• Windows authentication with netTcpBinding – By default, netTcpBinding uses Windows
authentication and transport security. You will have to configure the binding to use
message security. The binding uses the service account’s Windows identity token to provide
message protection. The credentials are negotiated with SSPI.

• Certificate authentication with netTcpBinding – You will have to configure the binding to
use message security and configure the client credentials to use the certificate. To provide
message protection at the message level, you will have to configure a service certificate as
the service credentials. The certificate will negotiate a session key and service public key
during the handshake, which will allow you to encrypt the content with the service
certificate public key and sign the content with the private session key.

• Username authentication with netTcpBinding – You will have to configure the binding to
use message security and configure the client credentials to use username authentication.
To provide message protection at the message level, you need to install and configure a
service certificate as service credentials.

Note: In an intranet scenario, it is recommended that you use netTcpBinding unless you have a
specific requirement to use other bindings such as wsHttpBinding. By default, netTcpBinding
uses binary encoding and transport security, which may improve the performance of your
service.

Internet Scenarios

Message security is the preferred option for Internet scenarios. The following are the
authentication types and bindings that can be used in a typical Internet scenario:

• Basic authentication with basicHttpBinding – By default, basicHttpBinding does not
support any security, so you will have to configure the binding to use message security.
Using this option does not allow you to support interoperability. In this scenario, you need

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 130

to install and configure a service certificate as service credentials. The certificatewill
negotiate a session key and service public key during the handshake, which will allow you to
encrypt the content with the service certificate public key and sign the content with the
private session key.

• Certificate authentication with wsHttpBinding – By default, wsHttpBinding uses message
security and Windows authentication, so you will have to configure the client credentials to
use the certificate. To provide message protection at the message level ,install and
configure a service certificate as service credentials.

Note: In an Internet scenario, you can only use the HttpBinding option.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 131

Chapter 8 – Bindings

Objectives
• Understand what bindings and behaviors are and how they are used in WCF.
• Understand when to use each binding supplied by WCF.
• Understand which bindings are best for the Internet.
• Understand which bindings are best for an intranet.

Overview
WCF is a framework for building services that allows you to transmit messages using different
transport protocols and different XML representations. It allows you to enhance message
interactions with a suite of Simple Object Access Protocol (SOAP) protocols. WCF uses a channel
stack that handles all of these communication details.

It would be challenging to build a channel stack from scratch, as you would have to decide the
ordering of the components and whether or not they are compatible with one another. For this
reason, WCF indirectly configures the underlying channel stack with the help of configurable
endpoints. An endpoint specifies an address, a binding, and a contract. The address specifies
the network address where you want to listen for messages; the contract specifies what the
messages arriving at the specified address should contain; and the binding provides the channel
stack needed to process the message. When loading a service, WCF builds the channel stack by
following the instructions outlined by the binding description.

WCF Built-in Bindings
Bindings define how clients can connect and communicate with your service. All the bindings in
WCF are represented by the System.ServiceModel.Channels.Binding class, which is the base
class for all bindings. Each class defines a different channel stack configuration through its
implementation. A binding includes definition for the WS-* protocols used, the message
encoding, and the transport protocol.

WCF comes out of the box with a set of bindings configured for the most-common scenarios. If
none of the bindings are a good fit, you can create a custom binding to configure the service
explicitly to meet your needs.

The following table summarizes common bindings.

Binding Description
basicHttpBinding Represents a binding that configures and exposes endpoints

that are able to communicate with ASMX-based Web services
and clients and other services that conform to the WS-I Basic
Profile 1.1 specification. By default, basicHttpBinding has
security disabled.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 132

wsHttpBinding Defines a secure, reliable, interoperable binding suitable for
non-duplex service contracts. The binding implements the
following specifications: WS-Reliable Messaging for reliability,
and WS-Security for message security and authentication. The
transport is HTTP, and message encoding is text/XML
encoding. By default, it provides message security using
Windows authentication.

ws2007HttpBinding Defines a secure, reliable, interoperable binding suitable for
non-duplex service contracts. The binding implements the
following specifications: WS-Reliable Messaging for reliability,
and WS-Security for message security and authentication. The
transport is HTTP, and message encoding is text/XML
encoding. The ws2007HttpBinding provides binding similar to
wsHttpBinding but uses the standard for OASIS (Organization
for the Advancement of Structured Information Standards). By
default, it provides message security using Windows
authentication.

netTcpBinding Specifies a secure, reliable, optimized binding suitable for
cross-machine communication. By default, it generates a run-
time communication stack with transport security and
Windows authentication as default security settings. It uses
the Transmission Control Protocol (TCP) for message delivery,
and binary message encoding.

netNamedPipeBinding Defines a binding that is secure, reliable, and optimized for
cross-process communication on the same machine. By
default, it generates a run-time communication stack with
WS-ReliableMessaging for reliability, transport security for
transfer security, named pipes for message delivery, and
binary message encoding. It is not secured by default.

netMsmqBinding Defines a queued binding suitable for cross-machine
communication.

wsFederationHttpBinding Defines a binding that supports federated security. It helps in
implementing federation, which is the ability to flow and
share identities across multiple enterprises or trust domains
for authentication and authorization. WCF implements
federation over message and mixed mode security but not
over transport security. Services configured with this binding
must use the HTTP protocol as transport.

ws2007FederationHttpBinding Defines a binding that derives from wsFederationHttpBinding
and supports federated security. It helps in implementing
federation. WCF implements federation over message and
mixed mode security but not over transport security. Services
configured with this binding must use the HTTP protocol as

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 133

transport. The ws2007FederationHttpBinding provides
binding similar to ws2007FederationHttpBinding but uses the
OASIS standard.

wsDualHttpBinding Defines a secure, reliable, and interoperable binding that is
suitable for duplex service contracts or communication
through SOAP intermediaries.

customBinding Allows you to create a custom binding with full control over
the message stack.

For more information on bindings, see “Windows Communication Foundation Bindings” at
Uhttp://msdn.microsoft.com/en-us/library/ms733027.aspxU.

Bindings Behaviors and Endpoints
A WCF service endpoint comprises an address, a binding, and a contract. Bindings define how
clients can connect and communicate with your service. A binding includes definitions for the
WS-* protocols used, the message encoding, and the transport protocol. For instance,
wsHttpBinding uses HTTP, XML 1.0 encoding, message security, reliable sessions, and
transactions by default. Bindings are exposed by a service endpoint that includes the binding
plus a uniform resource identifier (URI) to which the client will send messages. Bindings can be
configured either through code or by using configuration elements in the configuration file.

The following example shows wsHttpBinding configured to use transport security:

<bindings>
 <wsHttpBinding>
 <binding name="wsHttpEndpointBinding">
 <security mode="Transport">
 </security>
 </binding>
 </wsHttpBinding>
</bindings>

The following configuration snippet shows an endpoint that exposes this binding:

<endpoint address="" binding="wsHttpBinding"
bindingConfiguration="wsHttpEndpointBinding" name="wsHttpEndpoint"
contract="IService">

When creating an overall security policy for your services, you will use bindings and behaviors
to configure your service as follows:

• Bindings. Bindings control the security mode, client credential type, and other security
settings.

• Behaviors. Behaviors control impersonation levels, how client credentials are authenticated
and authorized, and service credentials.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 134

Bindings Summary
Use the following binding summaries to help you choose the right binding for your scenario.

basicHttpBinding
If your service needs to support legacy clients that expect an ASMX Web service, consider using
basicHttpBinding. Because basicHttpBinding does not implement any security by default, if you
require message or transport security, you should configure it explicitly on this binding. Use
basicHttpBinding to expose endpoints that are able to communicate with ASMX-based Web
services and clients and other services that conform to the WS-I Basic Profile 1.1 specification.
When configuring transport security, basicHttpBinding defaults to no credentials just like a
classic ASMX Web service. basicHttpBinding allows you to host your service in Internet
Information Services (IIS) 5.0 or IIS 6.0.

wsHttpBinding
If your service will be called by WCF clients over the Internet, consider using wsHttpBinding.
wsHttpBinding is a good choice for Internet scenarios in which you do not have to support
legacy clients that expect an ASMX Web service. If you do need to support legacy clients,
consider using basicHttpBinding instead. wsHttpBinding allows you to host your service in IIS
5.0 or IIS 6.0.

netTcpBinding
If you need to support clients within your intranet, consider using netTcpBinding.
netTcpBinding is a good choice for an intranet scenario if transport performance is important
to you and it is acceptable to host the service in a Windows service instead of in IIS.
netTcpBinding uses the TCP protocol and provides full support for SOAP security, transactions,
and reliability. Use this binding when you want to provide a secure and reliable binding
environment for .NET-to-.NET cross-machine communication. netTcpBinding does not allow
you to host your service in IIS 5.0 or IIS 6.0; instead, host in a Windows service or in IIS 7.0.

netNamedPipeBinding
If you need to support WCF clients on the same machine as your service, consider using
netNamedPipeBinding. netNamedPipeBinding provides a secure and reliable binding
environment for cross-process, same-machine communication. Use this binding when you want
to make use of the Named-Pipe protocol and provide full support for SOAP security,
transactions, and reliability. netNamedPipeBinding does not allow you to host your service in
IIS 5.0 or IIS 6.0; instead, host in a Windows service or in IIS 7.0.

netMsmqBinding
If you need to support disconnected queuing, use netMsmqBinding. Queuing is provided by
using Microsoft Message Queuing (MSMQ) as a transport, which enables support for
disconnected operations, failure isolation, and load leveling. You can use netMsmqBinding
when the client and the service do not have to be online at the same time. You can also manage
any number of incoming messages by using load leveling. MSMQ supports failure isolation,

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 135

where messages can fail without affecting the processing of other messages. netMsmqBinding
does not allow you to host your service in IIS 5.0 or IIS 6.0; instead, host in a Windows service or
in IIS 7.0.

wsDualHttpBinding
If you need to support a duplex service, use wsDualHttpBinding. A duplex service is a service
that uses duplex message patterns, which provides the ability for a service to communicate
back to the client via a callback. You can also use this binding to support communication via
SOAP intermediaries. wsDualHttpBinding does not allow you to host your service in IIS 5.0 or
IIS 6.0; instead, host in a Windows service or in IIS 7.0.

CustomBinding
A custom binding is created in code by using the CustomBinding class found in the
System.ServiceModel.Channels namespace. This class exposes a collection of binding elements
to which you can add further binding elements. This allows you to compose a new binding
based on a set of existing binding elements.

User-defined bindings are bindings that are created by inheriting from the Binding class.
Creating user-defined bindings is preferred when you want to reuse the binding in a number of
applications.

Internet Binding Scenarios
If you are exposing your WCF service interface over the Internet, use the following guidelines to
help choose the appropriate binding:

• If you are exposing your WCF service over the Internet to clients that expect a legacy ASMX
Web service, use basicHttpBinding. Keep in mind that this binding does not have any
security enabled by default, so all messages will be sent in plaintext format.

• If you are exposing your WCF service over the Internet to Windows Forms clients, use
wsHttpBinding. wsHttpBinding provides the best WS-* interoperability features, including
WS-SecureConversation, WS-Addressing, and WS-AtomicTransaction. The combination of
features offered by wsHttpBinding makes for the most reliable connection offered by WCF
over the Internet.

• If you are exposing your WCF service over an intranet to an ASP.NET application, which in
turn is exposed to the clients over the Internet, use netTcpBinding.

• If your clients and the service require full-duplex communication, then use
wsDualHttpBinding. It is the only binding that supports full-duplex.

• If your service is interacting with Web Services Enhancements (WSE) clients, you must use
customBinding. The service must use a custom binding to be compatible with the August
2004 version of the WS-Addressing specification.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 136

Intranet Binding Scenarios
If you are exposing your WCF service interface over an intranet, use the following guidelines to
help choose the appropriate binding:

• If you are exposing your WCF service over your intranet to clients that expect a legacy ASMX
Web service, use basicHttpBinding. Keep in mind that this binding does not have any
security enabled by default, so all messages will be sent in plaintext format.

• If you are exposing your WCF service over your intranet to Windows Forms or ASP.NET
clients, use netTcpBinding. You can use any binding over an intranet, but netTcpBinding
provides the best throughput performance. On an intranet, you generally do not need to
worry as much about the connection going down as with an Internet connection, so some of
the WS-* advantages supplied with wsHttpBinding may not be as necessary on an intranet.

Binding Elements
WCF provides numerous channels and encoders that are used in the preconfigured bindings.
You can use these channels to provide binding elements that can be used in custom bindings.

A binding element is a class that derives from System.ServiceModel.Channels.BindingElement.

WCF provides some different lists of binding elements that include the Protocol Binding
Elements, Message Encoding Binding Elements, Transport Security Binding Elements, and
Transport Binding Elements.

Protocol Binding Elements

Protocol Class Element
Transaction
Flow

TransactionFlowBindingElement <transactionFlow/>

Reliable
Messaging

ReliableSessionBindingElement <reliableSession/>

Security SecurityBindingElement <security/>

Message Encoding Binding Elements

Message
encoding

Class Element

Text TextMessageEncodingBindingElement <textMessageEncoding/>
MTOM MtomMessageEncodingBindingElement <mtomMessageEncoding/>
Binary BinaryMessageEncodingBindingElement <binaryMessageEncoding/>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 137

Transport Security Binding Elements

Transport
security

Class Element

Windows WindowsStreamSecurityBindingElement <windowsStreamSecurity/>
SSL SslStreamSecurityBindingElement <sslStreamSecurity/>

Transport Binding Elements

Transport Class Element

HTTP HttpTransportBindingElement <httpTransport/>

HTTPS HttpsTransportBindingElement <httpsTransport/>

TCP TcpTransportBindingElement <tcpTransport/>

Named pipes NamedPipeTransportBindingElement <namedPipeTransport/>

MSMQ MsmqTransportBindingElement <msmqTransport/>

MSMQ MsmqIntegrationBindingElement <msmqIntegration/>

P2P PeerTransportBindingElement <peerTransport/>

You can add binding elements by adding the desired BindingElement objects to its Elements
collection. The order in which the binding element is added is very important. The order of
adding the binding elements is as follows:

1. Transaction Flow (not required)
2. Reliable Messaging (not required)
3. Message Security (not required)
4. Composite Duplex (not required)
5. Message Encoding (required)
6. Transport Security (not required)
7. Transport (required)

The Transport binding element is the only required element when defining a custom binding.
The Message Encoding element is required for each binding, but if you do not specify one, WCF
will add a default encoding. The default encoding for HTTP(S) is text, and for all other transports
it is binary.

The following code shows how to create a custom binding:

CustomBinding myHttpBinding = new CustomBinding();
myHttpBinding.Name = “myHttpBinding”;
myHttpBinding.Elements.Add(new HttpTransportBindingElement());

host.AddServiceEndpoint(typeof(IChat), myHttpBinding,
 “http://localhost:8080/chat/custom”);

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 138

The following code shows how to create a custom binding by using the customBinding element
in the configuration:

 <bindings>
 <customBinding>
 <binding name=”myHttpBindingConfiguration”>
 <textMessageEncoding
 messageVersion=”Soap11WSAddressingAugust2004”/>
 <httpTransport
 useDefaultWebProxy=”true” transferMode=”Streamed”/>
 </binding>
 </customBinding>
</bindings>

Custom Binding Configuration Examples
The following example shows a custom binding that performs functions similar to those of
wsHttpBinding and netTcpBinding:

<configuration>
 <system.serviceModel>
 …
 <bindings>
 <customBinding>

 <binding name=”myWSHttpBindingConfiguration”>
 <transactionFlow/>
 <reliableSession ordered=”true”/>
 <security authenticationMode=”SspiNegotiated”/>
 <binaryMessageEncoding/>
 <httpTransport/>
 </binding>
 <binding name=”myNetTcpBindingConfiguration”>
 <transactionFlow/>
 <textMessageEncoding/>
 <windowsStreamSecurity/>
 <tcpTransport/>
 </binding>

 </customBinding>
 </bindings>
 …
 </system.serviceModel>
</configuration>

The myWSHttpBindingConfiguration configuration is similar to the built-in wsHttpBinding
except that it uses binary message encoding and enables transaction flow and ordered reliable
messaging. The myNetTcpBindingConfiguration configuration is similar to netTcpBinding
except that it uses text message encoding and enables transaction flow.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 139

PART III

Intranet Application Scenarios

In This Part:

 Intranet - Web to Remote WCF Using Transport Security
(Original Caller, TCP)

 Intranet - Web to Remote WCF Using Transport Security
(Trusted Subsystem,HTTP)

 Intranet - Web to Remote WCF Using Transport Security
(Trusted Subsystem TCP)

 Intranet - Windows Forms to Remote WCF Using
Transport Security (Original Caller, TCP)

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 140

Chapter 9 - Intranet - Web to Remote WCF Using Transport
Security (Original Caller, TCP)

Applies To
• Microsoft® Windows Communication Foundation (WCF) 3.5

Scenario
In this scenario, your users have Windows accounts and use a Web client to connect over the intranet to
an ASP.NET application on an IIS server that is hosted on an Application Server. The ASP.NET application
makes calls to the WCF service. The business logic called by the WCF service requires fine-grained
authorization and is backed by a SQL Server data store. The basic model for this application scenario is
shown in the following figure.

ASP.NET

Client Database Server

IIS SQL
Server

Application Server

WCF
Service

Figure 1. Web to Remote WCF Using Transport Security (Original Caller, TCP) – Model

Key Characteristics
This scenario applies to you if:

• Your users have browsers supporting Integrated Windows Authentication.
• Your user accounts are in Active Directory within a domain.
• Your user roles are Windows Groups.
• The business logic behind your WCF service requires fine-grained authorization.
• Your application transmits sensitive data over the network that needs to be protected.
• A high-performance connection between the ASP.NET application and the WCF service is more

important than the ability to host the WCF service in IIS.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 141

Solution

ASP.NETIIS

SQL
Server

Alice

Bob

Mary

TLS/SSL
(Privacy/
Integrity)

Integrated Windows
Authentication

Web Server

Database Server

WCF
(Windows

Service Host)

Application Server

Windows
Authentication

WCF
Identity

Transport
Security
(Privacy/
Integrity)

IPSec
(Optional)

(Privacy/
Integrity)

Alice

Bob

Mary
Windows

Authentication
/ Windows

Groups

Windows
Authentication

Alice

Bob

Mary

WCF Proxy

netTCPBinding
Impersonate the

Caller

Figure 2. Web to Remote WCF Using Transport Security (Original Caller, TCP) – Solution

Solution Summary Table
In this solution you will:

• Use domain credentials to authenticate clients against an Active Directory user store.
• Impersonate the original caller when calling methods on the WCF service from the ASP.NET

application.
• Use a service account to call the SQL Server from WCF (without impersonation).
• Use SSL to protect sensitive data between the Web client and IIS.
• Use Transport Security to protect sensitive data between the ASP.NET application and the WCF

service.
• Use netTcpBinding to support the TCP transport for improved performance.
• Host WCF in a Windows Service since IIS does not support the TCP transport (prior to IIS7)

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 142

Web Server
Check & More Info Example
IIS - Configuration
A dedicated application pool is created and
configured to run under a custom service account.

Use a domain account.

The Web application is configured to run under the
service account.

Assign the Web application to the custom application
pool.

Service Principal Name (SPN) is created if domain
identity is used in the ASP.NET application pool.

Create an SPN for both the DNS and NETBIOS
machine name.

setspn -a HTTP//WebServer.domain.com
customDomainAccount
setspn -a HTTP//WebServer
customDomainAccount

ASP.NET Process identity is configured as Trusted for
delegation.

If you use a network service account, enable the
computer account for trusted for delegation. If you
use a domain user account. enable the domain
account for trusted for delegation.

IIS - Authentication
The IIS virtual directory is configured to use
Windows Integrated Authentication.

Users will be authenticated with Windows
Authentication.

Anonymous access is disabled.

Check & More Info Example
ASP.NET - Authentication
ASP.NET is configured for Windows
Integrated authentication.

The Web application will authenticate the
users.

<authentication mode = "Windows" >

ASP.NET - Authorization
If you have role segmentation in your
application then use URL authorization.

The authorized users have access to specific
pages.

<authorization>
 <allow roles="domainName\RoleName" />
 <deny users="*" />
</authorization>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 143

Role Manager is enabled and Role-checks
are performed using Role Manager API.

Original users are authorized using the
Windows groups before calling in WCF
Service.

<roleManager enabled="true"
 defaultProvider=
"AspNetWindowsTokenRoleProvider"/>

if
(Roles.IsUserInRole(@"npscode\Accounting")
)
{

}

WCF Proxy
ASP.NET has a proxy reference to the WCF
service.

The application has access to the WCF
Service metadata to create a service
reference.

WCFTestService.MyServiceClient proxy = new
WCFTestService.MyServiceClient();

ASP.NET Impersonates the original callers
before calling the WCF operation.

Used for downstream authorization.

using
(((WindowsIdentity)HttpContext.Current.Use
r.Identity).Impersonate())
 {
 WCFTestService.MyServiceClient proxy
 = new
WCFTestService.MyServiceClient();
 proxy.GetData("data");
 proxy.Close();
 }

Application Server
Check & More Info Example
Windows Service - Configuration
Windows Service is configured to run
under a custom domain service account.

Use a domain account if possible.

WCF service is hosted in a Windows
Service.

Since IIS does not support netTcpBinding,
host in Windows Service.

Service Principal Name (SPN) is created
since a custom domain account is used
for the Windows service, and the
ASP.NET application needs to restrict
trust for delegation to only the WCF
service.

setspn -a
WCFServiceHost//WebServer.domain.com
customDomainAccount
setspn -a WCFServiceHost//WebServer
customDomainAccount

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 144

Check & More Info Example
Create an SPN for both the DNS and
NETBIOS machine name.
WCF Service - Configuration
Configure the WCF service to use
netTcpBinding.

NetTcpBinding uses the TCP protocol and
provides full support for SOAP security,
transactions, and reliability. As client and
WCF service both are in the intranet, this
is a good choice from a performance
perspective.

<endpoint
 address=""
 binding="netTcpBinding"
 bindingConfiguration=""
 name="TcpBinding"
contract="WCFServicecHost.IMyService"
/>

A mex endpoint is created for publishing
the metadata.

This is required so that client can add
reference to the WCF Service using
SvcUtil utility.

<endpoint
 address="Mex"
 binding="mexTcpBinding"
 bindingConfiguration=""
 name="MexEndpoint"
 contract="IMetadataExchange" />

Service Metadata is configured in service
behavior.

The service metadata entry is required for
the Windows service host to start. Both
HTTP and HTTPS get are disabled.

<serviceMetadata />

WCF Service - Authentication
netTcpBinding is configured to use
Windows Authentication and Transport
security.

netTcpBinding by default supports
Windows Authentication and Transport
Security.

<endpoint
 address=""
 binding="netTcpBinding"
 bindingConfiguration="" />

WCF Service - Authorization
Role Manager feature is enabled and
WindowsTokenRoleProvider is configured
for roles authorization.

Roles authorization can be performed
declaratively or imperatively in the
operation contract.

<serviceAuthorization
 principalPermissionMode="UseAspNetRoles"
roleProviderName="AspNetWindowsTokenRoleProv
ider" />

Perform role-checks declaratively using
the PrinciplePermission attribute.

Use declarative check to authorize the
user on individual methods.

[PrincipalPermission(SecurityAction.Demand,
Role = "npscode\\accounting")]

public string GetData(string message)
{
 return "hello";

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 145

Check & More Info Example
}

Perform role-checks imperatively using
IsUserInRole() method.

Use programmatic check to authorize the
user based on business logic.

if(Roles.IsUserInRole(@"npscode\Accounting")
)
{
 //business operation for accounting
}
else
{
 //business operation for others
}

WCF Service - SQL
The connection string for database is
configured to use Windows
Authentication. The service does not
impersonate the original caller to benefit
for connection pooling.

The database connection string includes
Integrated Security=SSPI or Trusted
Connection=Yes.

SqlConnection sqlcon = new
SqlConnection("Server=10.3.19.11;Database=No
rthwind;IntegratedSecurity=SSPI");

Database connection is opened using the
WCF process identity’s security context.

Service does not impersonate the original
caller to benefit for connection pooling.

Database Server
Check & More Info Example
Configuration
A SQL Server login is created for the WCF’s
service account (process identity).

This grants access to the SQL Server.

exec sp_grantlogin 'Custom Service
Account'

The login is mapped to a database user for
the Web application.

This grants access to the specified database.

use targetDatabase
go
exec sp_grantdbaccess ' Custom Service
Account'
go

A database role is created in the target
database.

This allows access control and authorization
to the DB.

use targetDatabase
go
exec sp_addrole 'DB Role Name'
go

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 146

Check & More Info Example
The login is added to the database role.

Grant minimum permissions. For example
grant execute permissions to selected stored
procedures and provide no direct table
access.

use targetDatabase
go
exec sp_addrolemember 'DB Role Name',
'Custom Service Account'
go

Authentication
SQL Server is configured to use Windows
Authentication.

Communication Security

Check & More Info Example
Browser to Web Server
Use SSL between the browser and Web server to
protect sensitive data on the wire.

Install certificate in the Web site. Configure the virtual
directory of the Web application to use SSL.

App Server to Database Server
You can use IPSec or SSL between the App Server and
Database Server to protect sensitive data on the wire.

Analysis

Web Server

Authentication
• To prevent unauthenticated and unauthorized users from accessing pages, anonymous access is

disabled in IIS.
• Integrated Windows Authentication is a good choice for this scenario because all users have

Windows accounts. Integrated Windows Authentication provides the benefit of keeping the user's
password from ever being sent over the network. Additionally, the logon is transparent for the user
because Windows uses the current user's logon session.

Authorization
• Use URL authorization to perform role checks against the original caller and restrict access to pages

based on role permissions.
• The Roles Manager is a good choice for this scenario because it allows your service code to look up

users' roles without writing and maintaining custom code.
• The original caller is passed to the WCF service to allow authorization decisions downstream.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 147

WCF Proxy
• Because original user’s credentials are passed to WCF for authentication and authorization, the

original caller is impersonated before making calls into WCF Service. All calls through the WCF proxy
and into the WCF service use the original user’s security context.

Configuration
• In order to reduce attack surface and minimize the impact of a compromise, the ASP.NET application

on the Web Server runs under the security context of the Service account using a least-privileged
account.

• In order to support Kerberos mutual authentication, an SPN is created for your custom domain
account running the ASP.NET application.

• Configure the custom domain account in Active Directory to trust for delegation. This allows
ASP.NET to flow the original caller credentials to the WCF service.

Application Server

Authentication
• In order to authenticate the original caller in the WCF Service, WCF uses Windows Authentication.

Authorization
• For coarse-grained access control, the WCF Service manages authorization checks at the operation

level, declaratively.
• For fine-grained access control, authorization checks are made programmatically within the

operations.
• The Roles Manager is a good choice for this scenario because it allows your service code to look up

users' roles without writing and maintaining custom code.

Data Access
• To reduce the risk of database credentials theft, the database connection string is configured to use

Windows Authentication. This choice avoids storing credentials in files and passing credentials over
the network to the Database Server.

• The WCF service accesses the database using the WCF process identity. As a result, all calls use the
single process account and designated database connection pooling.

Configuration
• This scenario is optimized around transmission performance at the expense of interoperability with

clients that expect a legacy Web service and the ability to host the service in IIS. For this reason, the
best binding choice is netTcpBinding. By default, netTcpBinding supports Windows Authentication
with Transport Security.

• Because IIS 6.0 does not support netTcpBinding, the WCF service is hosted in a Windows service.
• In order to reduce attack surface and minimize the impact of a compromise, the Windows service

runs under the security context of the Service account using a least-privileged account.
• A metadata exchange (mex) endpoint is exposed to make it possible for the client to generate a

proxy based on the service definition.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 148

Database Server
• SQL Server database user roles are preferred to SQL Server application roles to avoid the associated

password management and connection pooling issues associated with the use of SQL application
roles. Applications activate SQL application roles by calling a built-in stored procedure with a role
name and a password. Therefore, you must securely store the password. You must also disable
database connection pooling when you use SQL application roles, which severely impacts
application scalability.

• Creating a new user-defined database role and adding the database user to the role lets you give
specific minimum permissions to the role. In this way, if the database account changes you don't
have to change the permissions on all database objects.

Communication Security
• SSL protects sensitive data on the wire between the browser and Web Server.
• Transport Security protects sensitive data between the Web Server and App Server.
• You can use IPSec or SSL between the App Server and Database Server to protect sensitive data on

the wire.

Example

Domain Controller

Configuration
Create a service principle name (SPN) based on these rules:

1. If the ASP.NET application runs in an application pool with a custom domain identity, create an SPN

and map the custom domain identity with the HTTP service class and both the DNS machine name
and the NETBIOS machine name:

setspn -a HTTP//WebServer.domain.com customDomainAccount
setspn -a HTTP//WebServer customDomainAccount

2. If the service runs under a custom domain identity:

setspn -a ServiceNameofWcfService//WebServer.domain.com
customDomainAccount
setspn -a ServiceNameofWcfService//WebServer customDomainAccount

3. If the service runs under the network service account:

setspn -a ServiceNameofWcfService//WebServer.domain.com computerName
setspn -a ServiceNameofWcfService//WebServer computerName

Note: You should specify the service name as it is displayed in the MMC services console.

4. Additionally:

• The machine account of the Web application is configured trusted for delegation if the ASP.NET
application runs under the network service account.

• The domain account is configured trusted for delegation if the ASP.NET application runs under a
custom domain identity.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 149

Web Server

Code
• Role-authorization occurs before WCF service invocation.
• ASP.NET impersonates the original caller if it is authorized.

using System.Security.Principal;
…
protected void Button1_Click(object sender, EventArgs e)
{
 if (Roles.IsUserInRole(@"npscode\Business Represenatatives"))
 {
 using (((WindowsIdentity)HttpContext.Current.User.Identity).Impersonate())
 {
 WCFTestService.MyServiceClient proxy
 = new WCFTestService.MyServiceClient();
 proxy.GetData("data");
 proxy.Close();
 } //end using
 } //end if
 } //end function

Web.config Configuration
• Windows Authentication is enabled.
• URL authorization check is enabled.
• Role Manager is enabled.

<system.web>
 <assemblies>
 <add assembly="System.Core, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=B77A5C561934E089"/>
 <add assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31BF3856AD364E35"/>
 <add assembly="System.Data.DataSetExtensions, Version=3.5.0.0,
Culture=neutral, PublicKeyToken=B77A5C561934E089"/>
 <add assembly="System.Xml.Linq, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=B77A5C561934E089"/>
 </assemblies>

 <authentication mode="Windows" />
 <authorization>
 <allow roles="npscode\BusinessDivision" />
 <deny users="*" />
 </authorization>

 <roleManager enabled="true"
 defaultProvider= "AspNetWindowsTokenRoleProvider"/>
 <pages>
 <controls>
 <add tagPrefix="asp" namespace="System.Web.UI"

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 150

 assembly="System.Web.Extensions, Version=3.5.0.0,
Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>
 <add tagPrefix="asp" namespace="System.Web.UI.WebControls"
 assembly="System.Web.Extensions, Version=3.5.0.0,
Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>
 </controls>
 </pages>

 <httpHandlers>
 <remove verb="*" path="*.asmx"/>

 <add verb="*" path="*.asmx" validate="false"
type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>

 <add verb="*" path="*_AppService.axd" validate="false"
type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>

 <add verb="GET,HEAD" path="ScriptResource.axd"
type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"
validate="false"/>
 </httpHandlers>

 <httpModules>
 <add name="ScriptModule" type="System.Web.Handlers.ScriptModule,
System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31BF3856AD364E35"/>
 </httpModules>

</system.web>

Application Server

Code
• The service performs imperative authorization checks calling Roles.IsUserInRole.
• The service calls SQL using the security context of the WCF service and Windows Authentication.

using System.Data.SqlClient;
using System.Web.Security;

public string GetData(string myValue)
{
 if(Roles.IsUserInRole(@"npscode\Accounting"))
 {

 SqlConnection sqlcon = new
SqlConnection("Server=SQLserver;Database=Northwind;IntegratedSecurity=SSPI");

 sqlcon.Open();
 //do the business operation
 return "Authorization succeeded ";
 }
 else return "authorization failure";

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 151

}

Configuration
• The service has a binding endpoint that uses netTcpbinding with the default settings.
• The service has a mex endpoint to publish metadata.
• The service has a base address configured.
• The service configuration file has an entry for the AspNetWindowsTokenRoleProvider under

system.web.
• The service behavior is configured with element serviceAuthorization to allow

WindowsTokenRoleProvider as authorization provider.
• The service behavior is configured with element serviceMedata to allow metadata to be published.

<system.web>
 <roleManager enabled="true"
 defaultProvider="AspNetWindowsTokenRoleProvider" />
</system.web>

<system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior name="BehaviorConfiguration">
 <serviceAuthorization
 principalPermissionMode="UseAspNetRoles"
 roleProviderName="AspNetWindowsTokenRoleProvider" />
 <serviceMetadata />
 </behavior>
 </serviceBehaviors>
 </behaviors>

 <bindings />

 <services>
 <service
 behaviorConfiguration="BehaviorConfiguration"
 name="WCFServicecHost.MyService">
 <endpoint address="Mex"
 binding="mexTcpBinding"
 bindingConfiguration=""
 name="MexEndpoint"
 contract="IMetadataExchange" />

 <endpoint address=""
 binding="netTcpBinding"
 bindingConfiguration=""
 name="TcpBinding"
 contract="WCFServicecHost.IMyService" />
 <host>
 <baseAddresses>
 <add baseAddress=
 "net.tcp://perfpres02.npscode.com/MyService" />
 </baseAddresses>
 </host>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 152

 </service>
 </services>
</system.serviceModel>

Database Server

Configuration
• A SQL Server login is created for the WCF service account.
• The WCF login name is given access to the database.
• The role is created in the database.
• The WCF login name is added to the role.

-- Create a SQL Server login that matches the WCF machine name
EXEC SP_GRANTLOGIN 'npscode\perfpres02$'

-- Grant the login access to the application database
use testdb
go
exec sp_grantdbaccess 'npscode\perfpres02$'

-- Create the new database role
use testdb
go
exec sp_addrole 'myrole2','db_owner'

-- Add the new login to the role
use testdb
go
exec sp_addrolemember 'myrole2','npscode\aspnethost'

Additional Resources
• For more information on impersonation, see “Delegation and Impersonation with WCF” at

http://msdn2.microsoft.com/en-us/library/ms731090.aspx.
• For further information on impersonation, see “How to: Impersonate a Client on a Service”

at http://msdn2.microsoft.com/en-us/library/ms730088.aspx.
• For more information on constrained delegation, see “How To: Use Protocol Transition and

Constrained Delegation in ASP.NET 2.0” at http://msdn2.microsoft.com/en-
us/library/ms998355.aspx

• For more information on how to impersonate original caller from Web application, see How
To: Impersonate the Original Caller in WCF Calling from a Web Application

• For more information on how to impersonate original caller from Windows forms
application , see How To: Impersonate the Original Caller in WCF calling from Windows
Forms

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 153

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 154

Chapter 10 - Intranet – Web to Remote WCF Using Transport
Security (Trusted Subsystem, HTTP)

Applies To
• Microsoft® Windows Communication Foundation (WCF) 3.5

Scenario
In this scenario, your users have Windows accounts and use a Web client to connect over the
intranet to an ASP.NET application on an IIS server. The ASP.NET application makes calls to the
WCF Service over HTTP. The business logic called by the WCF Service is backed by a SQL Server
data store. The ASP.NET application, the WCF Service and the SQL Server data store are all part
of a trusted subsystem. The basic model for this application scenario is shown in the following
figure.

ASP.NET

Client Database Server

IIS SQL
Server

Application Server

WCF
Service

Figure 1. Web to Remote WCF Using Transport Security (Trusted Subsystem, HTTP) – Model

Key Characteristics
This scenario applies to you if:

• Your users have browsers supporting Integrated Windows Authentication.
• Your user accounts are in Active Directory within a domain.
• Your user roles are Windows Groups.
• Your users are accessing the web client from within the domain.
• The business logic behind your WCF Service does not require fine-grained authorization.
• Your ASP.NET application and WCF Service transmit sensitive data over the network that

needs to be protected.
• The ability to host the WCF Service in IIS is more important than a high performance

connection between the ASP.NET application and the WCF Service.
• Support for interoperability with non WCF clients is more important than a high

performance connection between the ASP.NET application and the WCF Service.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 155

Solution

ASP.NETIIS

SQL
Server

Alice

Bob

Mary

TLS/SSL
(Optional)

(Privacy/
Integrity)

Integrated Windows
Authentication

(Kerberos)

Web Server

Database Server

Service
Account

WCF
(Web Service)IIS

Application Server

Windows
Authentication

Integrated
Windows

Authentication

WCF
Identity

Transport
(Privacy/
Integrity)

IPSec
(Optional)

(Privacy/
Integrity)

Alice

Bob

Mary Windows
Authentication

Windows
Authentication

WCF Proxy

wsHttpBinding

 Figure 2. Web to Remote WCF Using Transport Security (Trusted Subsystem, HTTP) – Solution

Solution Summary Table
In this solution you will:

• Use domain credentials to authenticate clients against an Active Directory user store.
• Use a service account to call WCF from the ASP.NET application. The WCF Service uses

Windows Authentication.
• Use a service account to call the SQL Server from WCF. The SQL Server uses Windows

Authentication.
• Use SSL to protect sensitive data between the Web client and IIS.
• Use Transport security to protect sensitive data between the ASP.NET application and

the WCF Service.
• Optionally, use IPSec to protect sensitive data between the WCF Service and SQL Server.
• Use wsHttpBinding to provide support for interoperability and allow the service to be

hosted in IIS.
• Host WCF in IIS.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 156

Web Server
Checks Example
IIS - Configuration
A dedicated application pool is used and
configured to run under a custom service
account.

Use a domain account if possible.

The Web application is configured to run
under the service account.

Assign the Web application to the custom
application pool.

Service Principal Name is created if the
service account used in the ASP.NET
application pool is a custom domain
identity.

Create an SPN for both the DNS and
NETBIOS machine name.

setspn -a HTTP//WebServer.domain.com
customDomainAccount
setspn -a HTTP//WebServer
customDomainAccount

IIS - Authentication

The IIS virtual directory is configured to
use Windows Integrated Authentication.

Users will be authenticated with
Windows authentication.

Anonymous access is disabled.

ASP.NET - Authentication
ASP.NET is configured for Windows
Integrated Authentication.

The Web application will authenticate the
users.

<authentication mode = "Windows" >

ASP.NET - Authorization
If you have roles in your application, then
use URL authorization.

Use the <location> attribute to configure
authorization settings for specific folders.
Authorized users have access to specific
folders and pages.

<authorization>
<allow roles="domainName\RoleName" />
<deny users="*" />
</authorization>

Role Manager is enabled and Role-checks
are performed using Role Manager API.

Original users are authorized using the
Windows groups before calling in WCF

<roleManager enabled="true"
 defaultProvider=
"AspNetWindowsTokenRoleProvider"/>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 157

Checks Example
Service.
WCF Proxy - Configuration

ASP.NET has a proxy reference to the
WCF Service.

The application has access to the WCF
metadata to create a service reference.

WCFTestService.MyServiceClient proxy
 = new WCFTestService.MyServiceClient();

Proxy invokes services with the security
context of the ASP.NET process identity.

The proxy will automatically invoke WCF
operations using the security context of
the service account.

proxy.GetData("data");
proxy.Close();

The Root Ca of the certificate is installed
in the Trusted Root Certification
Authorities store of the user machine,
either in Local Machine or Local User.

You need to install the root ca because
transport security performs trust chain
validation. If the certificate comes from a
known issuer, such as Verisign, this is
unnecessary.

WCF Proxy - Caller Identity
For auditing purposes, the identity of the
caller can be passed in custom message
headers.

Use transport security to protect against
spoofing attacks.

using (OperationContextScope scope = new
OperationContextScope(proxy.InnerChannel))
{
 string identity =
((WindowsIdentity)HttpContext.Current.User.
Identity).Name;

 MessageHeader<string> headerIdentity
 = new MessageHeader<string>(identity);

 MessageHeader untypedMessageHeader
 =
headerIdentity.GetUntypedHeader("identity",
"ns");

OperationContext.Current.OutgoingMessageHea
ders.Add(untypedMessageHeader);
 TextBox1.Text = proxy.GetData("data");
}

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 158

Application Server
Checks & More Info Example
IIS - Configuration
A dedicated application pool is used and configured to
run under a custom service account.

Use a domain account if possible.

The WCF Service is configured to run under the service
account.

Assign the WCF Service to the custom application pool.

Service Principal Name is created if the service account
used in the ASP.NET application pool of WCF Service is a
custom domain identity.

Create an SPN for both the DNS and NETBIOS machine
name.

setspn -a
HTTP//WCFServer.domain.com
customDomainAccount
setspn -a HTTP//WCFServer
customDomainAccount

Certificate is installed in personal store of LocalMachine.

The certificate needs to match the DNS or netbios
machine name of the application server.

Certificate is configured in the Web site of the
application.

Certificate is configured in the Web site for transport
security using SSL.

The virtual directory is configured to use SSL.

SSL is configurable per virtual directory bases.

The Root CA of the certificate is installed in the Trusted
Root Certification Authorities store of the application
machine either in Local Machine or Local User.

You need to install the Root CA because transport
security performs trust chain validation. If the certificate
comes from a known issuer, such as Verisign, this is
unnecessary.

IIS - Authentication
The IIS virtual directory is configured to use Anonymous
access.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 159

Checks & More Info Example
WCF Service - Configuration
Configure the WCF Service with wsHttpbinding.

The wsHttpBinding uses the http protocol
and provides full support for SOAP security,
transactions, reliability and interoperability.

<wsHttpBinding>
 <binding
name="httpsendpointconfig">
 <security mode="Transport">
 <transport
clientCredentialType="Windows" />
 </security>
 </binding>
</wsHttpBinding>

Service Metadata is configured in service
behavior.
httpGetEnabled is disabled and httpsGetEnabled
is enabled.

This is required so that client can add
reference to the WCF Service using SvcUtil
utility.

<serviceBehaviors>
 <behavior
name="behaviorConfiguration">
 <serviceMetadata
httpsGetEnabled="true" />
 </behavior>
</serviceBehaviors>

WCF Service -Authentication
The wsHttpBinding is configured to use Windows
Authentication and transport security.

wsHttpBinding by default supports Windows
Authentication.

<security mode="Transport">
<transport
clientCredentialType="Windows" />

WCF Service - Caller Identity
Service retrieves the identity of the caller
from the operationcontext
for auditing purposes.

Use the identity to improve logging and
auditing.

string identity =
OperationContext.Current.IncomingMess
ageHeaders.GetHeader<string>("identit
y", "ns");

WCF Service - SQL
The connection string for database is
configured to use Windows Authentication.

The database connection string includes
Integrated Security=SSPI or Trusted
Connection=Yes.

SqlConnection sqlcon = new
SqlConnection("Server=10.3.19.11;Data
base=Northwind;IntegratedSecurity=SSP
I");

Database connection is opened using the
WCF process identity’s security context.

Service does not impersonate the original
caller so SQL Server benefits from connection
pooling.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 160

Database Server
Check & More Info Example
WCF Service - Configuration
A SQL Server login is created for
the WCF’s service account
(process identity).

This grants access to the SQL
Server.

exec sp_grantlogin 'Custom Service Account'

The login is mapped to a
database user for the Web
application.

This grants access to the specified
database.

use targetDatabase
go
exec sp_grantdbaccess ' Custom Service Account'
go

A database role is created in the
target database.

This allows access control and
authorization to the DB.

use targetDatabase
go
exec sp_addrole 'DB Role Name'
go

The login is added to the
database role.

Grant minimum permissions. For
example, grant execute
permissions to selected stored
procedures and provide no direct
table access.

use targetDatabase
go
exec sp_addrolemember 'DB Role Name', 'Custom
Service Account'
go

WCF Service - Authentication
SQL Server is configured to use
Windows authentication.

Communication Security
What Check
Browser to Web Server SSL is used between browser and Web server to protect sensitive data

on the wire.

Install certificate in the Website. Configure the virtual directory of the
Web application to use SSL.

App Server to Database You can use IPSec or SSL between App server and database server to
protect sensitive data on the wire.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 161

Analysis

Web Server

Authentication
• To prevent unauthenticated and unauthorized users from accessing pages, anonymous

access is disabled in IIS.
• Integrated Windows authentication is a good choice for this scenario because all users

have Windows accounts. One benefit of integrated Windows authentication is
preventing the user's password from ever being sent over the network. Additionally, the
logon is transparent for the user because Windows uses the current user's logon
session.

Authorization
• URL authorization is used to perform role checks against the original caller, and to

restrict access to pages or folders based on role permissions.
• All authorization checks are performed in the Web application before calls are made to

the WCF Service. The WCF Service trusts the Web application to perform this
authorization and does not need to make fine-grained authorization decisions of its
own.

• The Roles Manager is a good choice for this scenario because it allows your ASP.NET
code to look up users' roles without writing and maintaining custom code.

WCF Proxy
• Because all authentication and authorization is handled in the ASP.NET application, calls

into the WCF Service use the ASP.NET process identity’s security context. You don’t
need to flow the original caller into the WCF Service.

• If you need to produce audit logs showing what service operations were called by each
user, you can pass the identity of the original caller in a custom header.

Configuration
• In order to reduce attack surface and minimize the impact of a compromise, the

ASP.NET application on the Web Server runs under the security context of a Service
account using least privilages.

• Because HTTPS trusts chain validation, the root certificate authority that issued the
certificate for WCF transport security needs to be installed in the trusted root
certification authorities store of the local machine in the application server. In a
production environment, this is not necessary as the certificate will be issued by a
known issuer such as Verisign.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 162

Application Server

Authentication
• In order to authenticate the ASP.NET service when it makes calls on the WCF Service,

WCF is configured to use Windows authentication.

Authorization
• Since the WCF Service trusts the ASP.NET application to authorize the user, the WCF

Service performs no authorization.

Data Access
• To reduce the risk of database credentials theft, the database connection string is

configured to use Windows authentication. This choice avoids storing credentials in files
and passing credentials over the network to the database server.

• The WCF Service accesses the database using the WCF process identity. As a result, all
calls use the single process account and designated database connection pooling.

Configuration
• This scenario is optimized around interoperability and the ability to host the service in

IIS at the expense of transmission performance. For this reason the best binding choice
is wsHttpBinding. By default wsHttpBinding supports Windows authentication with
message security.

• Since wsHttpBinding is supported by IIS 6.0, the WCF Service is hosted in IIS.
• In order to reduce attack surface and minimize the impact of a compromise, the WCF

Service is running under the security context of a Service account using least privileges.
• A metadata exchange (mex) endpoint is exposed with mexHttpsBinding to make it

possible for the client to generate a proxy based on the service definition.
• Because HTTPS trusts chain validation, the root certificate authority that issued the

certificate for WCF transport security needs to be installed in the trusted root
certification authorities store of the local machine in the application server. In a
production environment, this is not necessary as the certificate will be issued by a
known issuer such as Verisign.

Database Server
SQL Server database user roles are preferred to SQL Server application roles to avoid the
various password management and connection pooling issues associated with the use of SQL
application roles. Applications activate SQL application roles by calling a built-in stored
procedure with a role name and a password. Therefore, the password must be stored securely.
Moreover, using SQL application roles forces you to disable database connection pooling, which
severely impacts application scalability.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 163

Creating a new user-defined database role and adding the database user to the role allows you
to give specific minimum permissions to the role. In this way, if the database account changes
you don't have to change the permissions on all database objects.

Communication Security
• Use SSL between the browser and Web Server to protect sensitive data on the wire.
• Use Transport security to protect sensitive data between the Web Server and App

Server.
• You can use IPSec or SSL between the App Server and Database Server to protect

sensitive data on the wire.

Example

Domain Controller

Configuration
A Service Principle Name (SPN) is created based on these rules:

• If the ASP.NET application runs in an application pool with a custom domain identity, create

an SPN, and map the custom domain identity with the HTTP service class and both the DNS
machine name and the NETBIOS machine name:
setspn -a HTTP//WebServer.domain.com customDomainAccount
setspn -a HTTP//WebServer customDomainAccount

• If the WCF application runs in an application pool with a custom domain identity, create an

SPN and map the custom domain identity with the HTTP service class and both the DNS
machine name and the NETBIOS machine name:
setspn -a HTTP//WCFServer.domain.com customDomainAccount
setspn -a HTTP//WCFServer customDomainAccount

Web Server

Code
• Role-authorization occurs before WCF Service invocation.
• Identity of the original caller is retrieved from the HttpContext.
• Message Header containing the caller identity is created and passed to the operation

context for auditing purposes.

using System.Security.Principal;
using System.ServiceModel;
using System.ServiceModel.Channels;
…

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 164

protected void Button1_Click(object sender, EventArgs e)
{
 if (Roles.IsUserInRole(@"npscode\Accounting"))
 {
 WCFTestclient.MyServiceClient proxy =
 new WCFTestclient.MyServiceClient();

 using (OperationContextScope scope =
 new OperationContextScope(proxy.InnerChannel))
 {
 string identity =
 ((WindowsIdentity)HttpContext.Current.User.Identity).Name;
 MessageHeader<string> headerIdentity =
 new MessageHeader<string>(identity);
 MessageHeader untypedMessageHeader =
 headerIdentity.GetUntypedHeader("identity", "ns");

OperationContext.Current.OutgoingMessageHeaders.Add(untypedMessageHeader);
 proxy.GetData("data");
 }

 proxy.Close();
 }
}

Configuration
• Windows authentication is enabled.
• URL authorization role check is enabled.
• Role Manager is enabled.

<system.web>
 <assemblies>
 <add assembly="System.Core, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=B77A5C561934E089"/>
 <add assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31BF3856AD364E35"/>
 <add assembly="System.Data.DataSetExtensions, Version=3.5.0.0,
Culture=neutral, PublicKeyToken=B77A5C561934E089"/>
 <add assembly="System.Xml.Linq, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=B77A5C561934E089"/>
 </assemblies>

 <authentication mode="Windows" />
 <authorization>
 <allow roles="npscode\BusinessDivision" />
 <deny users="*" />
 </authorization>

 <roleManager enabled="true"
 defaultProvider= "AspNetWindowsTokenRoleProvider"/>

 <pages>
 <controls>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 165

 <add tagPrefix="asp" namespace="System.Web.UI"
 assembly="System.Web.Extensions, Version=3.5.0.0,
Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>

 <add tagPrefix="asp" namespace="System.Web.UI.WebControls"
 assembly="System.Web.Extensions, Version=3.5.0.0,
Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>

 </controls>
 </pages>

 <httpHandlers>
 <remove verb="*" path="*.asmx"/>
 <add verb="*" path="*.asmx" validate="false"
 type="System.Web.Script.Services.ScriptHandlerFactory,
System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31BF3856AD364E35"/>

 <add verb="*" path="*_AppService.axd" validate="false"
 type="System.Web.Script.Services.ScriptHandlerFactory,
System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31BF3856AD364E35"/>

 <add verb="GET,HEAD" path="ScriptResource.axd"
type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"
validate="false"/>

 </httpHandlers>

 <httpModules>
 <add name="ScriptModule"
 type="System.Web.Handlers.ScriptModule, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>
 </httpModules>

</system.web>

Application Server

Code
• The service retrieves the identity of the caller from the operation context if it is required for

auditing purposes.
• The service calls SQL using the security context of the WCF Service.

using System.Data.SqlClient;
public string GetData(string myValue)
{
 SqlConnection sqlcon = new
 SqlConnection("Server=SqlServer;Database=testdb;Integrated Security=SSPI");

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 166

 sqlcon.Open();

 //do the business operation

 string identity =
OperationContext.Current.IncomingMessageHeaders.GetHeader<string>("identity",
"ns");

 return “some data” ;
}

Configuration
• The service has a binding endpoint that uses wsHttpbinding with a binding configuration to

use Windows authentication and transport security.
• The service has a service behavior configuration to publish metadata.
• The service behavior is configured with element serviceMedata to allow metadata

exposure.

<system.serviceModel>
 <bindings>
 <wsHttpBinding>
 <binding name="httpsendpointconfig">
 <security mode="Transport">
 <transport clientCredentialType="Windows" />
 </security>
 </binding>
 </wsHttpBinding>
 </bindings>

 <client/>
 <services>
 <service behaviorConfiguration="behaviorConfiguration"
 name="MyService">

 <endpoint binding="wsHttpBinding"
 bindingConfiguration="httpsendpointconfig"
 name="httpsendpoint"
 contract="IMyService2"/>
 </service>
 </services>

 <behaviors>
 <serviceBehaviors>
 <behavior name="behaviorConfiguration">
 <serviceMetadata httpsGetEnabled="true" />
 </behavior>
 </serviceBehaviors>
 </behaviors>

</system.serviceModel>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 167

Database Server

Configuration
• A SQL server login is created for the WCF Service account.
• The WCF login name is given access to the database.
• The role is created in the database.
• The WCF login name is added to the role.

-- Create a SQL Server login that matches the WCF machine name
EXEC SP_GRANTLOGIN 'npscode\perfpres02$'

-- Grant the login access to the application database
use testdb
go
exec sp_grantdbaccess 'npscode\perfpres02$'

-- Create the new database role
use testdb
go
exec sp_addrole 'myrole2','db_owner'

-- Add the new login to the role
use testdb
go
exec sp_addrolemember 'myrole2','npscode\aspnethost'

Additional Resources
• For more information on WCF Transport Layer Security using wsHttpBinding and SSL, see How To:

Use wsHttpBinding with Windows Authentication and Transport Security in WCF Calling
from Windows Forms

• For more information on how to work with temporary certificates, see “How to: Create Temporary
Certificates for Use During Development” at http://msdn2.microsoft.com/en-
us/library/ms733813.aspx

• For more information on how to view certificates by using the Microsoft Management Console
(MMC) snap in, see “How to: View Certificates with the MMC Snap-in” at
http://msdn2.microsoft.com/en-us/library/ms788967.aspx

• For more information on differences in certificate validation between Microsoft Internet Explorer
and WCF, see “Differences Between Service Certificate Validation Done by Internet Explorer and
WCF” at http://msdn2.microsoft.com/en-us/library/aa702599.aspx

• For more information on differences in certificate validation between protocols, see “Certificate
Validation Differences Between HTTPS, SSL over TCP, and SOAP Security” at
http://msdn2.microsoft.com/en-us/library/aa702579.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 168

Chapter 11 - Intranet – Web to Remote WCF Using Transport
Security (Trusted Subsystem, TCP)

Applies To
• Microsoft® Windows Communication Foundation (WCF) 3.5

Scenario
In this scenario, your users have Windows accounts and use a Web client to connect over the
intranet to an ASP.NET application on an IIS server. The ASP.NET application makes calls to the
WCF Service over TCP. The business logic called by the WCF Service is backed by a SQL Server
data store. The ASP.NET application, the WCF Service and the SQL Server data store are all part
of a trusted subsystem. The basic model for this application scenario is shown in the following
figure.

ASP.NET

Client Database Server

IIS SQL
Server

Application Server

WCF
Service

Figure 1. Web to Remote WCF Using Transport Security (Trusted Subsystem, TCP) – Model

Key Characteristics
This scenario applies to you if:
• Your users have browsers supporting Integrated Windows Authentication.
• Your user accounts are in Active Directory within a domain.
• Your user roles are Windows Groups.
• Your users are accessing the web client from within the domain
• The business logic behind your WCF Service does not require fine-grained authorization.
• Your ASP.NET application and WCF Service transmit sensitive data over the network that

needs to be protected.
• A high-performance connection between the ASP.NET application and the WCF Service is

more important than the ability to host the WCF Service in IIS.
• A high performance connection between the ASP.NET application and the WCF Service is

more important than to provide interoperability support for non WCF clients.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 169

Solution

ASP.NETIIS

SQL
Server

Alice

Bob

Mary

TLS/SSL
(Privacy/
Integrity)

Integrated Windows
Authentication

Web Server

Database Server

WCF
(Windows
 Service
Hosted)

Application Server

Windows
Authentication

WCF
Identity

 Transport
Security
(Privacy/
Integrity)

IPSec
(Optional)

(Privacy/
Integrity)

Alice

Bob

Mary Windows
Authentication

Windows
Authentication/

Windows Groups

ASP.NET
Identity

WCF Proxy

netTCPBinding

Figure 2. Web to Remote WCF Using Transport Security (Trusted Subsystem, TCP) – Solution

Solution Summary Table
In this solution you will:
• Use domain credentials to authenticate clients against an Active Directory user store.
• Use a service account to call WCF from the ASP.NET application. The WCF Service uses

Windows Authentication.
• Use a service account to call the SQL Server from WCF. The SQL Server uses Windows

Authentication.
• Use SSL to protect sensitive data between the Web client and IIS.
• Use Transport security to protect sensitive data between the ASP.NET application and the

WCF Service.
• Optionally, use IPSec to protect sensitive data between the WCF Service and SQL Server.
• Use netTcpBinding to support the TCP transport for improved performance.
• Host WCF in a Windows Service since IIS 6.0 does not support the TCP transport.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 170

Web Server
Checks & More Info Example
IIS - Configuration
A dedicated application pool is used and
configured to run under a custom
service account.

Use a domain account if possible.

The Web application is configured to run
under the service account.

Assign the Web application to the
custom application pool.

A Service Principal Name is created if the
service account used in the ASP.NET
application pool is a custom domain
account.

Create an SPN for both the DNS and
NETBIOS machine name.

setspn -a HTTP//WebServer.domain.com
customDomainAccount
setspn -a HTTP//WebServer customDomainAccount

IIS - Authentication
The IIS virtual directory is configured to
use Windows Integrated Authentication.

Users will be authenticated with
Windows authentication.

Anonymous access is disabled.

Checks & More Info Example
ASP.NET - Authentication
ASP.NET is configured for Windows
Integrated Authentication.

The Web application will authenticate
the users.

<authentication mode = "Windows" >

ASP.NET - Authorization
If you have roles in your application, use
URL authorization.

Use the <location> attribute to configure
authorization settings for specific
folders. The authorized users have
access to specific foders and pages.

<authorization>
 <allow roles="domainName\RoleName" />
 <deny users="*" />
</authorization>

Role manager is enabled and Role-
checks are performed using a role
manager API.

<roleManager enabled="true"
 defaultProvider=
 "AspNetWindowsTokenRoleProvider"/>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 171

Checks & More Info Example
Original users are authorized using the
Windows groups before calling in WCF
Service.

Checks & More Info Example
WCF Proxy - Configuration
ASP.NET has a proxy reference to the
WCF Service.
The application has access to the WCF
metadata to create a service reference.

WCFTestService.MyServiceClient proxy
= new WCFTestService.MyServiceClient();

Proxy invokes services with the security
context of the ASP.NET process identity.

The proxy will automatically invoke WCF
operations using the security context of
the service account.

proxy.GetData("data");
proxy.Close();

The Root Ca of the certificate is installed
in the Trusted Root Certification
Authorities store of the user machine,
either in Local Machine or Local User.

You need to install the root ca because
transport security performs trust chain
validation. If the certificate comes from
a known issuer, such as Verisign, this is
unnecessary.

WCF Proxy - Caller Identity
For auditing purposes, the identity of the
caller can be passed in custom message
headers.

Use transport security to protect against
spoofing attacks.

using (OperationContextScope scope = new
OperationContextScope(proxy.InnerChannel))
{
string identity =
((WindowsIdentity)HttpContext.Current.User.Id
entity).Name;

MessageHeader<string> headerIdentity = new
MessageHeader<string>(identity);

MessageHeader untypedMessageHeader =
headerIdentity.GetUntypedHeader("identity",
"ns");

OperationContext.Current.OutgoingMessageHeade
rs.Add(untypedMessageHeader);

TextBox1.Text = proxy.GetData("data");
}

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 172

Application Server
Checks & More Info Example
Windows Service -
Configuration

Windows Service is configured to
run under a custom domain
service account.

Use a domain account if possible.

WCF Service is hosted in
Windows Service.

Since IIS does not support
netTcpBinding, host in Windows
Service.

WCF Service - Configuration

Configure the WCF Service to use
netTcpBinding.

The NetTcpBinding uses the TCP
protocol and provides full
support for SOAP security,
transactions, and reliability. As
client and WCF Service both are
in the intranet, this is a good
choice from a performance
perspective.

<service
behaviorConfiguration="BehaviorConfiguration"
name="WCFServicecHost.MyService">
 <endpoint address="" binding="netTcpBinding"
bindingConfiguration=""
 name="TcpBinding"
contract="WCFServicecHost.IMyService" />
 <host>
 <baseAddresses>
 <add
baseAddress="net.tcp://WCFApp01.npscode.com/MyServ
ice" />
 </baseAddresses>
 </host>
 </service>

A mex endpoint is created for
publishing the metadata.

This is required so that client can
add a reference to the WCF
Service using SvcUtil utility.

<services>
<service
behaviorConfiguration="BehaviorConfiguration"
name="WCFServicecHost.MyService">
<endpoint address="Mex" binding="mexTcpBinding"
bindingConfiguration=""
name="MexEndpoint" contract="IMetadataExchange" />
</service>

Service Metadata is configured in
service behavior.

The service metadata entry is
required for the Windows Service
host to start. The HTTP and
HTTPS get are disabled.

<behaviors>
 <serviceBehaviors>
 <behavior name="BehaviorConfiguration">
 <serviceMetadata />
 </behavior>
 </serviceBehaviors>
</behaviors>

WCF Service - Authentication

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 173

Checks & More Info Example
The netTcpBinding is configured
to use Windows Authentication
and Transport Security.

netTcpBinding by default
supports Windows
Authentication and Transport
Security.

<endpoint address="" binding="netTcpBinding"
bindingConfiguration="" />

WCF Service - Caller Identity

Service retrieves the identity of
the caller from the
operationcontext
for auditing purposes.

Use the identity to improve
logging and auditing.

string identity =
OperationContext.Current.IncomingMessageHeaders.Ge
tHeader<string>("identity", "ns");

WCF Service - SQL

The connection string for
database is configured to use
Windows Authentication.

The database connection string
includes Integrated Security=SSPI
or Trusted Connection=Yes.

SqlConnection sqlcon = new
SqlConnection("Server=10.3.19.11;Database=Northwin
d;IntegratedSecurity=SSPI");

Database connection is opened
using the WCF process identity’s
security context.

Service does not impersonate the
original caller so SQL Server
benefits from connection pooling.

Database Server
Check & More Info Example
Configuration

A SQL Server login is created
for the WCF’s service account
(process identity).

This grants access to the SQL
Server.

exec sp_grantlogin 'Custom Service Account'

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 174

Check & More Info Example
The login is mapped to a
database user for the Web
application.

This grants access to the specified
database.

use targetDatabase
go
exec sp_grantdbaccess ' Custom Service Account'
go

A database role is created in the
target database.

This allows access control and
authorization to the DB.

use targetDatabase
go
exec sp_addrole 'DB Role Name'
go

The login is added to the
database role.

Grant minimum permissions. For
example, grant execute
permissions to selected stored
procedures and provide no direct
table access.

use targetDatabase
go
exec sp_addrolemember 'DB Role Name', 'Custom
Service Account'
go

Authentication

SQL Server is configured to use
Windows Authentication.

Communication Security

What Check
Browser to Web Server SSL is used between the browser and Web server to protect sensitive data

on the wire.

Install certificate in the Web site. Configure the virtual directory of the Web
application to use SSL.

App Server to Database IPSec or SSL can be used between App server and database server to protect
sensitive data on the wire.

Analysis

Web Server

Authentication
• To prevent unauthenticated and unauthorized users from accessing pages, IIS disables

anonymous access.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 175

• Integrated Windows Authentication is a good choice for this scenario because all users have
Windows accounts. One benefit of Integrated Windows Authentication is preventing the
user's password from ever being sent over the network. Additionally, the logon is
transparent for the user because Windows uses the current user's logon session.

Authorization
• URL authorization performs role checks against the original caller and restricts access to

pages or folders based on role permissions.
• All authorization checks are performed in the Web application before calls are made to the

WCF Service. The WCF Service trusts the Web application to perform this authorization and
does not need to make fine-grained authorization decisions of its own.

• The Roles Manager is a good choice for this scenario because it allows your service code to
look up users' roles without writing and maintaining custom code.

WCF Proxy
• Because you are taking care of all authentication and authorization in the ASP.NET

application, all calls through the WCF proxy and into the WCF Service use the ASP.NET
process identity’s security context. You don’t need to flow the original caller into the WCF
Service.

• If you need to produce audit logs showing what service operations were called by each user,
you can pass the identity of the original caller in a custom header.

Configuration
• In order to reduce attack surface and minimize the impact of a compromise, the ASP.NET

application on the Web Server runs under the security context of a Service account using
least privileges.

Application Server

Authentication
• In order to authenticate the ASP.NET service when it makes calls on the WCF Service, WCF is

configured to use Windows Authentication.

Authorization
• Since the WCF Service trusts the ASP.NET application to authorize the user, the WCF Service

performs no authorization.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 176

Data Access
• To reduce the risk of database credentials theft, the database connection string is

configured to use Windows authentication. This choice avoids storing credentials in files
and passing credentials over the network to the database server.

• The WCF Service accesses the database using the WCF process identity. As a result, all calls
use the single process account and enables database connection pooling.

Configuration
• This scenario is optimized around transmission performance at the expense of

interoperability with clients that expect a legacy Web service and the ability to host the
service in IIS. For this reason, the best binding choice is netTcpBinding. By default,
netTcpBinding supports Windows Authentication with Transport security.

• Because netTcpBinding is not supported by IIS 6.0, the WCF Service is hosted in a Windows
service.

• In order to reduce attack surface and minimize the impact of a compromise, the Windows
Service is running under the security context of a Service account using least privileges.

• A metadata exchange (mex) endpoint is exposed so the client can use svcutil to generate a
proxy based on the service definition.

Database Server
• SQL Server database user roles are preferred to SQL server application roles to avoid the

assorted password management and connection pooling issues associated with the use of
SQL application roles. Applications activate SQL application roles by calling a built-in stored
procedure with a role name and a password. Therefore, the password must be stored
securely. Moreover, using SQL application roles forces you to disable database connection
pooling, which severely impacts application scalability.

• Creating a new user-defined database role and adding the database user to the role lets you
give specific minimum permissions to the role. In this way, if the database account changes
you don't have to change the permissions on all database objects.

Communication Security
• SSL is used between browser and Web server to protect sensitive data on the wire.
• Transport security is used to protect sensitive data between the Web Server and App

Server.
• IPSec or SSL can be used between the App Server and Database Server to protect sensitive

data on the wire.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 177

Example

Domain Controller

Configuration
Create a service principle name (SPN) based on these rules:

1. If the ASP.NET application runs in an application pool with a custom domain identity, create an SPN

and map the custom domain identity with the HTTP service class and both the DNS machine name
and the NETBIOS machine name:

setspn -a HTTP//WebServer.domain.com customDomainAccount
setspn -a HTTP//WebServer customDomainAccount

2. If the service runs under a custom domain identity:

setspn -a ServiceNameofWcfService//WebServer.domain.com
customDomainAccount
setspn -a ServiceNameofWcfService//WebServer customDomainAccount

3. If the service runs under the network service account:

setspn -a ServiceNameofWcfService//WebServer.domain.com computerName
setspn -a ServiceNameofWcfService//WebServer computerName

Note: You should specify the service name as it is displayed in the MMC services console.

Web Server

Code
• Role-authorization occurs before WCF Service invocation.
• ASP.NET calls WCF Service if it is authorized.
• Identity of the original caller is retrieved from the HttpContext.
• Message Header containing the caller identity is created and passed to the operation

context for auditing purposes.

using System.Security.Principal;
using System.ServiceModel;
using System.ServiceModel.Channels;
…
protected void Button1_Click(object sender, EventArgs e)
{
 if (Roles.IsUserInRole(@"npscode\Accounting"))
 {
 WCFTestclient.MyServiceClient proxy
 = new WCFTestclient.MyServiceClient();
 using (OperationContextScope scope
 = new OperationContextScope(proxy.InnerChannel))
 {
 string identity
 = ((WindowsIdentity)HttpContext.Current.User.Identity).Name;

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 178

 MessageHeader<string> headerIdentity
 = new MessageHeader<string>(identity);
 MessageHeader untypedMessageHeader
 = headerIdentity.GetUntypedHeader("identity", "ns");

 OperationContext.Current.OutgoingMessageHeaders.Add(untypedMessageHeader);
 proxy.GetData("data");
 }
 proxy.Close();

 } // endif
}

Configuration
• Windows authentication is enabled.
• URL authorization role-check is enabled.
• Role Manager is enabled.

<system.web>
 <assemblies>

 <add assembly="System.Core, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=B77A5C561934E089"/>
 <add assembly="System.Web.Extensions, Version=3.5.0.0,
Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>
 <add assembly="System.Data.DataSetExtensions, Version=3.5.0.0,
Culture=neutral, PublicKeyToken=B77A5C561934E089"/>
 <add assembly="System.Xml.Linq, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=B77A5C561934E089"/>

 </assemblies>

 <authentication mode="Windows" />

 <authorization>
 <allow roles="npscode\BusinessDivision" />
 <deny users="*" />
 </authorization>

 <roleManager enabled="true"
 defaultProvider= "AspNetWindowsTokenRoleProvider"/>
 <pages>
 <controls>
 <add tagPrefix="asp"
 namespace="System.Web.UI"
 assembly="System.Web.Extensions, Version=3.5.0.0,
Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>

 <add tagPrefix="asp"
 namespace="System.Web.UI.WebControls"
 assembly="System.Web.Extensions, Version=3.5.0.0,
Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>
 </controls>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 179

 </pages>

 <httpHandlers>
 <remove verb="*" path="*.asmx"/>

 <add verb="*"
 path="*.asmx"
 validate="false"
 type="System.Web.Script.Services.ScriptHandlerFactory,
System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31BF3856AD364E35"/>

 <add verb="*"
 path="*_AppService.axd"
 validate="false"
 type="System.Web.Script.Services.ScriptHandlerFactory,
System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31BF3856AD364E35"/>

 <add verb="GET,HEAD"
 path="ScriptResource.axd"
 type="System.Web.Handlers.ScriptResourceHandler,
System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31BF3856AD364E35" validate="false"/>

 </httpHandlers>

 <httpModules>
 <add name="ScriptModule"
 type="System.Web.Handlers.ScriptModule,
System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31BF3856AD364E35"/>
 </httpModules>

</system.web>

Application Server

Code
• The service retrieves the identity of the caller from the operation context if it is required for

auditing purposes.
• The service calls SQL using the security context of the WCF Service.

using System.Data.SqlClient;

public string GetData(string myValue)
{
 SqlConnection sqlcon
 = new SqlConnection("Server=SqlServer;Database=testdb;Integrated
Security=SSPI");

 sqlcon.Open();

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 180

 //do the business operation

 string identity =
OperationContext.Current.IncomingMessageHeaders.GetHeader<string>("identit
y", "ns");

 return “some data” ;
}

Configuration
• The service has a binding endpoint that uses netTcpbinding with the default settings.
• The service has a service behavior configuration to publish metadata.
• The service has a base address configured.
• The service behavior is configured with element serviceMedata to allow metadata

exposure.

 <system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior name="BehaviorConfiguration">
 <serviceMetadata />
 </behavior>
 </serviceBehaviors>
 </behaviors>

 <bindings />

 <services>
 <service behaviorConfiguration="BehaviorConfiguration"
 name="WCFServicecHost.MyService">
 <endpoint address="Mex"
 binding="mexTcpBinding"
 bindingConfiguration=""
 name="MexEndpoint"
 contract="IMetadataExchange" />

 <endpoint address=""
 binding="netTcpBinding"
 bindingConfiguration=""
 name="TcpBinding"
 contract="WCFServicecHost.IMyService" />
 <host>
 <baseAddresses>
 <add
 baseAddress="net.tcp://perfpres02.npscode.com/MyService" />
 </baseAddresses>
 </host>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 181

 </service>
 </services>

 </system.serviceModel>

Database Server

Configuration
• A SQL server login is created for the WCF Service account.
• The WCF login name is given access to the database.
• The role is created in the database.
• The WCF login name is added to the role.

-- Create a SQL Server login that matches the WCF machine name
EXEC SP_GRANTLOGIN 'npscode\perfpres02$'

-- Grant the login access to the application database
use testdb
go
exec sp_grantdbaccess 'npscode\perfpres02$'

-- Create the new database role
use testdb
go
exec sp_addrole 'myrole2','db_owner'

-- Add the new login to the role
use testdb
go
exec sp_addrolemember 'myrole2','npscode\aspnethost'

Additional Resources
• For more information on security authentication best practices, see “Best Practices for

Security in WCF” at http://msdn2.microsoft.com/en-us/library/ms731059.aspx
• For additional information on message security, see “Message Security in WCF”

at http://msdn2.microsoft.com/en-us/library/ms733137.aspx
• For more information on hosting in a Windows service, see “How to: Host a WCF Service in

a Managed Windows Service.”
• For more information on WCF hosing considerations, see “Hosting Services”

at http://msdn2.microsoft.com/en-us/library/ms730158.aspx

• For more information on netTcpBinding configuration options see “<netTcpBinding>”
at http://msdn2.microsoft.com/en-us/library/ms731343.aspx

• For more information on how use netTcpbinding with windows authentication, see to How
To: Use netTcpBinding with Windows Authentication and Transport Security in WCF from
Windows Forms

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 182

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 183

Chapter 12 - Intranet – Windows Forms to Remote WCF Using
Transport Security (Original Caller, TCP)

Applies To
• Microsoft® Windows Communication Foundation (WCF) 3.5

Scenario
In this scenario, your users have Windows accounts and use a Windows Forms client to connect
over the intranet to your WCF Service. The business logic called by the WCF Service is backed by
a Microsoft SQL Server® data store. The following figure illustrates the basic model for this
application scenario.

Winform
Client

Client Database Server

SQL
Server

Application Server

WCF
Service

Figure 1. Windows Forms to Remote WCF Using Transport Security (Original Caller, TCP) – Model

Key Characteristics
This scenario applies to you if:
• Your users have Windows Forms clients.
• Your user accounts are in Active Directory within a domain.
• Your user roles are Windows Groups.
• Your application transmits sensitive data over the network and needs to be protected.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 184

Solution

Winform
Client

SQL
Server

Client

Database Server

WCF
(Windows
Service
Hosted)

Application Server

Windows
Authentication

WCF
Identity

Transport
Security
(Privacy/
Integrity)

IPSec
(Optional)

(Privacy/
Integrity)

Windows
Authentication

/ Windows
Groups

Windows
Authentication

Mary

WCF Proxy

netTCPBinding

Figure 2. Windows Forms to Remote WCF Using Transport Security (Original Caller, TCP) – Solution

Solution Summary Table
In this solution you will:
• Use domain credentials to authenticate clients against an Active Directory user store.
• Use a service account to call the SQL Server from WCF.
• Use transport security to protect sensitive data between the Windows Forms client and the

WCF Service.
• Use netTcpBinding to support the TCP transport for improved performance.
• Host WCF in a Windows Service since IIS does not support the TCP transport.

Thick Client
Checks Example
WCF Proxy
Application has a proxy reference to
the WCF Service.

The application has access to the WCF

WCFTestService.MyServiceClient proxy = new
WCFTestService.MyServiceClient();

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 185

metadata to create a service reference.
Proxy invokes services with the security
context of the logon user.

The proxy will automatically invoke
WCF operations using the security
context of the current user.

proxy.GetData("data");
proxy.Close();

Application Server
Check & More Info Example
Windows Service - Configuration
Windows Service is configured to run
under a custom domain service
account.

Use a domain account if possible.

WCF Service is hosted in a Windows
Service.

Since IIS does not support
netTcpBinding, host in a Windows
service instead.

Check & More Info Example
WCF Service - Configuration
Configure the WCF Service to use
netTcpbinding. The base address is
provided in the configuration section.

NetTcpBinding uses the TCP protocol
and provides full support for SOAP
security, transactions, and reliability. As
client and WCF Service both are in
intranet this is a good choice from a
performance perspective.

<endpoint
 address=""
 binding="netTcpBinding"
 bindingConfiguration=""
 name="TcpBinding"
 contract=
 "WCFServicecHost.IMyService"/>

<baseAddresses>
 <add baseAddress=
"net.tcp://WCFApp01.npscode.com/MyService" />

</baseAddresses>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 186

Check & More Info Example
A mex endpoint is created for
publishing the metadata.

This is required so that client can add
reference to the WCF Service using
SvcUtil utility.

<endpoint
 address="Mex"
 binding="mexTcpBinding"
 bindingConfiguration=""
 name="MexEndpoint"
 contract="IMetadataExchange"
/>

Service Metadata is configured in
service behavior.

The service metadata entry is required
for the windows service host to start.
HTTP and HTTPS get are disabled.

<serviceMetadata />

WCF Service - Authentication

The netTcpBinding is configured to use
Windows Authentication and Transport
security.

By default netTcpBinding is configured
to use Windows Authentication and
Transport Security.

<endpoint
 address=""
 binding="netTcpBinding"
 bindingConfiguration="" />

WCF Service - Authorization

Role Manager feature is enabled and
WindowsTokenRoleProvider is
configured for roles authorization.

Roles authorization can be performed
declaratively or imperatively in the
operation contract.

<serviceAuthorization
 principalPermissionMode
 ="UseAspNetRoles"
 roleProviderName
="AspNetWindowsTokenRoleProvider" />

Perform Role-checks declaratively using
Windows Identity Token, for checking
Active Directory group membership.

Declarative role-checks on operations is
the preferred mechanism.

[PrincipalPermission(SecurityAction.Demand,
Role = "npscode\\accounting")]

public string GetData(string message)
{
 return "hello";
}

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 187

Check & More Info Example
Perform Role-checks imperatively using
Windows Identity Token, for checking
Active Directory group membership.

If you need finer-grained authorization
control, you can use imperative role
checks in the code itself. Use call to
Roles.IsUserInRole to perform the
check.

public string GetData(string myValue)
{
if(Roles.IsUserInRole(@"npscode\Accounting"))
 {
 //Do something for Accounting role
 }
else
 {
 //Do something for non-accounting role or
throw an error
 }
 }

WCF Service - SQL

The connection string for the database
is configured to use Windows
authentication.

The database connection string
includes Integrated Security=SSPI or
Trusted Connection=Yes.

SqlConnection sqlcon = new
SqlConnection("Server=10.3.19.11;Database=Nort
hwind;IntegratedSecurity=SSPI");

Database connection is opened using
the WCF process identity’s security
context.

Service does not impersonate the
original caller to benefit for connection
pooling.

Database Server
Check & More Info Example
Configuration

A SQL Server login is created for the
WCF’s service account (process
identity).

This grants access to the SQL Server.

exec sp_grantlogin 'Custom Service Account'

The login is granted access to the target
database.

This grants access to the specified
database.

use targetDatabase
go
exec sp_grantdbaccess 'Custom Service Account'
go

A database role is created in the target
database.

This allows access control and
authorization to the DB.

use targetDatabase
go
exec sp_addrole 'DB Role Name'
go

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 188

Check & More Info Example
The login is added to the database role.

Grant minimum permissions. For
example, grant execute permissions to
selected stored procedures and provide
no direct table access.

use targetDatabase
go
exec sp_addrolemember 'DB Role Name', 'Custom
Service Account'
go

Authentication
SQL Server is configured to use
Windows authentication.

Communication Security
What Check
App server to Database You can use IPSec or SSL between App server and database server to

protect sensitive data on the wire.

Analysis

Thick Client

WCF Proxy
• Because WCF requires the original user’s credentials for Authentication and Authorization,

the original user’s security context makes all calls through the WCF proxy and into the WCF
Service.

Application Server

Authentication
• In order to authenticate the original users when the Thick Client makes calls on the WCF

Service, WCF is configured to use Windows Authentication.

Authorization
• For coarse grained access control, authorization checks are performed declaratively in the

WCF Service at the operation level.

• For fine grained access control, authorization checks are performed programmatically

within the operations.

• The Roles Manager is a good choice for this scenario because it allows your service code to

look up users' roles without writing and maintaining custom code.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 189

Data Access
• To reduce the risk of stolen database credentials, the database connection string is

configured to use Windows authentication. This avoids storing credentials in files and
passing credentials over the network to the database server.

• The WCF Service accesses the database using the WCF process identity. As a result, all calls

use the single process account and the designated database connection pooling.

Configuration
• This scenario is optimized around transmission performance at the expense of

interoperability with clients that expect a legacy Web service and the ability to host the
service in IIS. For this reason the best binding choice is netTcpBinding. By default,
netTcpBinding supports Windows Authentication with Transport security.

• Because netTcpBinding is not supported by IIS 6.0, the WCF Service is hosted in a Windows
service.

• In order to reduce attack surface and minimize the impact of a compromise, the Windows

service is running under the security context of the Service account using a least privileged
account.

• In order to make it possible for the client to generate a proxy based on the service

definition, we’ve exposed a metadata exchange (mex) endpoint.

Database Server
• SQL Server database user roles are preferred to SQL Server server application roles to avoid

the associated password management and connection pooling issues associated with the
use of SQL application roles. Applications activate SQL application roles by calling a built-in
stored procedure with a role name and a password. Therefore, the password must be
stored securely. Database connection pooling must also be disabled when you use SQL
application roles, which severely impacts application scalability.

• Creating a new user-defined database role, and adding the database user to the role, lets

you give specific minimum permissions to the role. Therefore, if the database account
changes you don't have to change the permissions on all database objects.

Communication Security
• Transport security protects sensitive data between Thick Client and WCF Service.
• You can use IPSec or SSL between WCF Service and the database server to protect sensitive

data on the wire.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 190

Example

Application Server

Code
The service performs imperative authorization checks calling Roles.IsUserInRole.
The service calls SQL using windows authentication.

using System.Data.SqlClient;

using System.Web.Security;

public string GetData(string myValue)

 if(Roles.IsUserInRole(@"npscode\Accounting"))
{

 {
 SqlConnection sqlcon = new
SqlConnection("Server=10.3.19.11;Database=Northwind;IntegratedSecurity=SSPI")
;
 sqlcon.Open();
 //do the business operation
 return "Authorization succeeded ";
 }
 else return "authorization failure";
}

Configuration
• The service has a binding endpoint that uses netTcpbinding with no binding configuration

and windows authentication (default settings).
• The service has a mex endpoint to publish metadata.
• The service has a service behavior configuration to expose the role provider to the WCF

Service.
• The service has a base address configured to reduce the size of the binding addresses in the

config.
• The service configuration file has an entry for the AspNetWindowsTokenRoleProvider

under system.web to define which role provider is being used.
• The service behavior is configured with the element serviceAuthorization to allow

WindowsTokenRoleProvider as the authorization provider.
• The service behavior is configured with the element serviceMetadata to allow metadata

exposure.

<system.web>
 <roleManager enabled="true"
 defaultProvider="AspNetWindowsTokenRoleProvider" />
</system.web>

<system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior name="BehaviorConfiguration">

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 191

 <serviceAuthorization principalPermissionMode="UseAspNetRoles"
 roleProviderName="AspNetWindowsTokenRoleProvider" />
 <serviceMetadata />
 </behavior>
 </serviceBehaviors>
 </behaviors>

 <bindings />

 <services>
 <service behaviorConfiguration="BehaviorConfiguration"
 name="WCFServicecHost.MyService">
 <endpoint address="Mex"
 binding="mexTcpBinding"
 bindingConfiguration=""
 name="MexEndpoint"
 contract="IMetadataExchange" />
 <endpoint address=""
 binding="netTcpBinding"
 bindingConfiguration=""
 name="TcpBinding"
 contract="WCFServicecHost.IMyService" />
 <host>
 <baseAddresses>
 <add baseAddress="net.tcp://perfpres02.npscode.com/MyService" />
 </baseAddresses>
 </host>
 </service>
 </services>

</system.serviceModel>

Database Server

Configuration
• A SQL Server login is created for the WCF Service account.
• The WCF login name is given access to the application database.
• The role is created in the application database.
• The WCF login name is added to the role.

-- Create a SQL Server login that matches the WCF machine name
EXEC SP_GRANTLOGIN 'npscode\perfpres02$'

-- Grant the login access to the application database
use testdb
go
exec sp_grantdbaccess 'npscode\perfpres02$'

-- Create the new database role
use testdb
go
exec sp_addrole 'myrole2','db_owner'

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 192

-- Add the new login to the role
use testdb
go
exec sp_addrolemember 'myrole2','npscode\perfpres02$'

Additional Resources
• For more information on security authentication best practices, see “Best Practices for

Security in WCF” at http://msdn2.microsoft.com/en-us/library/ms731059.aspx
• For additional information on message security, see “Message Security in WCF”

at http://msdn2.microsoft.com/en-us/library/ms733137.aspx
• For more information on hosting in a Windows service, see the document “How To: Host

WCF in a Windows Service.”
• For more information on WCF hosting considerations, see “Hosting Services”

at http://msdn2.microsoft.com/en-us/library/ms730158.aspx
• For more information on netTcpBinding configuration options see “<netTcpBinding>”

at http://msdn2.microsoft.com/en-us/library/ms731343.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 193

PART IV

Internet Application Scenarios

In This Part:

 Internet - WCF and ASMX Client to Remote WCF Using
Transport Security (Trusted Subsystem, HTTP)

 Internet - Web to Remote WCF Using Transport Security
(Trusted Subsystem, TCP)

 Internet - Windows Forms Client to Remote WCF Using
Message Security (Original Caller, HTTP)

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 194

Chapter 13 - Internet – WCF and ASMX Client to Remote WCF
Using Transport Security (Original Caller, HTTP)

Applies To
• Microsoft® Windows Communication Foundation (WCF) 3.5

Scenario
In this scenario, your users do not have Microsoft Windows® accounts but use a Windows
Forms client to make calls to the WCF service through either a WCF or ASMX client proxy. User
accounts are stored in Microsoft SQL Server®, and users are authenticated with username
authentication.

The business logic called by the WCF service is backed by a SQL Server data store. The following
figure illustrates the basic model for this application scenario.

WCF
and

ASMX

Client Database Server

SQL
Server

Application Server

WCF
Service

Figure 1. WCF and ASMX Client to Remote WCF Using Transport Security (Original Caller, HTTP) – Model

Key Characteristics
This scenario applies to you if:
• Your users are WCF and ASMX clients.
• Your user accounts are stored in SQL Server. Internet Information Services (IIS)

authenticates users against the SQL Server membership provider, via a custom HTTP
module.

• Your user roles are stored in SQL Server. WCF authorizes users with ASP.NET roles.
• Your application transmits user credentials and other sensitive data over the network and

needs to be protected.
• The service is compatible with legacy ASMX clients with prior versions of the Microsoft .NET

Framework

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 195

Solution

WCF Client

SQL
Server

Client

Database Server

Windows
Authentication

WCF
Identity

IPSec
(Optional)

(Privacy/
Integrity)

Mary

WCF Proxy

basicHttpBinding

WCF
(Web Service)IIS

Membership
Provider

Authentication

Transport
Security
(Privacy/
Integrity)

Authorization
ASP.NET

Roles

Application Server

Legacy
ASMX
 Client

Client

ASMX Proxy

John

Figure 2. WCF and ASMX Client to Remote WCF Using Transport Security (Original Caller, HTTP) – Solution

Solution Summary Table
In this solution, you will:
• Authenticate clients by using the SQL Server membership provider.
• Authenticate clients by using the SQL Server membership provider with IIS via a custom

HTTP module.
• Use WCF to authorize users with roles in SQL Server by using the ASP.NET role provider.
• Use a service account to call the SQL Server from WCF.
• Use transport security to protect user credentials and sensitive data passed between the

clients and the WCF service.
• Use basicHttpBinding with transport security to ensure that the service is compatible with

legacy ASMX clients.
• Authenticate clients using a custom HTTP module in order to transmit user credentials over

the transport, to ensure that the service is compatible with legacy ASMX clients.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 196

Clients
Checks & More Info Example
WCF proxy

Client needs to manually configure the
authentication type as Basic. In a generated
proxy, you will need to change the value from
None to Basic.

If the proxy is generated, this value will be
generated as None because the WCF service sets
the authentication as None. The Basic
authentication type is needed in order for
authentication negotiation to occur, so the
authentication header is sent to service.

<security mode="Transport">
 <transport clientCredentialType="Basic"/>
</security>

Client has a WCF proxy reference to the WCF
service.

The application has access to the WCF metadata
in order to create a service reference. The client
will be prompted with credentials to get the
metadata.

Root CA certificate for the service is installed in
“Trusted Root Certification Authorities.”

This is required for Secure Sockets Layer (SSL)
authentication. All certificates that are signed
with this certificate will be trusted by the client
machine.

Proxy invokes the service passing user credentials
to the WCF proxy.

The UserName and Password properties must be
set before the proxy invokes a WCF method.

WCFTestService.ServiceClient myService =
new WCFTestService.ServiceClient();
myService.ClientCredentials.UserName.UserNa
me = "username";
myService.ClientCredentials.UserName.Passwo
rd = "p@ssw0rd";
myService.GetData(123);
myService.Close();

Checks & More Info Example
ASMX proxy

Client has an ASMX Web service proxy reference
to the WCF service.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 197

The application has access to the WCF metadata
in order to create a service reference. The client
will be prompted with credentials to get the
metadata.
Root CA certificate for the service is installed in
“Trusted Root Certification Authorities.”

All certificates that are signed with this
certificate will be trusted by the client machine.

Proxy invokes the service passing user
credentials to the ASMX Web service proxy.

The proxy’s credentials need to be set with the
username and password before invoking a WCF
method .

NetworkCredential netCred = new
NetworkCredential("username", " p@ssw0rd");
asmxwebservice.Service proxy = new
asmxwebservice.Service();
proxy.Credentials = netCred;
proxy.GetData(21, true);

Application Server
Checks & More Info Example
IIS - Configuration

A dedicated application pool is created
and configured to run under a custom
service account.

Use a domain account if possible.

The WCF service is configured to run
under the service account.

Assign the WCF service to the custom
application pool.

A custom HTTP module is configured in
Web configuration.

The custom HTTP module will
authenticate the users against the Sql
Server MemberShip Provider.

<httpModules>
…
 <add
 name="BasicAuthentication Module"
type="Module.UserNameAuthenticator,Authenticator" />

</httpModules>

An ASP.NET database is created for use
with the SQL Server membership
provider and SQL Server role provider.

Aspnet_regsql.exe creates the SQL
database to store the user and role
information.

aspnet_regsql -S .\SQLExpress -E -A r m

The connection string is configured to
point to the user and role stored in SQL
Server.

<add
 name="MyLocalSQLServer"
 connectionString="Initial
 Catalog=aspnetdb;data
 source=localhost;Integrated

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 198

Checks & More Info Example
The database connection string
includes Integrated Security=SSPI or
Trusted Connection=Yes for Windows
Authentication.

 Security=SSPI;" />

Sql Server Membership Provider is
configured as a membership provider.

The membership feature helps protect
credentials, can enforce strong
passwords, and provides consistent
APIs for user validation and secure user
management.

<membership
defaultProvider="MySqlMembershipProvider">
 <providers>
 <clear/>
 <add name= "MySqlMembershipProvider"
connectionStringName="MyLocalSQLServer"
applicationName="MyAppName"
type="System.Web.Security.SqlMembershipProvider"/>
 </providers>
</membership>

The Role Manager feature is enabled
and Sql Server Role Provider is
configured for roles authorization.

The Role Manager allows you to look
up users' roles without writing and
maintaining custom code.

<roleManager enabled="true"
defaultProvider="MySqlRoleProvider" >
 <providers>
 <clear/>
 <add name="MySqlRoleProvider"
connectionStringName="MyLocalSQLServer"
applicationName="MyAppName"
type="System.Web.Security.SqlRoleProvider" />
 </providers>
</roleManager>

The WCF service process identity is
given access permissions on the
ASP.NET database.

Your WCF service process identity
requires access to the Aspnetdb
database.

-- Create a SQL Server login for the Network Service
account
sp_grantlogin '<<Custom Service Account>>'

-- Grant the login access to the membership database
USE aspnetdb
GO
sp_grantdbaccess '<<Custom Service Account>>',
'<<Custom Service Account>>'

-- Add user to database role
USE aspnetdb
GO
sp_addrolemember 'aspnet_Membership_FullAccess',
'<<Custom Service Account>>'

sp_addrolemember 'aspnet_Roles_FullAccess',
'<<Custom Service Account >>’

WCF service - Configuration

The WCF Service is configured to use
basicHttpBinding binding.

The basicHttpBinding binding uses the
HTTP protocol and provides
compatibility with ASMX clients.

<services>
 <service behaviorConfiguration="ServiceBehavior"
name="Service">
 <endpoint address="" binding="basicHttpBinding"
bindingConfiguration="BindingConfiguration"
name="basicEndpoint" contract="IService" />
 </service>
</services>

Service Metadata is configured in
service behavior to enable
httpsGetEnabled and disable

<serviceBehaviors>
 <behavior name="ServiceBehavior">
 <serviceMetadata httpGetEnabled="false"

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 199

Checks & More Info Example
httpGetEnabled.

The service metadata entry is required
in order to publish metadata to the
clients.

httpsGetEnabled="true" />
 </behavior>
</serviceBehaviors>

The service is configured for ASP.NET
compatibility mode, both in
configuration and in service
implementation.

The ASP.NET compatibility mode is
necessary because IIS is performing
authentication.

Configuration
<system.serviceModel>
 <serviceHostingEnvironment
aspNetCompatibilityEnabled="true" />
…
</system.serviceModel>

Service Implementation
[AspNetCompatibilityRequirements(RequirementsMode =
AspNetCompatibilityRequirementsMode.Required)]
public class Service : IService

WCF service - Authentication

basicHttpBinding is configured to use
transport security and no
authentication.

The authentication will be performed
by the ASP.NET HTTP module against
the Sql Server MemberShip Provider.

<basicHttpBinding>
 <binding name= "BindingConfiguration">
 <security mode="Transport">
 <transport clientCredentialType="None" />
 </security>
 </binding>
</basicHttpBinding>

Sql Server Membership Provider is
configured to provide user
authentication.

The membership feature automatically
authenticates and creates the
authentication ticket for you.

<membership
defaultProvider="MySqlMembershipProvider">
 <providers>
 <clear/>
 <add name="MySqlMembershipProvider"
connectionStringName="MyLocalSQLServer"
applicationName="MyAppName"
type="System.Web.Security.SqlMembershipProvider"/>
 </providers>
</membership>

WCF service - Authorization

The Role Manager feature is enabled
with aspnetroles, and the provider is
configured for roles authorization.

Roles authorization can be performed
declaratively or imperatively in the
operation contract.

<serviceBehaviors>
 <behavior name="ServiceBehavior">
 <serviceAuthorization
principalPermissionMode="UseAspNetRoles"
roleProviderName="MySqlRoleProvider" />
 </behavior>
</serviceBehaviors>

A class that derives from
IAuthorizationPolicy is implemented to
set the principal of the current thread
to do declarative authorization, and to
set the identity so that it is available in
a WCF security context.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 200

Checks & More Info Example

The authorization policy class will allow
to assign the principal to the context of
WCF, so users can be authorized, and It
will also allow to assign the identity to
the context of WCF, so the it can be
retrieved from WCF security context.
The authorization policy is included in
the configuration file.

<authorizationPolicies>
 <add
policyType="AuthorizationPolicy.HttpContextPrincipal
Policy, AuthorizationPolicy" />
</authorizationPolicies>

Perform role checks declaratively by
using a Windows Identity Token, for
checking Microsoft Active Directory®
group membership.

A declarative role check is preferred
over an imperative role check for a
service operation.

[PrincipalPermission(SecurityAction.Demand, Role =
"accounting")]
public string GetData(string message)
{
 return "hello";
}

Perform role checks imperatively using
a Windows Identity Token, for checking
Active Directory group membership.

If you need more fine-grained
authorization control, you can use
imperative role checks in the code
itself. Use a call to Roles.IsUserInRole
to perform the check.

public string GetData(string myValue)
{ if(Roles.IsUserInRole(@"Accounting"))
{
//Do something for Accounting role
}
else
{
//Do something for non-accounting role or throw an
error
}
}

WCF service - SQL

The connection string for the database
is configured to use Windows
authentication.

The database connection string
includes Integrated Security=SSPI or
Trusted Connection=Yes.

SqlConnection sqlcon = new
SqlConnection("Server=SqlServer;Database=Northwind;I
ntegratedSecurity=SSPI");

A database connection is opened by
using the WCF process identity’s
security context.

This happens by default.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 201

Database Server
Check Example
Configuration

A SQL Server login is created for
the WCF service account (process
identity).

This grants access to the SQL
Server.

exec sp_grantlogin 'Custom Service Account'

The login is granted access to the
target database.

This grants access to the specified
database.

use targetDatabase
go
exec sp_grantdbaccess 'Custom Service Account'
go

A database role is created in the
target database.

This allows access control and
authorization to the database.

use targetDatabase
go
exec sp_addrole 'DB Role Name'
go

The login is added to the database
role.

Grant minimum permissions. For
example, grant execute
permissions to selected stored
procedures, and provide no direct
table access.

use targetDatabase
go
exec sp_addrolemember 'DB Role Name', 'Custom
Service Account'
go

Authentication
SQL Server is configured to use
Windows authentication.

Communication Security
What Check Example More info
App server to
Database

You can use Internet Protocol security
(IPSec) or SSL between the application
server and database server to protect
sensitive data in transit.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 202

Analysis

Clients

WCF Proxy
• The client configuration file is configured to use Basic authentication in order to allow the

authentication negotiation to occur.
• The user’s credentials are required in the ASP.NET HTTP module for authentication.

Username credentials are set on the WCF proxy, and all calls to the WCF service are made
through that proxy instance.

• The user’s credentials are required in WCF for authorization. Username credentials are set
on the WCF proxy, and all calls to the WCF service are made through that proxy instance.

• For validating the service certificate, the Root CA certificate is installed on the client
machine in the “Trusted Root Certification Authorities” location.

ASMX Web Service Proxy
• The user’s credentials are required in the ASP.NET HTTP module for authentication.

\Network credentials are set on the ASMX Web service proxy, and all calls to the WCF
service are made through that proxy instance.

• The user’s credentials are required in WCF for authorization. Username credentials are set
on the ASMX Web service, and all calls to the WCF service are made through that proxy
instance.

• For validating the service certificate, the Root CA certificate is installed on the client
machine in the “Trusted Root Certification Authorities” location.

Application Server

Authentication
• Because the users communicate with the WCF service over the Internet and you cannot

assume that they have a Windows account, the user information is stored in SQL Server.
Since WCF does not support transport security with username authentication, a custom
HTTP module is created that will authenticate the user against the SQL Server Membership
Provider. This will support both WCF and ASMX Web services clients.

• WCF is configured to use no authentication because the ASP.NET HTTP module will handle
authentication.

• To protect the user credentials in transit, a Service Certificate is installed and is configured
to be used as Service Credentials in WCF.

Authorization
• For coarse-grained access control, authorization checks are performed in the WCF service at

the operation level, declaratively. Unless fine-grained access control is needed, declarative
authorization should be preferred over imperative authorization.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 203

• For fine-grained access control or for implementing business logic, authorization checks are
made within the operations programmatically.

• The Roles Manager is a good choice for this scenario because it allows you to look up users'
roles without writing and maintaining custom code.

Data Access
• To reduce the risk of stolen database credentials, the database connection string is

configured to use Windows authentication. This avoids storing credentials in files and
passing credentials over the network to the database server.

• The WCF service accesses the database by using the WCF process identity. As a result, all
calls use the single process account and the designated database connection pooling.

Configuration
• Since all of the clients communicate over the Internet, the best transport protocol for this

scenario is the HyperText Transfer Protocol (HTTP). Additionally, since compatibility with
ASMX Web services clients is required, basicHttpBinding is an ideal choice.

• Because basicHttpBinding is supported by IIS 6.0, the WCF service is hosted in IIS.
• In order to reduce attack surface and minimize the impact of a compromise, the WCF

service runs under the security context of the Service account, using a least-privileged
account.

• In order to reduce attack surface and minimize the impact of a compromise, the Windows
service runs under the security context of the Service account, using a least-privileged
account.

Database Server
• SQL Server database user roles are preferred to SQL Server application roles in order to

avoid the associated password management and connection pooling issues associated with
the use of SQL Server application roles. Applications activate SQL Server application roles by
calling a built-in stored procedure with a role name and a password. Therefore, the
password must be stored securely. Database connection pooling must also be disabled
when you use SQL Server application roles, which severely impacts application scalability.

• Creating a new user-defined database role, and adding the database user to the role, lets
you give specific minimum permissions to the role. Therefore, if the database account
changes, you do not have to change the permissions on all database objects.

Communication Security
• Transport security protects sensitive data between the Thick Client and WCF service.
• You can use IPSec or SSL between the WCF service and the database server in order to

protect sensitive data in transit.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 204

Example

Clients

WCF Client

Code
• The client passes user credentials explicitly when making calls to the service.
• The client needs to provide credentials when creating a service reference.

WCFTestService.ServiceClient myService = new
WCFTestService.ServiceClient();
myService.ClientCredentials.UserName.UserName = "username";
myService.ClientCredentials.UserName.Password = "p@ssw0rd";
myService.GetData(123);
myService.Close();

Configuration
• The client is configured to use Basic authentication.

<security mode="Transport">
 <transport clientCredentialType="Basic"
 proxyCredentialType="None"
 realm="" />
</security>

ASMX Web Service Client

Code
• The client passes user credentials explicitly when making calls to the service.
• The client needs to provide credentials when creating a service reference.

NetworkCredential netCred = new NetworkCredential("username", "
p@ssw0rd");
asmxwebservice.Service proxy = new asmxwebservice.Service();
proxy.Credentials = netCred;
proxy.GetData(21, true);

Application Server

IIS

Code
• A class that derives from IHttpModule is implemented. This class authenticates the users

against SQL Membership Provider.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 205

• Initially, the class checks to determine if there is an authorization header in the request
from the client. If the header is not present, the status of the context is assigned as 401(not
authorized) and a WWW-Authenticate header is created and sent in the response to the
client. This is the “handshake” for the authentication process. The client will know that it
needs to send credentials for authentication.

• Once the credentials have been sent by the client, they are extracted from the authorization
header, so they can be used to call the SQL Membership Provider.

• The class authenticates the user, calling Membership.ValidateUser(username, password) to
validate the user against the SQL Membership Provider.

• If the user is authenticated, an identity is created and assigned to the
HttpApplication.Context.User property.

• If the user is not authenticated, a 401 status is returned to the client and the user is denied
access.

HTTP Module Code

using System;
using System.Collections.Generic;
using System.Text;
using System.Web;
using System.Web.Security;
using System.Security.Principal;

namespace Module
{
 public class UserNameAuthenticator : IHttpModule
 {
 public void Dispose()
 {
 }

 public void Init(HttpApplication application)
 {
 application.AuthenticateRequest += new
 EventHandler(this.OnAuthenticateRequest);
 application.EndRequest += new
 EventHandler(this.OnEndRequest);
 }

 public void OnAuthenticateRequest(object source, EventArgs eventArgs)
 {
 HttpApplication app = (HttpApplication)source;
 //the Authorization header is checked if present
 string authHeader = app.Request.Headers["Authorization"];

 if (!string.IsNullOrEmpty(authHeader))
 {
 string authStr = app.Request.Headers["Authorization"];

 if (authStr == null || authStr.Length == 0)

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 206

 {
 // No credentials; anonymous request
 return;
 }

 authStr = authStr.Trim();
 if (authStr.IndexOf("Basic", 0) != 0)
 {
 //header not correct we do not authenticate
 return;
 }

 authStr = authStr.Trim();
 string encodedCredentials = authStr.Substring(6);
 byte[] decodedBytes = Convert.FromBase64String(encodedCredentials);
 string s = new ASCIIEncoding().GetString(decodedBytes);

 string[] userPass = s.Split(new char[] { ':' });
 string username = userPass[0];
 string password = userPass[1];

 //the user is validated against the SqlMemberShipProvider
 //If it is validated then the roles are retrieved from the
 //role provider and a generic principal is created
 //the generic principal is assigned to the user context
 // of the application

 if (Membership.ValidateUser(username, password))
 {
 string[] roles = Roles.GetRolesForUser(username);
 app.Context.User = new GenericPrincipal(new
 GenericIdentity(username, "Membership Provider"), roles);
 }
 else
 {
 DenyAccess(app);
 return;
 }

 } //end of- if (!string.IsNullOrEmpty(authHeader))
 else
 {
 //the authorization header is not present
 //the status of response is set to 401 and it ended
 //the end request will check if it is 401 and add
 //the authentication header so the client knows
 //it needs to send credentials to authenticate

 app.Response.StatusCode = 401;
 app.Response.End();

 //context.Response.StatusCode = 401;
 //context.Response.End();
 }

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 207

 } //End class function

 public void OnEndRequest(object source, EventArgs eventArgs)
 {
 if (HttpContext.Current.Response.StatusCode == 401)
 {

 //if the status is 401 the WWW-Authenticated is added to
 //the response so client knows it needs to send credentials

 HttpContext context = HttpContext.Current;
 context.Response.StatusCode = 401;
 context.Response.AddHeader("WWW-Authenticate", "Basic Realm");
 }
 }

 private void DenyAccess(HttpApplication app)
 {
 app.Response.StatusCode = 401;
 app.Response.StatusDescription = "Access Denied";

 // error not authenticated
 app.Response.Write("401 Access Denied");

 app.CompleteRequest();
 }
 } // End Class
} //End Namespace

Configuration
• The custom module is configured in the web.config file, in the HTTP modules section.
• The service configuration file has an entry with a connection string pointing to the SQL

Server store for authentication and authorization.
• The service configuration file has an entry for the SqlRoleProvider under system.web to

define which role provider is being used.
• The service configuration file has an entry for the SqlMemberShipProvider under

system.web to define the SQL Server membership provider for authentication.

<configuration>
…
 <connectionStrings>
 <add name="MyLocalSQLServer"
 connectionString="Initial Catalog=aspnetdb;data
source=10.3.19.60;Integrated Security=SSPI;"/>
 </connectionStrings>

 <system.web>
 <membership defaultProvider="MySqlMembershipProvider" >
 <providers>
 <clear/>
 <add name="MySqlMembershipProvider"
 connectionStringName="MyLocalSQLServer"

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 208

 applicationName="MyAppName"
 type="System.Web.Security.SqlMembershipProvider" />
 </providers>
 </membership>

 <roleManager enabled="true" defaultProvider="MySqlRoleProvider" >
 <providers>
 <clear/>
 <add name="MySqlRoleProvider"
 connectionStringName="MyLocalSQLServer"
 applicationName="MyAppName"
 type="System.Web.Security.SqlRoleProvider" />
 </providers>
 </roleManager>

<httpModules>
…
<add name="BasicAuthenticationModule"
type="Module.UserNameAuthenticator,Authenticator" />
</httpModules>

 </system.web>

</configuration>

WCF

Code
• The service performs imperative authorization checks, calling Roles.IsUserInRole.
• If auditing is required, the service retrieves the identity of the caller.
• The Authorization policy class is developed to set the security principal to WCF context. This

way when the business logic runs in the operation contract, it’s possible to do authorization
checks and auditing with the identity.

• do declarative authorization, and to have the identity in a WCF security context.
• The service calls SQL Server by using Windows authentication.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IdentityModel.Claims;
using System.IdentityModel.Policy;
using System.Web;
using System.Security.Principal;

namespace AuthorizationPolicy
{
 // syncs Thread.CurrentPrincipal and identity in WCF with whatever is set
 // by the HTTP pipeline on Context.User (optional)

 public class HttpContextPrincipalPolicy : IAuthorizationPolicy
 {
 public bool Evaluate(EvaluationContext evaluationContext,
 ref object state)

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 209

 {
 HttpContext context = HttpContext.Current;

 if (context != null)
 {
 evaluationContext.Properties["Principal"] = context.User;
 evaluationContext.Properties["Identities"] =
 new List<IIdentity>() { context.User.Identity };
 }
 return true;
 }

 public System.IdentityModel.Claims.ClaimSet Issuer
 {
 get { return ClaimSet.System; }
 }

 public string Id
 {
 get { return "HttpContextPrincipalPolicy"; }
 }
 }
}

The service does imperative or declarative authorization, as shown in the following sections.

Imperative
using System.Data.SqlClient;
using System.Web.Security;

public string GetData(int value)
{
 if (Roles.IsUserInRole(@"accounting"))
 {
 SqlConnection sqlcon = new SqlConnection("Server=sqlServer;

Database=testdb;Integrated Security=SSPI");
 sqlcon.Open();

 string identity =
 HttpContext.Current.User.Identity.Name;
 return “data”
 }
 else return "not authorized";
}

Declarative

using System.Data.SqlClient;
using System.Web.Security;

PrincipalPermission(SecurityAction.Demand, Role = "accounting")]

public string GetData(int value)
{

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 210

 SqlConnection sqlcon = new SqlConnection("Server=sqlServer;
Database=testdb;Integrated Security=SSPI");
 sqlcon.Open();

 string identity = HttpContext.Current.User.Identity.Name;
 return “data”
}

Configuration
• The service has a binding endpoint that uses basicHttpbinding with binding

configuration that enables transport security and no authentication.
• The service behavior is configured with the element serviceMetadata to allow

publishing metadata.
• The service behavior is configured with the element ServiceAuthorization to use

ASP.NET roles for authorization.

<system.serviceModel>
 <serviceHostingEnvironment aspNetCompatibilityEnabled="true" />

 <bindings>
 <basicHttpBinding>
 <binding name="BindingConfiguration">
 <security mode="Transport">
 <transport clientCredentialType="None" />
 </security>
 </binding>
 </basicHttpBinding>
 </bindings>

 <services>
 <service behaviorConfiguration="ServiceBehavior" name="Service">
 <endpoint address="" binding="basicHttpBinding"
 bindingConfiguration="BindingConfiguration"
 name="basicEndpoint" contract="IService" />
 </service>
 </services>

 <behaviors>
 <serviceBehaviors>
 <behavior name="ServiceBehavior">
 <serviceMetadata httpGetEnabled="false" httpsGetEnabled="true" />
 <serviceAuthorization principalPermissionMode="UseAspNetRoles"
 roleProviderName="MySqlRoleProvider">
 <authorizationPolicies>
 <add policyType="AuthorizationPolicy.HttpContextPrincipalPolicy,
AuthorizationPolicy" />
 </authorizationPolicies>
 </serviceAuthorization>
 </behavior>
 </serviceBehaviors>
 </behaviors>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 211

 </system.serviceModel>

Configuration

Database Server

• A SQL Server login is created for the WCF service account.
• The WCF login name is given access to the application database.
• The role is created in the application database.
• The WCF login name is added to the role.

-- Create a SQL Server login that matches the WCF machine name
EXEC SP_GRANTLOGIN 'npscode\perfpres02$'

-- Grant the login access to the application database
use testdb
go
exec sp_grantdbaccess 'npscode\perfpres02$'

-- Create the new database role
use testdb
go
exec sp_addrole 'myrole2','db_owner'

-- Add the new login to the role
use testdb
go
exec sp_addrolemember 'myrole2','npscode\perfpres02$'

Additional Resources
• For more information on how to work with the ASP.NET Role Provider, see “How to: Use

the ASP.NET Role Provider with a Service” at http://msdn2.microsoft.com/en-
us/library/aa702542.aspx

• For more information on how to work with the ASP.NET Role Manager, see “How To:
Use Role Manager in ASP.NET 2.0” at http://msdn2.microsoft.com/en-
us/library/ms998314.aspx

• For more information on how to work with the ASP.NET Membership Provider, see
“How to: Use the ASP.NET Membership Provider” at http://msdn2.microsoft.com/en-
us/library/ms731049.aspx

• For more Information on IHTTP Module interface, see http://msdn.microsoft.com/en-
us/library/system.web.ihttpmodule.aspx

• For more information on how to use transport security with username authentication,
see How To – Use Username Authentication with Transport Security in WCF from
Windows Forms

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 212

Chapter 14 - Internet – Web to Remote WCF Using Transport
Security (Trusted Subsystem, TCP)

Applies To
• Microsoft® Windows Communication Foundation (WCF) 3.5

Scenario
In this scenario, your users do not have Windows accounts and use a Web client to connect
over the Internet to an ASP.NET application on an IIS server. The business logic called by the
WCF service is backed by a SQL Server data store. The basic model for this application scenario
is shown in the following figure.

ASP.NET

Client Database Server

IIS SQL
Server

Application Server

WCF
Service

Figure 1. Web to Remote WCF Using Transport Security (Trusted Subsystem, TCP) – Model

Key Characteristics
This scenario applies to you if:

• Your users have Web clients.
• Your user accounts are stored in SQL.
• Your user roles are stored in SQL.
• The business logic behind your WCF service does not require fine-grained authorization.
• Your application transmits sensitive data over the network that needs to be protected.
• A high performance connection between the ASP.NET application and the WCF service is

more important than the ability to host the WCF service in IIS.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 213

Solution

ASP.NETIIS

SQL
Server

Alice

Bob

Mary

TLS/SSL
(Privacy/
Integrity)

Anonymous Access

Web Server

Database Server

WCF
(Windows
 Service
Hosted)

Application Server

Windows
Authentication

WCF
Identity

 Transport
Security
(Privacy/
Integrity)

IPSec
(Optional)

(Privacy/Integrity)

Alice

Bob

Mary Windows
Authentication

Forms
Authentication

ASP.NET
Identity

WCF Proxy

netTCPBinding

Figure 2. Web to Remote WCF Using Transport Security (Trusted Subsystem, TCP) – Solution

Solution Summary Table
In this solution you will:

• Use username and password to authenticate users against the SQL Server Membership
Provider.

• Use a service account to call WCF from the ASP.NET application.
• Use a service account to call the SQL Server from WCF.
• Use SSL to protect sensitive data between the Web client and IIS.
• Use Transport Security to protect sensitive data between the ASP.NET application and

the WCF service.
• Use netTcpBinding to support the TCP transport for improved performance.
• Host WCF in a Windows Service since IIS does not support the TCP transport.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 214

Web Server
Checks Example
IIS - Configuration
A dedicated application pool is created
and configured to run under a custom
service account.

Use a domain account if possible.

The Web application is configured to run
under the service account.

Assign the Web application to the
custom application pool.

IIS - Authentication

The IIS virtual directory is configured to
use Anonymous access.

Users will be allowed to access pages
and if required will be redirected to
forms authentication page.

Checks Example
ASP.NET - Configuration

ASP.NET database is created for the SQL
Membership Provider and SQL Role
Provider.

Aspnet_regsql.exe creates the SQL
database to store the user and role
information.

aspnet_regsql -S .\SQLExpress -E -A r m

Connection string is configured to point
to the user and role store in SQL Server.

The database connection string includes
Integrated Security=SSPI or Trusted
Connection=Yes for Windows
Authentication.

<add name="MyLocalSQLServer"
connectionString="Initial
Catalog=aspnetdb;data
source=localhost;Integrated
Security=SSPI;" />

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 215

Checks Example
Web application process identity is given
access permissions on the ASPNET
database.

Your Web application process identity
requires access to the Aspnetdb
database. If you host the Web
application in Internet Information
Services (IIS) 6.0 on Microsoft Windows
Server® 2003, the NT
AUTHORITY\Network Service account is
used by default to run the Web
application.

-- Create a SQL Server login for the Web
application process identity
sp_grantlogin 'Customdomainserviceaccount

-- Grant the login access to the
membership database
USE aspnetdb
GO
sp_grantdbaccess
'Customdomainserviceaccount', 'Custom
Service'

-- Add user to database role
USE aspnetdb
GO
sp_addrolemember
'aspnet_Membership_FullAccess', 'Custom
Service'

sp_addrolemember
'aspnet_Roles_FullAccess', 'Custom
Service'

ASP.NET - Authentication

ASP.NET is configured for Forms
authentication.

The Web application will authenticate
the users.

<authentication mode = "Forms" >

ASP.NET application is configured to
deny access to all unauthenticated users.

Only authenticated users will be able to
access the application.

<authorization>
 <deny users="?"/>
 <allow users="*"/>
</authorization>

SqlMembershipProvider is configured to
use with Membership feature for forms
authentication.

The membership feature helps protect
credentials, can enforce strong
passwords, and provides consistent APIs
for user validation and secure user
management. The membership feature
also automatically creates the
authentication ticket for you.

<membership
defaultProvider="MySqlMembershipProvider">
 <providers>
 <clear/>
 <add name="MySqlMembershipProvider"

connectionStringName="MyLocalSQLServer"
 applicationName="MyAppName"

type="System.Web.Security.SqlMembershipPro
vider"/>
 </providers>
</membership>

ASP.NET - Authorization

Role Manager feature is enabled and <roleManager enabled="true"

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 216

Checks Example
SqlRoleProvider is configured for roles
authorization.

Role Manager feature allows you to look
up users' roles without writing and
maintaining code. Additionally, the role
providers offer a consistent way for you
to check the role membership of your
users, regardless of the underlying data
store.

defaultProvider="MySqlRoleProvider" >
 <providers>
 <clear/>
 <add name="MySqlRoleProvider"

connectionStringName="MyLocalSQLServer"
 applicationName="MyAppName"

type="System.Web.Security.SqlRoleProvider"
/>
 </providers>
</roleManager>

Role-checks are performed using role
manager APIs.

if (User.IsInRole("Role"))
{
 //business operation

}

Checks Example
WCF Proxy

ASP.NET has a proxy reference to the
WCF service.

The application has access to the WCF
metadata to create a service reference.

WCFTestService.ServiceClient myService =
new
WCFTestService.ServiceClient();

Proxy invokes services with the security
context of service account .

The proxy will automatically invoke WCF
operations using the security context of
the service account.

myService.GetData(123);

WCF Proxy - Caller Identity

For auditing purposes, the identity of the
caller can be passed in custom message
headers during
Proxy call. Additionally custom headers
can be defined in message contracts or
service contracts.

Use transport security to protect against
spoofing attacks.

if (User.IsInRole("accounting"))
 {
 WCFTestService.MyServiceClient proxy =
new
 WCFTestService.MyServiceClient();
 using (OperationContextScope scope = new

OperationContextScope(proxy.InnerChannel))
 {
 string identity = User.Identity.Name;
 MessageHeader<string> headerIdentity =
 new
MessageHeader<string>(identity);
 MessageHeader untypedMessageHeader =

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 217

Checks Example
headerIdentity.GetUntypedHeader("identity"
, "ns");
 }

OperationContext.Current.OutgoingMessageHe
aders.Add(untypedMessageHeader);
 proxy.GetData("data");
 }
proxy.Close();

Application Server
Checks Example
Windows Service -Configuration
Windows Service is configured to run
under a custom domain service
account.

Use a domain account if possible.

WCF service is hosted in a Windows
Service.

Since IIS does not support
netTcpBinding, host it in Windows
Service.

Checks Example
WCF Service - Configuration
Configure the WCF service to use
netTcpBinding.

NetTcpBinding uses the TCP protocol
and provides full support for SOAP
security, transactions, and reliability. As
client and WCF service both are in the
Intranet, this is a good choice from a
performance perspective.

<endpoint address=""
binding="netTcpBinding"
bindingConfiguration="" name="TcpBinding"
contract="WCFServicecHost.IMyService" />

A mex endpoint is created for
publishing the metadata.

This is required so that client can add
reference to the WCF Service using

<endpoint address="Mex"
binding="mexTcpBinding"
bindingConfiguration=""
name="MexEndpoint"
contract="IMetadataExchange" />

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 218

Checks Example
SvcUtil utility.
Service Metadata is configured in
service behavior.

The service metadata entry is required
for the Windows Service host to start.
Both HTTP and HTTPS get are disabled.

<serviceMetadata />

WCF Service - Authentication

netTcpBinding is configured to use
Windows Authentication and Transport
Security.

By default, netTcpBinding is configured
to use Windows Authentication and
Transport Security.

<endpoint address=""
binding="netTcpBinding"
bindingConfiguration="" />

WCF Service - Caller Identity

Service retrieves the identity of the
caller from the operationcontext
For auditing purposes.

Use the identity to improve logging and
auditing.

string identity =
OperationContext.Current.IncomingMessageHea
ders.GetHeader<string>("identity", "ns");

WCF Service - SQL
The connection string for database is
configured to use Windows
Authentication.

The database connection string includes
Integrated Security=SSPI or Trusted
Connection=Yes.

The database connection string includes Integrated
Security=SSPI or Trusted Connection=Yes

Database connection is opened using
the WCF process identity’s security
context.

Service does not impersonate the
original caller to benefit for connection
pooling.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 219

Database Server
Check Example
Configuration

A SQL Server login is created for the
WCF’s service account (process
identity).

This grants access to the SQL Server.

exec sp_grantlogin 'Custom Service Account'

The login is mapped to a database user
for the Web application.

This grants access to the specified
database.

use targetDatabase
go
exec sp_grantdbaccess ' Custom Service
Account'
go

A database role is created in the target
database.

This allows access control and
authorization to the DB.

use targetDatabase
go
exec sp_addrole 'DB Role Name'
go

The login is added to the database role.

Grant minimum permissions. For
example, grant execute permissions to
selected stored procedures and provide
no direct table access.

use targetDatabase
go
exec sp_addrolemember 'DB Role Name',
'Custom Service Account'
go

Authentication
SQL Server is configured to use
Windows Authentication.

Communication Security
What Check More Info
Browser to
Web Server

SSL is used between browser
and Web Server to protect
sensitive data on the wire.

Install certificate in the Website. Configure
the virtual directory of the Web application
to use SSL.

App Server to
Database
Server

You can use IPSec or SSL
between the App Server and
Database Server to protect
sensitive data on the wire.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 220

Analysis

Web Server

Authentication
• To allow unauthenticated and unauthorized users to access pages and redirect to the

login page, anonymous access in IIS is enabled.
• Forms authentication is a good choice for this scenario because users come from the

Internet and have accounts in SQL.
• The membership feature is a good choice to use with forms authentication, as it allows

user authentication without writing and maintaining custom code.

Authorization
• URL authorization performs role checks against the original caller and restricts access to

pages based on role permissions.
• All authorization checks occur in the Web application before it makes calls to the WCF

service. The WCF service trusts the Web application to perform this authorization and
does not need to make fine-grained authorization decisions of its own.

• The Roles Manager is a good choice for this scenario because it allows the application to
look up users' roles without writing and maintaining custom code.

WCF Proxy
• Because you are taking care of all authentication and authorization in the ASP.NET

application, all calls through the WCF proxy and into the WCF service use the ASP.NET
process identity’s security context.

• If you need to produce audit logs showing what service operations each user called, you
can pass the identity of the original caller in a custom header.

Configuration
• In order to reduce attack surface and minimize the impact of a compromise, the

ASP.NET application on the Web Server runs under the security context of the Service
account using a least privileged account.

Application Server

Authentication
• WCF is configured to use Windows Authentication in order to authenticate the ASP.NET

service when it makes calls on the WCF Service.

Authorization
• Since the WCF Service trusts the ASP.NET application to authorize the user, the WCF

service performs no authorization. .

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 221

Data Access
• To reduce the risk of database credentials theft, the database connection string is

configured to use Windows Authentication. This choice avoids storing credentials in files
and passing credentials over the network to the Database Server.

• The WCF service accesses the database using the WCF process identity. As a result, all
calls use the single process account and designated database connection pooling.

Configuration
• This scenario is optimized around transmission performance at the expense of

interoperability with clients that expect a legacy Web service and the ability to host the
service in IIS. For this reason, the best binding choice is netTcpBinding. By default,
netTcpBinding supports Windows Authentication with Transport Security.

• Because IIS 6.0 does not support netTcpBinding, the WCF service is hosted in a
Windows service.

• In order to reduce attack surface and minimize the impact of a compromise, the
Windows Service is running under the security context of the Service account using a
least privileged account.

• A metadata exchange (mex) endpoint is exposed to make it possible for the client to
generate a proxy based on the service definition.

Database Server
• SQL Server database user roles are preferred to SQL Server application roles to avoid the

associated password management and connection pooling issues associated with the
use of SQL application roles. Applications activate SQL application roles by calling a built-
in stored procedure with a role name and a password. Therefore, you must store the
password securely. You must also disable database connection pooling when you use
SQL application roles, which severely impacts application scalability.

• Creating a new user-defined database role and adding the database user to the role lets
you give specific minimum permissions to the role. In this way, if the database account
changes you don't have to change the permissions on all database objects.

Communication Security
• SSL protects sensitive data on the wire between the browser and Web server.
• Transport Security protects sensitive data between the Web Server and App Server.
• You can use IPSec or SSL between the App Server and Database Server to protect

sensitive data on the wire.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 222

Example

Web Server

Code
• Form is created to perform Forms authentication.
• Role-authorization occurs before WCF service invocation.
• ASP.NET calls WCF service if it is authorized.
• Identity of the original caller is retrieved from the User ticket context.
• Message Header containing the caller identity is created and passed to the operation

context for auditing purposes.

Form to do forms authentication
<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Login.aspx.cs"
Inherits="Login" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

 </div>
 <asp:Login ID="Login1" runat="server">
 </asp:Login>
 <asp:CreateUserWizard ID="CreateUserWizard1" runat="server">
 <WizardSteps>
 <asp:CreateUserWizardStep runat="server" />
 <asp:CompleteWizardStep runat="server" />
 </WizardSteps>
 </asp:CreateUserWizard>
 </form>
</body>
</html>

//Proxy call invocation
using System.ServiceModel;
using System.ServiceModel.Channels;
…
protected void Button1_Click(object sender, EventArgs e)
 {
 if (User.IsInRole("accounting"))
 {
 WCFTestService.MyServiceClient proxy
 = new WCFTestService.MyServiceClient();

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 223

 using (OperationContextScope scope
 = new OperationContextScope(proxy.InnerChannel))
 {
 string identity = User.Identity.Name;
 MessageHeader<string> headerIdentity
 = new MessageHeader<string>(identity);
 MessageHeader untypedMessageHeader
 = headerIdentity.GetUntypedHeader("identity", "ns");

 OperationContext.Current.OutgoingMessageHeaders.Add(untypedMessageHeader);
 proxy.GetData("data");
 }
 proxy.Close();

 } //endif

 } //end function

Configuration
• Windows and anonymous authentication are enabled.
• Connection string to the SqlMembershipProvider and to the SqlRoleProvider are

configured.
• SQLmembershipProvider is enabled.
• Only authenticated users are allowed to browse the site.
• Role Manager is enabled.

<configuration>
 …
<connectionStrings>
 <add name="MyLocalSQLServer" connectionString="Initial
 Catalog=aspnetdb;data source=10.3.19.60;Integrated Security=SSPI;"/>
</connectionStrings>

<system.web>
 <membership defaultProvider="MySqlMembershipProvider">
 <providers>
 <clear/>
 <add name="MySqlMembershipProvider"
 connectionStringName="MyLocalSQLServer"
 applicationName="MyAppName"
 type="System.Web.Security.SqlMembershipProvider"/>
 </providers>
 </membership>

 <roleManager enabled="true" defaultProvider="MySqlRoleProvider">
 <providers>
 <clear/>
 <add name="MySqlRoleProvider"
 connectionStringName="MyLocalSQLServer"
 applicationName="MyAppName"
 type="System.Web.Security.SqlRoleProvider"/>
 </providers>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 224

 </roleManager>

 <authentication mode="Forms"/>
 <authorization>
 <deny users="?"/>
 <allow users="*"/>
 </authorization>

 <pages>
 <controls>
 <add tagPrefix="asp"
 namespace="System.Web.UI"
 assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31BF3856AD364E35"/>

 <add tagPrefix="asp"
 namespace="System.Web.UI.WebControls"
assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31BF3856AD364E35"/>

 </controls>
 </pages>

 <httpHandlers>
 <remove verb="*" path="*.asmx"/>

 <add verb="*" path="*.asmx" validate="false"
type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>

 <add verb="*" path="*_AppService.axd" validate="false"
type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>

 <add verb="GET,HEAD" path="ScriptResource.axd"
type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"
validate="false"/>

 </httpHandlers>

 <httpModules>
 <add name="ScriptModule" type="System.Web.Handlers.ScriptModule,
System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31BF3856AD364E35"/>

 </httpModules>

</system.web>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 225

Application Server

Code
• The service retrieves the identity of the caller from the operation context if it is required

for auditing purposes.
• The service calls SQL using the security context of the WCF service.

using System.Data.SqlClient;
public string GetData(string myValue)
 {
 SqlConnection sqlcon = new
 SqlConnection("Server=SqlServer;Database=testdb;Integrated
Security=SSPI");
 sqlcon.Open();
 //do the business operation
 string identity =
OperationContext.Current.IncomingMessageHeaders.GetHeader<string>("identity",
"ns");
 return “some data” ;
 }

Configuration
• The service has a binding endpoint that uses netTcpbinding with the default settings.
• The service has a service behavior configuration to publish metadata.
• The service has a base address configured.
• The service behavior is configured with element serviceMedata to allow metadata

exposure.

<system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior name="BehaviorConfiguration">
 <serviceMetadata />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <bindings />

 <services>
 <service behaviorConfiguration="BehaviorConfiguration"
 name="WCFServicecHost.MyService">
 <endpoint address="Mex"
 binding="mexTcpBinding"
 bindingConfiguration=""
 name="MexEndpoint"
 contract="IMetadataExchange" />
 <endpoint address=""
 binding="netTcpBinding"
 bindingConfiguration=""

 name="TcpBinding"
 contract="WCFServicecHost.IMyService" />

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 226

 <host>
 <baseAddresses>
 <add
 baseAddress="net.tcp://perfpres02.npscode.com/MyService" />
 </baseAddresses>
 </host>
 </service>
 </services>
</system.serviceModel>

Database Server

Configuration
• A SQL server login is created for the WCF service account.
• The WCF login name is given access to the database.
• The role is created in the database.
• The WCF login name is added to the role.

-- Create a SQL Server login that matches the WCF machine name
EXEC SP_GRANTLOGIN 'npscode\perfpres02$'

-- Grant the login access to the application database
use testdb
go
exec sp_grantdbaccess 'npscode\perfpres02$'

-- Create the new database role
use testdb
go
exec sp_addrole 'myrole2','db_owner'

-- Add the new login to the role
use testdb
go
exec sp_addrolemember 'myrole2','npscode\aspnethost'

Additional Resources
• For more information on security authentication best practices, see “Best Practices for

Security in WCF” at http://msdn2.microsoft.com/en-us/library/ms731059.aspx
• For additional information on message security, see “Message Security in WCF” at

http://msdn2.microsoft.com/en-us/library/ms733137.aspx
• For more information on hosting in a Windows service, see the document “How To:

Host WCF in a Windows Service.”
• For more information on WCF hosting considerations, see “Hosting Services” at

http://msdn2.microsoft.com/en-us/library/ms730158.aspx
• For more information on netTcpBinding configuration options see “<netTcpBinding>” at

http://msdn2.microsoft.com/en-us/library/ms731343.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 227

Chapter 15 - Internet – Windows Forms Client to Remote WCF
Using Message Security (Original Caller, HTTP)

Applies To
• Microsoft® Windows Communication Foundation (WCF) 3.5

Scenario
In this scenario, your users do not have Microsoft® Windows® accounts and use a Windows
Forms client to connect over the Internet to your WCF service. The business logic called by the
WCF service is backed by a SQL Server data store. The basic model for this application scenario
is shown in the following figure.

Winform
Client

Client Database Server

SQL
Server

Application Server

WCF
Service

Figure 1. Windows Forms Client to Remote WCF Using Message Security (Original Caller, HTTP) – Model

Key Characteristics
This scenario applies to you if:

• Your users have Windows Forms clients.
• Your user accounts are stored in SQL.
• Your user roles are stored in SQL.
• Your application transmits sensitive data over the network that needs to be protected.
• The ability to host the WCF service in IIS is more important than a high performance

connection between the ASP.NET application and the WCF service.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 228

Solution

Thick
Client

SQL
Server

Client

Database Server

Windows
Authentication

WCF
Identity

IPSec
(Optional)

(Privacy/
Integrity)

Mary

WCF Proxy

wsHttpBinding

WCF
(Web Service)IIS

Anonymous
Access

 Message
Security
(Privacy/
Integrity)

Username
Auth /

ASPNET Roles

Application Server

Figure 2. Windows Forms Client to Remote WCF Using Message Security (Original Caller, HTTP) – Solution

Solution Summary Table
In this solution you will:

• Use username and password to authenticate users against the SQL Server Membership
Provider.

• Use a service account to call the SQL Server from WCF.
• Use message security to protect sensitive data between the ASP.NET application and the

WCF service.
• Use wsHttpBinding to allow IIS to host the service.
• Host WCF in IIS.

Thick Client
Checks Example
WCF Proxy
Thick Client has a proxy reference
to the WCF service.

The application has access to the
WCF metadata to create a service
reference.

WCFTestService.ServiceClient myService = new
WCFTestService.ServiceClient();

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 229

Checks Example
Root CA certificate for the service is
installed in “Trusted Root
Certification Authorities.”

All certificates that are signed with
this certificate will be trusted by
the client machine.

Pass user credentials to the WCF
service when calling service
operations.

A proxy will invoke a WCF method
within the service contained on the
application server using the Service
Accounts security context.

myService.ClientCredentials.UserName.UserName
= "username";
myService.ClientCredentials.UserName.Password
= "p@ssw0rd";
myService.GetData(123);

Application Server

Checks Example
IIS - Configuration
A dedicated application
pool is created and
configured to run under a
custom service account.

Use a domain account if
possible.

The WCF Service is
configured to run under
the service account.

Assign the WCF Service to
the custom application
pool.

IIS - Authentication

The IIS virtual directory is
configured to use
Anonymous access.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 230

Checks Example
WCF Service -
Configuration

ASP.NET database is
created for use with SQL
Membership Provider and
SQL Role provider.

Aspnet_regsql.exe creates
the SQL database to store
the user and role
information.

aspnet_regsql -S .\SQLExpress -E -A r m

Connection string is
configured to point to the
user and role stored in SQL
Server.

The database connection
string includes Integrated
Security=SSPI or Trusted
Connection=Yes for
Windows Authentication.

<add name="MyLocalSQLServer" connectionString="Initial
Catalog=aspnetdb;data source=localhost;Integrated
Security=SSPI;" />

SqlMembershipProvider is
configured to use with
Membership.

The membership feature
helps protect credentials,
can enforce strong
passwords, and provides
consistent APIs for user
validation and secure user
management.

<membership defaultProvider="MySqlMembershipProvider">
 <providers>
 <clear/>
 <add name="MySqlMembershipProvider"
 connectionStringName="MyLocalSQLServer"
 applicationName="MyAppName"
 type="System.Web.Security.SqlMembershipProvider"/>
 </providers>
</membership>

Role Manager feature is
enabled and
SqlRoleProvider is
configured for roles
authorization.

Role Manager allows you
to look up users' roles
without writing and
maintaining custom code.

<roleManager enabled="true"
defaultProvider="MySqlRoleProvider" >
 <providers>
 <clear/>
 <add name="MySqlRoleProvider"
 connectionStringName="MyLocalSQLServer"
 applicationName="MyAppName"
 type="System.Web.Security.SqlRoleProvider"
/>
 </providers>
</roleManager>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 231

Checks Example
WCF Service process
identity is given access
permissions on the
ASP.NET database.

Your WCF service process
identity requires access to
the Aspnetdb database.

-- Create a SQL Server login for the Network Service
account
sp_grantlogin '<<Custom Service Account>>'

-- Grant the login access to the membership database
USE aspnetdb
GO
sp_grantdbaccess '<<Custom Service Account>>',
'<<Custom Service Account>>'

-- Add user to database role
USE aspnetdb
GO
sp_addrolemember 'aspnet_Membership_FullAccess',
'<<Custom Service Account>>'

sp_addrolemember 'aspnet_Roles_FullAccess', '<<Custom
Service Account >>’

WCF Service is configured
to use wsHttpBinding
binding.

wsHttpBinding uses the
HTTP protocol and provides
full support for SOAP
security, transactions, and
reliability. As clients are in
the Internet, this is the only
choice.

<endpoint address="" binding="wsHttpBinding"
bindingConfiguration="BindingConfiguration"
 name="WsBinding" contract="IService"/>

WCF Service -
Authentication

wsHttpBinding is
configured to use
Username Authentication
and Message security.

<wsHttpBinding>
 <binding name="BindingConfiguration">
 <security>
 <message clientCredentialType="UserName" />
 </security>
 </binding>
</wsHttpBinding>

SqlMembershipProvider is
configured to provide user
authentication.

The membership feature
automatically
authenticates and creates
the authentication ticket
for you.

<membership defaultProvider="MySqlMembershipProvider">
<providers>
<clear/>
<add name="MySqlMembershipProvider"
connectionStringName="MyLocalSQLServer"
applicationName="MyAppName"
type="System.Web.Security.SqlMembershipProvider"/>
</providers>
</membership>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 232

Checks Example
Service behavior is
configured to use
membership provider for
using with username
authentication.

<userNameAuthentication
userNamePasswordValidationMode="MembershipProvider"
membershipProviderName="MySqlMembershipProvider" />

Service behavior is
configured to publish
metadata.

<serviceMetadata httpGetEnabled="true" />

Service certificate is
installed on the WCF
Service machine. The
service behavior is
configured to use the
service certificate.

This is required for
protecting the user
credentials in the message.

<serviceCertificate
 findValue="CN=machine.domain.com" />

WCF Service -
Authorization

Service behavior is
configured to use
AspNetRoles with
SqlRoleProvider.

<serviceAuthorization
principalPermissionMode="UseAspNetRoles"
 roleProviderName="MySqlRoleProvider" />

WCF Operations are
configured to do role
checks at operation level,
declaratively.

Declarative role-checks on
operations is the preferred
mechanism.

[PrincipalPermission(SecurityAction.Demand,
Role="Managers")]
public string GetData(int value)
{
 return string.Format("You entered: {0}", value);
}

Roles APIs are used to do
programmatic roles checks,
for fine grained access
control.

If you need finer-grained
authorization control, you
can use imperative role
checks in the code itself.
Use call to
Roles.IsUserInRole to
perform the check.

If(Roles.IsUserInRole(“Manager”))
{
 // do something for the manager
}
else
{
 // throw an error.
}

WCF Service - SQL

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 233

Checks Example
The connection string for
database is configured to
use Windows
Authentication.

The database connection
string includes Integrated
Security=SSPI or Trusted
Connection=Yes.

SqlConnection sqlcon = new
SqlConnection("Server=10.3.19.11;Database=Northwind;Int
egratedSecurity=SSPI");

Open the database
connection using the WCF
process identity’s security
context.

Service does not
impersonate the original
caller to benefit for
connection pooling.

Database Server
Check Example
Configuration

A SQL Server login is created for the
WCF’s service account (process identity).

This grants access to the SQL Server.

exec sp_grantlogin 'Custom Service
Account'

The login is mapped to a database user
for the Web application.

This grants access to the specified
database.

use targetDatabase
go
exec sp_grantdbaccess ' Custom Service
Account'
go

A database role is created in the target
database.

This allows access control and
authorization to the DB.

use targetDatabase
go
exec sp_addrole 'DB Role Name'
go

The login is added to the database role.

Grant minimum permissions. For
example, grant execute permissions to
selected stored procedures and provide
no direct table access.

use targetDatabase
go
exec sp_addrolemember 'DB Role Name',
'Custom Service Account'
go

Authentication

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 234

Check Example
SQL Server is configured to use Windows
Authentication.

Communication Security
What Check
App Server to Database Server You can use IPSec or SSL between the App Server and

Database Server to protect sensitive data on the wire.

Analysis

Thick Client

WCF Proxy
• Because original user’s credentials are required in WCF for Authentication and

Authorization, username credentials are set on the WCF proxy and all calls to the WCF
service are made through that proxy instance.

• For validating the service certificate, the Root CA certificate is installed on the client
machine in the “Trusted Root Certification Authorities” location.

Application Server

Authentication
• As the users are coming from the Internet and you cannot assume they have a Windows

account, the user information is stored in SQL. For this reason, WCF is configured to use
Username Authentication to authenticate its callers.

• The membership feature is a good choice as it allows you to enable user name
authentication without writing and maintaining custom code.

• To protect the user credentials over the wire, a Service Certificate is installed and
configured to be used as Service Credentials in WCF.

Authorization
• For coarse grained access control, authorization checks are performed in the WCF

Service at the operation level, declaratively.
• For fine grained access control or implementing business logic, authorization checks are

made within the operations programmatically.
• The Roles Manager is a good choice for this scenario because it allows you to look up

users' roles without writing and maintaining custom code.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 235

Data Access
• To reduce the chances of database credentials being stolen, the database connection

string is configured to use Windows authentication. This choice avoids storing
credentials in files and passing credentials over the network to the Database Server.

• The WCF service accesses the database using the WCF process identity. As a result, all
calls are made using the single process account and database connection pooling to be
used.

Configuration
• Since all of the clients are coming from the Internet, the best transport protocol for this

scenario is HTTP. For this reason, wsHttpBinding is an ideal choice.
• Because wsHttpBinding is supported by IIS 6.0, Microsoft hosted the WCF service in IIS.
• In order to reduce attack surface and minimize the impact of a compromise, the WCF

Service is running under the security context of the Service account using a least
privileged account.

Database Server
• SQL Server database user roles are preferred to SQL server application roles to avoid the

associated password management and connection pooling issues associated with the
use of SQL application roles. Applications activate SQL application roles by calling a built-
in stored procedure with a role name and a password. Therefore, the password must be
stored securely. Database connection pooling must also be disabled when you use SQL
application roles, which severely impacts application scalability.

• Creating a new user-defined database role and adding the database user to the role lets
you give specific minimum permissions to the role. In this way, if the database account
changes you don't have to change the permissions on all database objects.

Communication Security
• Message security protects sensitive data between the Thick Client and WCF Service.
• You can use IPSec or SSL between the WCF Service and the Database Server to protect

sensitive data on the wire.

Example

Application Server

Code
• The service performs imperative authorization checks calling Roles.IsUserInRole.
• If auditing is required the service retrieves the identity of the caller.
• The service calls SQL using Windows Authentication.

using System.Data.SqlClient;

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 236

using System.Web.Security;

public string GetData(int value)

 if (Roles.IsUserInRole(@"accounting"))
{

 {
 SqlConnection sqlcon = new
SqlConnection("Server=10.3.19.60;Database=testdb;Integrated
Security=SSPI");
 sqlcon.Open();

 string identity = ServiceSecurityContext.Current.PrimaryIdentity.Name;
 return “data”
 }
 else return "not authorized";
 }
}

Configuration
• The service has a binding endpoint that uses wsHttpbinding with binding configuration

that enables message security and username authentication.
• The service configuration file has an entry with a connection string pointing to the SQL

store for authentication and authorization.
• The service configuration file has an entry for the SqlRoleProvider under system.web to

define which role provider is being used.
• The service configuration file has an entry for the SqlMemberShipProvider under

system.web to define the SQL provider for authentication.
• The service has a service behavior to use the SqlMemberShipProvider.
• The service behavior is configured with the element serviceAuthorization to allow

UseAspNetRoles as the authorization provider.
• The service behavior is configured with the element serviceMetadata to allow

publishing metadata.
• The service behavior is configured to use a certificate to encrypt the messages.

<configuration>
…
<connectionStrings>
 <add name="MyLocalSQLServer"
 connectionString="Initial Catalog=aspnetdb;data
source=10.3.19.60;Integrated Security=SSPI;"/>
 </connectionStrings>

 <system.web>

 <membership defaultProvider="MySqlMembershipProvider" >
 <providers>
 <clear/>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 237

 <add name="MySqlMembershipProvider"
 connectionStringName="MyLocalSQLServer"
 applicationName="MyAppName"
 type="System.Web.Security.SqlMembershipProvider" />
 </providers>
 </membership>

 <roleManager enabled="true" defaultProvider="MySqlRoleProvider" >
 <providers>
 <clear/>
 <add name="MySqlRoleProvider"
 connectionStringName="MyLocalSQLServer"
 applicationName="MyAppName"
 type="System.Web.Security.SqlRoleProvider" />
 </providers>
 </roleManager>

 <assemblies>
 <add assembly="System.Core, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=B77A5C561934E089"/>
 <add assembly="System.Xml.Linq, Version=3.5.0.0,
Culture=neutral, PublicKeyToken=B77A5C561934E089"/>
 <add assembly="System.Web.Extensions, Version=3.5.0.0,
Culture=neutral, PublicKeyToken=31BF3856AD364E35"/>
 <add assembly="System.Data.DataSetExtensions, Version=3.5.0.0,
Culture=neutral,PublicKeyToken=B77A5C561934E089"/>
 </assemblies>

 </compilation>

 <pages>
 <controls>
 <add tagPrefix="asp" namespace="System.Web.UI"
assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31BF3856AD364E35"/>
 </controls>
 </pages>

 <httpHandlers>
 <remove verb="*" path="*.asmx"/>
 <add verb="*" path="*.asmx" validate="false"
type="System.Web.Script.Services.ScriptHandlerFactory,
System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31BF3856AD364E35"/>
 <add verb="*" path="*_AppService.axd" validate="false"
type="System.Web.Script.Services.ScriptHandlerFactory,
System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31BF3856AD364E35"/>
 <add verb="GET,HEAD" path="ScriptResource.axd"
type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"
validate="false"/>
 </httpHandlers>
 <httpModules>
 <add name="ScriptModule" type="System.Web.Handlers.ScriptModule,
System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31BF3856AD364E35"/>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 238

 </httpModules>

 </system.web>

 <system.serviceModel>
 <bindings>
 <wsHttpBinding>
 <binding name="BindingConfiguration">
 <security>
 <message clientCredentialType="UserName" />
 </security>
 </binding>
 </wsHttpBinding>
 </bindings>
 <services>
 <service behaviorConfiguration="BehaviorConfiguration"
name="Service">
 <endpoint address="" binding="wsHttpBinding"
bindingConfiguration="BindingConfiguration"
 name="WsBinding" contract="IService" />
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior name="BehaviorConfiguration">
 <serviceAuthorization principalPermissionMode="UseAspNetRoles"
 roleProviderName="MySqlRoleProvider" />
 <serviceMetadata httpGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="true" />
 <serviceCredentials>
 <serviceCertificate findValue="CN=perfpres02.npscode.com" />
 <userNameAuthentication
userNamePasswordValidationMode="MembershipProvider"
 membershipProviderName="MySqlMembershipProvider" />
 </serviceCredentials>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

Client

Code
• Client passes user credentials explicitly when making calls to the service.

WCFTestService.ServiceClient myService = new
WCFTestService.ServiceClient();
myService.ClientCredentials.UserName.UserName = "username";
myService.ClientCredentials.UserName.Password = "p@ssw0rd";
myService.GetData(123);
myService.Close();

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 239

Database Server

Configuration
• A SQL Server login is created for the WCF Service account.
• The WCF login name is given access to the application database.
• The role is created in the application database.
• The WCF login name is added to the role.

-- Create a SQL Server login that matches the WCF machine name
EXEC SP_GRANTLOGIN 'npscode\perfpres02$'

-- Grant the login access to the application database
use testdb
go
exec sp_grantdbaccess 'npscode\perfpres02$'

-- Create the new database role
use testdb
go
exec sp_addrole 'myrole2','db_owner'

-- Add the new login to the role
use testdb
go
exec sp_addrolemember 'myrole2','npscode\perfpres02$'

Additional Resources
• For more information on Windows Communication Foundation Role Service Overview,

see http://msdn2.microsoft.com/en-us/library/bb386424.aspx
• For more information on ASP.NET: Understanding Role Management, see

http://msdn2.microsoft.com/en-us/library/5k850zwb.aspx
• For more information on Windows Authentication, see “Explained: Windows

Authentication in ASP.NET 2.0” at http://msdn2.microsoft.com/en-
us/library/aa480475.aspx

• For more information on debugging authentication errors, see “Debugging Windows
Authentication Errors” at http://msdn2.microsoft.com/en-us/library/bb463274.aspx

• For more information on security authentication best practices, see “Best Practices for
Security in WCF” at http://msdn2.microsoft.com/en-us/library/ms731059.aspx

• For additional information on message security, see “Message Security in WCF” at
http://msdn2.microsoft.com/en-us/library/ms733137.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 240

WCF Security Checklist

Design Considerations

Check Description

 Consider Exposing Different Endpoints

 If you need to support ASMX clients, use basicHttpBinding

 If you are migrating from DCOM then use netTcpBinding

 If you need to support legacy WSE clients then use a customBinding in WCF

 Consider transport security as your preferred security mode

 Know your Authentication options

 Know your Authorization options

 Know your binding options

 Choose the right binding for your scenario

Auditing and Logging

Check Description

 Use WCF auditing to audit your service

 If non-repudiation is important, consider setting SuppressAuditFailure property to false

 Use message logging to log operations on your service

 Instrument for user management events

 Instrument for significant business operations

 Protect log files from unauthorized access

 Do not log sensitive information

 Protect information in log files

 Use a Custom Trace Listener only when message filtering is needed

Authentication

Check Description

 Know your authentication options

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 241

 Use Windows Authentication when you can

 If your users are in AD, but you can’t use windows authentication, consider using username
authentication

 If you are using username authentication, use Membership Provider instead of custom
authentication

 If your users are in a SQL membership store, use the SQL Membership Provider

 If your users are in a custom store, consider using username authentication with a custom
validator

 If your clients have certificates, consider using client certificate authentication

 If your partner applications need to be authenticated when calling WCF services, use client
certificate authentication.

 If you are using username authentication, validate user login information

 Do not store passwords directly in the user store

 Enforce strong passwords

 Protect access to your credential store

 If you are using client certificate authentication, consider reducing the attack surface by
limiting the certificates in the certificate store

Authorization

Check Description

 If you store role information in Windows Groups

 If You Use ASP.NET Roles

 If you use Windows groups for authorization

 If you store role information in SQL

 If you store role information in ADAM

 If you store role information in a custom store

 If you need to authorize access to WCF operations

 If you need to perform fine-grained authorization based on business logic

Bindings

Check Description

 If you need to support clients over the internet

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 242

 If you need to expose your WCF service to legacy clients as an ASMX web service

 If you need to support WCF clients within an intranet

 If you need to support WCF clients on the same machine

 If you need to support disconnected queued calls

 If you need to support bidirectional communication between WCF Client and WCF service

Configuration Management

Check Description

 Use Replay detection to protect against message replay attacks

 If you host your service in a Windows service, expose a metadata exchange (mex) binding

 If you don’t want to expose your WSDL, turn off HttpGetEnabled and metadata exchange (mex)

 Encrypt configuration sections that contain sensitive data

Exception Management

Check Description

 Use structured exception handling

 Do not divulge exception details to clients in production

 Use a fault contract to return error information to clients

 Use a Global Exception Handler with IErrorHandler to Catch Unhandled Exceptions

Hosting

Check Description

 Run your service in a least privileged account

 Use IIS to host your service unless you need to use a transport that IIS does not support

Impersonation/Delegation

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 243

Check Description

 Know Your Tradeoffs with Impersonation

 Know Your Impersonation Options

 Know Your Impersonation Methods

 Consider Using Programmatic Instead of Declarative Impersonation

 When Impersonating Programmatically be Sure to Revert to Original Context

 When Impersonating Declaratively, Only Impersonate on the Operations That Require It

 Consider Using S4U Feature for Impersonation and Delegation, When You Cannot do a
Windows Mapping

 Consider Using LogonUser API, If Your WCF Service Cannot be Trusted for Delegation

 If You Have to Flow the Original Caller to the Backend Services, Use Constrained Delegation

Input/Data Validation

Check Description

 If You Need To Validate Parameters, Use Parameter Inspectors

 Use Schemas to Validate Messages, Using Message Inspectors

 Use Regular Expressions in Schemas to Validate Format, Range or Length

 Implement AfterReceiveRequest Method to Validate Inbound Messages on the Service

 Implement BeforeSendReply Method to Validate Outbound Messages on the Service

 Implement AfterReceiveReply Method to Validate Inbound Messages on the Client

 Implement BeforeSendRequest Method to Validate Outbound Messages on the Client

 Validate Operation Parameters for Length, Range, Format and Type

 Do Not Rely on Client-side Validation

 Avoid User-supplied File Name and Path Input

 Do Not Echo Untrusted Input

Message Security

Check Description

 If You Need to Support Clients Over the Internet, Consider Using Message Security

 If You There are Intermediaries between Client and Service, Consider Using Message Security

 If you Need to Support Selective Message Protection, Use Message Security

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 244

 If You Need to Support Multiple Transactions Per Session Using Secure Conversation, Use
Message Security

 Do Not Pass Sensitive Information In SOAP Headers When Using Http Transport and Message
Security

 If You Need to Support Interoperability, Consider Setting negotiateServiceCredentials to False

 If You Need to Streamline Certificate Distribution to Your Clients, Consider Negotiating the
Service Credentials

 If You Need to Limit the Clients that Will Consume Your Service, Consider Setting
negotiateServiceCredentials to False

Transport Security

Check Description

 Use Transport Security When Possible

 If You Need to Support Clients in an Intranet, Use Transport Security

 If You need to Support Interoperability with Non-WCF Clients, Use Transport Security

 Use Hardware Accelerator When Using Transport Security

Proxy Considerations

Check Description

 Publish Your WCF Service Metadata Only When Required

 If You Need to Publish Your WCF Service Metadata, Publish it Over HTTPS Protocol

 If You Need to Publish Your WCF Service Metadata, Publish it Using Secure Binding

 If You Turn Off Mutual Authentication, Be Aware of Service Spoofing

Sensitive Data

Check Description

 Avoid Plain Text Passwords or Other Sensitive Data in Configuration Files

 Use Platform Features to Manage Keys Where Possible

 Protect Sensitive Data Over the Wire

 Do Not Cache Sensitive Data

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 245

 Minimize Exposure of Secrets in Memory

 Be Aware That basicHttpBinding Will Not Protect Sensitive Data by Default

 Use Appropriately Sized Keys

Deployment Considerations

Check Description

 Do Not Use Temporary Certificates in Production

 If You are Using Kerberos Authentication or Delegation, Create an SPN

 Use IIS to Host Your WCF Service Wherever Possible

 Use a Least Privileged Account to Run Your WCF Service

 Protect sensitive data in your configuration files

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 246

WCF Security Guidelines

Index

Design Considerations
• Consider Exposing Different Endpoints
• If You Need to Support ASMX Clients, Use basicHttpBinding
• If You Are Migrating from DCOM, Use netTcpBinding
• If You Need to Support Legacy WSE Clients, Use a customBinding in WCF
• If You Require Interoperability with Non-Microsoft Clients, Use Bindings That Are Targeted

for Interoperability
• If Your Non-Microsoft Clients Understand the WS* Stack, Use ws2007HttpBinding or

wsHttpBinding
• Consider Transport Security as Your Preferred Security Mode
• Know Your Authentication Options
• Know Your Authorization Options
• Know Your Binding Options
• Choose the Right Binding for Your Scenario

Auditing and Logging
• Use WCF Auditing to Audit Your Service
• If Non-repudiation Is Important, Consider Setting the SuppressAuditFailure Property to false
• Use Message Logging for Debugging Purposes
• Instrument for User Management Events
• Instrument for Significant Business Operations
• Protect Log Files from Unauthorized Access
• Do Not Log Sensitive Information
• Protect Information in Log Files
• Use a Custom Trace Listener Only When Message Filtering Is Needed

Authentication
• Know Your Authentication Options
• Use Windows Authentication When You Can
• If Your Users Are in Active Directory but You Can’t Use Windows Authentication, Consider

Using Username Authentication
• If You Are Using Username Authentication, Use a Membership Provider Instead of Custom

Authentication
• If Your Users Are in a SQL Membership Store, Use the SQL Server Membership Provider
• If Your Users Are in a Custom Store, Consider Using Username Authentication with a

Custom Validator
• If Your Clients Have Certificates, Consider Using Client Certificate Authentication

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 247

• If Your Partner Applications Need to Be Authenticated When Calling WCF Services, Use
Client Certificate Authentication

• If You Are Using Username Authentication, Validate User Login Information
• Do Not Store Passwords Directly in the User Store
• Enforce Strong Passwords
• Protect Access to Your Credential Store
• If You Are Using Client Certificate Authentication, Limit the Certificates in the Certificate

Store

Authorization
• If You Store Role Information in Windows Groups, Consider Using the WCF

PrincipalPermissionAttribute Class for Role Authorization
• If You Use ASP.NET Roles, Use the ASP.NET Role Manager for Role Authorization
• If You Use Windows Groups for Authorization, Use the ASP.NET Role Provider with

AspNetWindowsTokenRoleProvider
• If You Store Role Information in SQL Server, Consider Using the SQL Server Role Provider for

Role Authorization
• If You Store Role Information in ADAM, Use the Authorization Manager Role Provider
• If You Store Role Information in a Custom Store, Create a Custom Authorization Policy
• If You Need to Authorize Access to WCF Operations, Use Declarative Authorization
• If You Need to Perform Fine-grained Authorization Based on Business Logic, Use Imperative

Authorization

Bindings
• If You Need to Support Clients over the Internet, Consider Using wsHttpBinding
• If You Need to Expose Your WCF Service to Legacy Clients as an ASMX Web Service, Use

basicHttpBinding
• If You Need to Support WCF Clients Within an Intranet, Consider Using netTcpBinding
• If You Need to Support WCF Clients on the Same Machine, Consider Using

netNamedPipeBinding
• If You Need to Support Disconnected Queued Calls, Use netMsmqBinding
• If You Need to Support Bidirectional Communication Between a WCF Client and WCF

Service, Use wsDualHttpBinding or netTcpBinding

Configuration Management
• Use Replay Detection to Protect Against Message Replay Attacks
• If You Host Your Service in a Windows Service, Expose a Metadata Exchange (mex) Binding
• If You Don’t Want to Expose Your WSDL, Turn Off HttpGetEnabled and Metadata Exchange

(mex)
• Encrypt Configuration Sections That Contain Sensitive Data

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 248

Exception Management
• Use Structured Exception Handling
• Do Not Divulge Exception Details to Clients in Production
• Use a Fault Contract to Return Error Information to Clients
• Use a Global Exception Handler to Catch Unhandled Exceptions

Hosting
• Run Your Service in a Least-Privileged Account
• Use IIS to Host Your Service, Unless You Need to Use a Transport That IIS Does Not Support

Impersonation/Delegation
• Know the Tradeoffs Involved in Impersonation
• Know Your Impersonation Options
• Know Your Impersonation Methods
• Consider Using Programmatic Instead of Declarative Impersonation
• When Impersonating Programmatically, Be Sure to Revert to the Original Context
• When Impersonating Declaratively, Only Impersonate on the Operations That Require It
• Consider Using the S4U Feature for Impersonation and Delegation When You Cannot Do a

Windows Mapping
• Consider Using the LogonUser API If Your WCF Service Cannot Be Trusted for Delegation
• Use Constrained Delegation if You Have to Flow the Original Caller to the Back-end Services

Message Validation
• If You Need to Validate Parameters, Use Parameter Inspectors
• Use Schemas with Message Inspectors to Validate Messages
• Use Regular Expressions in Schemas to Validate Format, Range, or Length
• Implement the AfterReceiveRequest Method to Validate Inbound Messages on the Service
• Implement the BeforeSendReply Method to Validate Outbound Messages on the Service
• Implement the AfterReceiveReply Method to Validate Inbound Messages on the Client
• Implement the BeforeSendRequest Method to Validate Outbound Messages on the Client
• Validate Operation Parameters for Length, Range, Format, and Type
• Do Not Rely on Client-side Validation
• Avoid User-supplied File Name and Path Input
• Do Not Echo Untrusted Input

Message Security
• If You Need to Support Clients over the Internet, Consider Using Message Security
• If There Are Intermediaries Between the Client and Service, Consider Using Message

Security
• If You Need to Support Selective Message Protection, Use Message Security
• If You Need to Support Multiple Transactions per Session Using Secure Conversation, Use

Message Security

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 249

• Do Not Pass Sensitive Information in SOAP Headers When Using HTTP Transport and
Message Security

• If You Need to Support Interoperability, Consider Setting negotiateServiceCredentials to
false

• If You Need to Streamline Certificate Distribution to Your Clients, Consider Negotiating the
Service Credentials

• If You Need to Limit the Clients that Will Consume Your Service, Consider Setting
negotiateServiceCredentials to false

Transport Security
• Use Transport Security When Possible
• If You Need to Support Clients in an Intranet, Use Transport Security
• If You Need to Support Interoperability with Non-WCF Clients, Use Transport Security
• Use a Hardware Accelerator When Using Transport Security

Proxy Considerations
• Publish Your WCF Service Metadata Only When Required
• If You Need to Publish Your WCF Service Metadata, Publish It over the HTTPS Protocol
• If You Need to Publish Your WCF Service Metadata, Publish It Using Secure Binding
• If You Turn Off Mutual Authentication, Be Aware of Service Spoofing

Sensitive Data
• Avoid Plain-Text Passwords or Other Sensitive Data in Configuration Files
• Use Platform Features to Manage Keys Where Possible
• Protect Sensitive Data Over the Network
• Do Not Cache Sensitive Data
• Minimize Exposure of Secrets in Memory
• Be Aware That basicHttpBinding Will Not Protect Sensitive Data by Default
• Use Appropriately Sized Keys

Deployment Considerations
• Do Not Use Temporary Certificates in Production
• If You Are Using Kerberos Authentication or Delegation, Create an SPN
• Use IIS to Host Your WCF Service Wherever Possible
• Use a Least-Privileged Account to Run Your WCF Service
• Protect Sensitive Data in Your Configuration Files

Design Considerations
The key issue to consider at design time is what binding you will choose for your particular
scenario. Choosing an appropriate binding is important from a security perspective because it
drives your security choices — for example, transfer security — which in turn determine the
confidentiality, integrity, and authentication of your messages. Additionally, you need to

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 250

consider your authentication and authorization options and decide which option makes sense
for your scenario.

When designing your WCF service, you should:

• Consider exposing different endpoints.
• If you need to support ASMX clients, use basicHttpBinding.
• If you are migrating from DCOM, use netTcpBinding.
• If you need to support legacy WSE clients, use a customBinding in WCF.
• If you require interoperability with non-Microsoft clients, use bindings that are

targeted for interoperability.
• If your non-Microsoft clients understand the WS* stack, use ws2007HttpBinding or

wsHttpBinding.
• Consider transport security as your preferred security mode.
• Know your authentication options.
• Know your authorization options.
• Know your binding options.
• Choose the right binding for your scenario.

Each of these guidelines is described in the following sections.

Consider Exposing Different Endpoints
Consider exposing multiple endpoints to support different authentication schemes or protocols,
or to support ASP.NET Web Services (ASMX) clients. This approach gives you flexibility as you
will only have to develop the service once, while still providing clients with the endpoint that
matches their security requirements.

If you need to support ASMX clients, use basicHttpBinding
If you have an ASMX client base, consider using basicHttpBinding in your service because it can
be consumed by both WCF and legacy clients. basicHttpbinding is a flexible way to provide
support for existing legacy clients, as it does not require that they be upgraded to WCF.
Additionally, basicHttpbinding provides a wide range of authentication schemes. Transport
security supports Basic, Digest, Windows, and certificate authentication; message security
supports username and certificate authentication. To use basicHttpBinding, create an endpoint
with binding configuration set to use basicHttpBinding. Security mode is turned off by default.
To enable security and authentication, you will need to create a binding configuration and then
configure the endpoint to use the binding.

If You Are Migrating from DCOM, Consider Using netTcpBinding
If you are migrating from DCOM, consider using netTcpBinding. Because netTcpBinding uses
binary encoding and the TCP protocol, it provides the best performance for .NET-to-.NET cross-
machine communication. Consider the following when choosing netTcpBinding:

• It supports transactions and reliable messaging.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 251

• It supports a wide range of authentication schemes.
• If you use transport security mode, you can use Windows and certificate authentication.
• If you use message or mixed-mode security, you can use Windows, issue token,

username, and certificate authentication.
• You can host in Internet Information Services (IIS) 7.0 or a Windows service. You can

also host in IIS 6.0, but you have to activate the host W3wp process before using the
service.

If You Need to Support Legacy WSE Clients, Use a CustomBinding in WCF
If you have a Web Services Enhancements (WSE) client base, you need to use a custom binding
in your service in order to support WSE legacy clients. This will provide interoperability for
existing clients without requiring the clients to migrate to WCF. The following table shows the
mapping of the WSE bindings to WCF binding elements.

WSE WCF
anonymousForCertificateSecurity anonymousForCertficate
kerberosSecurity or mutualCertificateSecurity11 MutualCertificate
usernameOverTransportSecurity UserNameOverTransport
usernameForCertificateSecurity usernameForCertificateSecurity

To create a custom binding to support WSE clients:

1. Add a customBinding to your WCF service.
2. Specify a name for your custom binding.
3. Specify an authentication mode that maps to the authentication used in your previous

WSE service.
4. Specify that WCF uses the August 2004 version of the WS-Addressing specification.
5. Configure the WCF endpoint to use the custom binding.

Additional Resources
For detailed information on how to configure customBinding, see “How to: Configure WCF
Services to Interoperate with WSE 3.0 Clients” at http://msdn2.microsoft.com/en-
us/library/ms730049.aspx

If You Require Interoperability with Non-Microsoft Clients, Use Bindings
That Are Targeted for Interoperability
The following bindings are targeted for interoperability:

• basicHttpBinding
• wsHttpBinding
• ws2007HttpBinding
• ws2007FederationHttpBinding
• wsFederationHttpBinding

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 252

If Your Non-Microsoft Clients Understand the WS* Stack, Use
ws2007HttpBinding or wsHttpBinding
If you need to support non-Microsoft clients that understand the WS* stack, use
ws2007HttpBinding or wsHttpBinding.

Consider Transport Security as Your Preferred Security Mode
Consider transport security as your preferred security mode, as it provides confidentiality,
integrity, and authenticity and may result in better performance. If you use message security or
mixed-mode security, consider profiling and testing your application to assess its performance
and scalability characteristics, to confirm that it meets your business requirements.

Know Your Authentication Options
Understand the authentication options that map to your particular deployment scenario.

Internet
• Username authentication with the SQL Server membership provider. If your users are

not in Active Directory, consider using the SQL Server membership provider. This will
give you a store that can be easily created and deployed. Configure message security or
mixed-mode security to protect your users’ credentials.

• Basic authentication with Windows. If your users are already in Active Directory or in
local machine accounts, consider using Basic authentication. Use transport security to
secure the communication channel and protect your credentials.

• Username authentication with a custom store. If your users are in a custom store,
consider using username authentication with a custom validator in order to validate
user credentials against your custom store. Unlike the other scenarios, you will have to
write custom code to validate your users’ credentials. Use message or mixed-mode
security to protect your users’ credentials.

• Certificate authentication with certificates. If your clients are partners or mobile clients
connecting over a virtual private network (VPN) in a peer-to-peer authentication
scenario, consider using certificate authentication. If your users have Windows accounts
in your domain, you can map the certificates to the Windows accounts and enable
authorization checks based on Windows roles. Certificate authentication requires that
you manage certificates; however, it allows seamless authentication for clients outside
your firewall. Use transport security to secure the communication channel and protect
your credentials.

Intranet
• Username authentication with the SQL Server membership provider. If your users are

not in Active Directory, consider using the SQL Server membership provider. This will
give you a store that can be easily created and deployed. Use transport security to
secure the communication channel and protect your credentials.

• Windows authentication with Windows. If your users are already in Active Directory or
in local machine accounts, consider using Windows authentication to leverage this

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 253

infrastructure. Windows authentication also gives you the benefits of using Windows
roles for authorization checks. Use transport security to secure the communication
channel and protect your credentials. Consider that local machine accounts configures
authentication with the NTLM protocol, which is prone to brute-force attacks. For more
secure peer-to-peer authentication, consider using certificate authentication.

• Username authentication with a custom store. If your users are in a custom store,
consider using user name authentication with a custom validator in order to validate
user credentials against your custom store. Unlike the other scenarios, you will have to
write custom code to validate your users’ credentials. Use message or mixed-mode
security to protect your users’ credentials.

• Certificate authentication with certificates. If your clients are partners or mobile clients
connecting over a VPN in a peer-to-peer authentication scenario, consider using
certificate authentication. If your users have Windows accounts in your domain, you can
map the certificates to the Windows accounts and enable authorization checks based on
Windows roles. Certificate authentication requires that you manage certificates;
however, it allows seamless authentication for clients outside your firewall. Use
transport security to secure the communication channel and protect your credentials.

Know Your Authorization Options
Know your authorization options and choose the most appropriate option for your particular
scenario. First decide if you want to use resource-based or role-based authorization. Resource-
based authorization uses access control lists (ACLs) on the resource to authorize the original
caller. Role-based allows you to authorize access to service operations or resources based on
the group a user is in.

• If you choose to use role-based authorization, you can store your roles in Windows
groups or in ASP.NET roles.

• If you are using Active Directory, consider using Windows groups based on ease of
maintenance and the fact that you maintain both roles and credentials in the Active
Directory store. If you are not using Active Directory, consider using ASP.NET roles and
the ASP.NET Role Provider.

Your authorization strategy may also be influenced by your choice of authentication as follows:

• Resource-based authorization
o If you are using certificate authentication, you will need to map the certificates to

Windows groups.
o If you are using username authentication, you will need to perform protocol

transition.
o Windows authentication will work with resource-based authorization by default.
o Basic authentication will work with resource-based authorization by default.

Note: You need to impersonate for resource-based authorization.
• Role-based authorization

o If you are using certificate authentication, you will need to map the certificates to
Windows groups.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 254

o If you are using username authentication with Windows groups, you will need to
perform protocol transition.

o Username authentication will work with ASP.NET roles by default.
o Windows authentication will work with Windows groups by default.
o Basic authentication will work with Windows groups by default.

Know Your Binding Options
Know your binding options and choose the most appropriate option for your particular
scenario. A thorough understanding of your binding options enables you to design more
reliable and secure WCF applications.

The following table summarizes common bindings.

Binding Description
basicHttpBinding Represents a binding that configures and exposes endpoints

that are able to communicate with ASMX-based Web services
and clients and other services that conform to the WS-I Basic
Profile 1.1 specification. By default, basicHttpBinding has
security disabled.

wsHttpBinding Defines a secure, reliable, interoperable binding suitable for
non-duplex service contracts. The binding implements the
following specifications: WS-Reliable Messaging for reliability,
and WS-Security for message security and authentication. The
transport is HTTP, and message encoding is text/XML
encoding. By default it provides message security using
Windows authentication.

ws2007HttpBinding Defines a secure, reliable, interoperable binding suitable for
non-duplex service contracts. The binding implements the
following specifications: WS-Reliable Messaging for reliability,
and WS-Security for message security and authentication. The
transport is HTTP, and message encoding is text/XML
encoding. The ws2007HttpBinding provides binding similar to
wsHttpBinding but uses the standard for OASIS (Organization
for the Advancement of Structured Information Standards). By
default, ws2007HttpBinding provides message security using
Windows authentication.

netTcpBinding Specifies a secure, reliable, optimized binding suitable for
cross-machine communication. By default, it generates a run-
time communication stack with transport security and
Windows authentication as default security settings.
netTcpBinding uses the Transmission Control Protocol (TCP)
for message delivery, and binary message encoding.

netNamedPipeBinding Defines a binding that is secure, reliable, and optimized for

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 255

cross process communication on the same machine. By
default, netNamedPipeBinding generates a run-time
communication stack with WS-ReliableMessaging for
reliability, transport security for transfer security, named
pipes for message delivery, and binary message encoding.
netNamedPipeBinding is not secured by default.

netMsmqBinding Defines a queued binding suitable for cross-machine
communication.

wsFederationHttpBinding Defines a binding that supports federated security.
wsFederationHttpBinding helps in implementing federation,
which is the ability to flow and share identities across multiple
enterprises or trust domains for authentication and
authorization. WCF implements federation over message and
mixed-mode security but not over transport security. Services
configured with this binding must use the HTTP protocol as
transport.

ws2007FederationHttpBinding Defines a binding that derives from wsFederationHttpBinding
and supports federated security.
ws2007FederationHttpBinding helps in implementing. WCF
implements federation over message and mixed-mode
security but not over transport security. Services configured
with this binding must use the HTTP protocol as transport. The
ws2007FederationHttpBinding provides binding similar to
ws2007FederationHttpBinding but uses the OASIS standard.

wsDualHttpBinding Defines a secure, reliable, and interoperable binding that is
suitable for duplex service contracts or communication
through Simple Object Access Protocol (SOAP) intermediaries.

customBinding Allows you to create a custom binding with full control over
the message stack.

For more information on bindings, see “Windows Communication Foundation Bindings” at
http://msdn.microsoft.com/en-us/library/ms733027.aspx .

Choose the Right Binding for Your Scenario
Use the following recommendations as a rule of thumb when choosing a binding option. You
can fine-tune your selection based on your unique needs and your infrastructure limitations.

• If your service needs to support legacy clients that expect an ASMX Web service,
consider using basicHttpBinding. Because basicHttpBinding does not implement any
security by default, if you require message or transport security, you should configure it
explicitly on this binding. Use basicHttpBinding to expose endpoints that are able to
communicate with ASMX-based Web services and clients and other services that
conform to the WS-I Basic Profile 1.1 specification. When configuring transport security,

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 256

basicHttpBinding defaults to no credentials just like a classic ASMX Web service.
basicHttpBinding allows you to host your service in IIS 5.0 or IIS 6.0.

• If your service will be called by clients over the Internet, consider using wsHttpBinding.
wsHttpBinding is a good choice for Internet scenarios in which you do not have to
support legacy clients that expect an ASMX Web service. If you do need to support
legacy clients, consider using basicHttpBinding instead. wsHttpBinding allows you to
host your service in IIS 5.0 or IIS 6.0.

• If you need to support clients within your intranet, consider using netTcpBinding.
netTcpBinding is a good choice for an intranet scenario if transport performance is
important to you and it is acceptable to host the service in a Windows service instead of
in IIS. netTcpBinding uses the TCP protocol and provides full support for message
security, transactions, and reliability. Use this binding when you want to provide a
secure and reliable binding environment for .NET-to-.NET cross-machine
communication. netTcpBinding allows you to host your service in IIS 7.0 or a Windows
service. You can also host in IIS 6.0, but you must activate the host W3wp process
before using the service.

• If you need to support WCF clients on the same machine as your service, consider using
netNamedPipeBinding. netNamedPipeBinding provides a secure and reliable binding
environment for cross-process communication on the same machine. Use this binding
when you want to make use of the Named Pipe protocol and provide full support for
SOAP security, transactions, and reliability. netNamedPipeBinding allows you to host
your service in IIS 7.0 or a Windows service. You can also host in IIS 6.0, but you must
activate the host W3wp process before using the service.

• If you need to support disconnected queuing, use netMsmqBinding. Queuing is
provided by using Microsoft Message Queuing (MSMQ) as a transport, which enables
support for disconnected operations, failure isolation, and load leveling. You can use
netMsmqBinding when the client and the service do not have to be online at the same
time. You can also manage any number of incoming messages by using load leveling.
MSMQ supports failure isolation, meaning that messages can fail without affecting the
processing of other messages. netMsmqBinding allows you to host your service in IIS
7.0 or a Windows service. You can also host in IIS 6.0, but you must activate the host
W3wp process before using the service.

• If you need to support a duplex service, use wsDualHttpBinding. A duplex service is a
service that uses duplex message patterns, which provides the ability for a service to
communicate back to the client via a callback. You can also use this binding to support
communication via SOAP intermediaries.

Auditing and Logging
It is important to audit and log activity across the tiers of your application in order to detect
suspicious activity. Using logs frequently provides early indications of a full-blown attack and
can help you address the threat of repudiation, where users deny their actions. Log files may be
required in legal proceedings to prove the wrongdoing of individuals. Generally, auditing is

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 257

considered most authoritative if the audits are generated at the precise time of resource access
and by the same routines that access the resource.

Use the following guidelines when implementing auditing and logging in WCF applications:

• Use WCF auditing to audit your service
• If non-repudiation is important, consider setting the SuppressAuditFailure property to

false
• Use message logging for debugging purposes
• Instrument for user management events
• Instrument for significant business operations
• Protect log files from unauthorized access
• Do not log sensitive information
• Protect information in log files
• Use a Custom Trace Listener only when message filtering is needed

Each of these guidelines is described in the following sections.

Use WCF Auditing to Audit Your Service
Use the auditing feature in WCF to audit your service. WCF service auditing can allow you to
detect an attack that has occurred or is in progress. In addition, auditing can help you debug
security-related problems. For example, if an error in the configuration of the authorization or
checking policy accidentally denies access to an authorized user, you can discover and isolate
the cause of this error by examining the auditing events in the event log.

Configure your application to use the WCF auditing feature to log security events for success,
failure, or both. The events are written to the Windows system event log, and you can view and
examine them in the Event Viewer.

The following configuration snippet shows how to configure your WCF service to use auditing:

<configuration>
 <system.serviceModel>
 <behaviors>
 <behavior>
 <serviceSecurityAudit
 auditLogLocation="Application"
 suppressAuditFailure="true"
 serviceAuthorizationAuditLevel="Failure"
 messageAuthenticationAuditLevel=
 "SuccessOrFailure" />
 </behavior>
 </behaviors>
 </system.serviceModel>
</configuration>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 258

Additional Resources
• For more information on WCF auditing, see “Auditing Security Events” at

http://msdn2.microsoft.com/en-us/library/ms731669.aspx
• For auditing security concerns, see “Security Concerns for Message Logging” at

http://msdn.microsoft.com/en-us/library/ms730318.aspx

If Non-repudiation is Important, Consider Setting the
SuppressAuditFailure Property to false
If non-repudiation is important, consider setting the SuppressAuditFailure property to false.
This setting will cause an exception to be thrown whenever an audit failure occurs. By default,
your WCF service will ignore audit failures and allow the service to continue running. By setting
SuppressAuditFailure to false, an exception can be thrown and handled by your WCF service.

// configuration snippet
<configuration>
 <system.serviceModel>
 <behaviors>
 <behavior>
 <serviceSecurityAudit
 auditLogLocation="Application"
 suppressAuditFailure="false"
 serviceAuthorizationAuditLevel="Failure"
 messageAuthenticationAuditLevel=
 "SuccessOrFailure" />
 </behavior>
 </behaviors>
 </system.serviceModel>
</configuration>

Use Message Logging for Debugging Purposes
Message logging can be used to diagnosed application errors and performance problems.
Message logging is not turned on by default, because logging is an expensive operation that can
consume disk space and processing time. Turn on message logging by setting attributes on the
<messagelogging> element in your configuration file and adding a trace listener to log the
events to a file.

Important: Make sure that you limit the number of messages that are written to disk for a
particular service, as disk space could be a limiting factor. When the message limit is reached, a
trace at the Information level is produced and all message-logging activities stop.

The following configuration code enables message logging by creating a
ServiceModelMessageLoggingListener and System.ServiceModel.MessageLogging source:

…
<configuration>
<system.diagnostics>
 <sources>
 <source name="System.ServiceModel.MessageLogging" switchValue="Warning,
ActivityTracing">

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 259

 <listeners>
 <add type="System.Diagnostics.DefaultTraceListener" name="Default">
 <filter type="" />
 </add>
 <add name="ServiceModelMessageLoggingListener">
 <filter type="" />
 </add>
 </listeners>
 </source>
 </sources>
 <sharedListeners>
 <add initializeData="c:\inetpub\wwwroot\WCFService\web_messages.svclog"
 type="System.Diagnostics.XmlWriterTraceListener, System, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089"
 name="ServiceModelMessageLoggingListener" traceOutputOptions="Timestamp">
 <filter type="" />
 </add>
 </sharedListeners>
</system.diagnostics>
</configuration>
…
…
<system.serviceModel>
 <diagnostics>
 <messageLogging logEntireMessage="false" logMalformedMessages="true"
 logMessagesAtServiceLevel="false" logMessagesAtTransportLevel="true" />
 </diagnostics>
…

Additional Resources
• For more information, see “How To - Audit and Log Security Events in WCF Calling from

Windows Forms.”
• For more information on log throttling, see “Configuring Message Logging” at

http://msdn2.microsoft.com/en-us/library/ms730064.aspx

Instrument for User Management Events
Use ASP.NET health monitoring to instrument your application and monitor user management
events around authentication and authorization. This instrumentation can help you detect and
react to potentially suspicious behavior. It also enables you to gather operations data; for
example, to track who is accessing your application and when user account passwords need to
be reset.

The following steps show how to instrument your application for user management events:

1. Create a custom user management Web event by creating a class library and then
creating a class that inherits from WebAuditEvent.

2. Configure your WCF service for health monitoring.
3. Instrument the WCF service by raising the custom event in a service contract.
4. Verify the service events in the event log after calling the service method from a test

client.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 260

Additional Resources
• For more information, see “How To – Use Health Monitoring to Instrument a WCF

Service for Security.”
• For more information on health monitoring, see “How To: Use Health Monitoring in

ASP.NET 2.0” at http://msdn2.microsoft.com/en-us/library/ms998306.aspx

Instrument for Significant Business Operations
Use ASP.NET health monitoring to instrument your application to track access to sensitive
operations. This level of instrumentation can help you detect and react to potentially suspicious
behavior. It also enables you to gather operations data; for example, to track what important
business operations are being carried out and by whom, etc. For instance, you could track
usage of methods that relate to financial transactions or access to sensitive data.

The following steps show how to instrument your application with health monitoring:

1. Create a class library and then create a class that inherits from WebSuccessAuditEvent
that displays some business information, such as bank account transactions.

2. Configure your WCF service for health monitoring.
3. Instrument the WCF service by raising the custom event in a service contract.
4. Verify the service events in the event log after calling the service method from a test

client.

Additional Resources
• For more information, see “How To – Use Health Monitoring to Instrument a WCF

Service for Security.”
• For more information on health monitoring, see “How To: Use Health Monitoring in

ASP.NET 2.0” at http://msdn2.microsoft.com/en-us/library/ms998306.aspx

Protect Log Files from Unauthorized Access
Restrict access to log files and SQL Server records in order to make it more difficult for attackers
to tamper with log files and cover their tracks.

Minimize the number of individuals who can manipulate the log files. Authorize access only to
highly trusted accounts such as administrators.

Restrict access to audit and log files by using Windows ACLs. If you log events to SQL Server or
to some custom event sink, use appropriate access controls to limit access to the event data.
For example, grant write access to the account or accounts used by your application, grant full
control to administrators, and grant read-only access to operators.

Do Not Log Sensitive Information
Do not log sensitive user or application data to your log files. Permissions on log files are often
different than permissions on sensitive data in your data store and operations that access it.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 261

The presence of sensitive data in your logs could allow users to gain access to information to
which they would not otherwise have access.

Sensitive data includes, but is not limited to:

• Personally identifiable information (PII). This is data that either contains personally
identifiable information or can be used to derive personally identifiable information that
should not be shared with users. Examples of personally identifiable information
include credit card numbers and social security numbers.

• User sensitive information. This is information provided by a user that they would not
want shared with other users of the application. This can include user credentials,
preferences, or application usage information.

• Application sensitive information. This is information that comes from a trusted source
that is not designed to be shared with users. Application sensitive information can
include connection strings and service account credentials.

Additional Resources
• For more information on protecting sensitive data in logs, see “Security Concerns for

Message Logging” at http://msdn2.microsoft.com/en-us/library/ms730318.aspx

Protect Information in Log Files
Protect the information in your log files because it may provide important insight into the
internal workings of your application.

The following tips can help you prevent the contents of a log file from being exposed
unintentionally:

• Ensure that the log files are protected by access control lists (ACLs) both in Web-hosted
and self-hosted scenarios.

• Choose a file extension that cannot be easily served using a Web request. For example,
the .xml file extension is not a safe choice. You can check the IIS administration guide to
see a list of extensions that can be served.

• Specify an absolute path for the log file location, which should be outside of the Web
host vroot public directory to prevent it from being accessed by an external party using
a Web browser.

By default, when using message logging, keys and personally identifiable information (PII)
(username, password, etc.) and application-specific headers (such as query string) and body
information(such as a credit card number) are not logged in traces and logged messages.

Additional Resources
• For more information on protecting sensitive data in logs, see “Security Concerns for

Message Logging” at http://msdn2.microsoft.com/en-us/library/ms730318.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 262

Use a Custom Trace Listener to Filter Sensitive Application Data in
Messages
Use a custom trace listener only when you need a message filter for filtering application-
specific personally identifiable information (PII) elements from messages before logging. Using
a custom trace listener with additional options gives you more control over the messages to be
logged.

Adding a custom trace listener on the message logging trace source is a privilege that should be
restricted to the administrator. This is because malicious custom listeners can be configured to
send messages remotely, which leads to disclosure of sensitive information. In addition, if you
configure a custom listener to send messages on the network (for example, to a remote
database), you should enforce proper access control on the message logs in the remote
machine.

The following code example demonstrates a custom listener configuration:

<system.diagnostics>
 <sources>
 <source name="System.ServiceModel.MessageLogging">
 <listeners>
 <add name="MyListener"
 type="YourCustomListener"
 initializeData="c:\logs\messages.svclog"
 maxDiskSpace="1000"/>
 </listeners>
 </source>
 </sources>
</system.diagnostics>

Additional Resources
• For more information, see “Security Concerns and Useful Tips for Tracing” at

http://msdn2.microsoft.com/en-us/library/ms733053.aspx

Authentication
Authentication is one of the most important pillars of security. Where possible, you should use
Windows authentication because this enables you to use an existing identity store such as your
organization’s Active Directory and to enforce strong password policies. You do not need to
build custom identity store management tools, and passwords are not transmitted over the
network.

This section provides guidance on choosing the correct authentication option for your scenario:

• Know your authentication options.
• Use Windows authentication when you can.
• If your users are in Active Directory, but you can’t use Windows authentication,

consider using username authentication.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 263

• If you are using username authentication, use a membership provider instead of
custom authentication.

• If your users are in a SQL Server membership store, use the SQL Server membership
provider.

• If your users are in a custom store, consider using username authentication with a
custom validator.

• If your clients have certificates, consider using client certificate authentication.
• If your partner applications need to be authenticated when calling WCF services, use

client certificate authentication.
• If you are using username authentication, validate user login information.
• Do not store passwords directly in the user store.
• Enforce strong passwords.
• Protect access to your credential store.
• If you are using client certificate authentication, limit the certificates in the certificate

store.

Each of these guidelines is described in the following sections.

Know Your Authentication Options
It is important to understand the authentication options that map to your deployment scenario.

Internet
• Username authentication with the SQL Server membership provider. If your users are

not in Active Directory, consider using the SQL Server membership provider. This will
give you a store that can be easily created and deployed. Both message security and
mixed-mode security support username authentication, and the authentication in WCF
can be configured to use this authentication mode. Additionally, username
authentication can cross firewall boundaries. Consider using transport security with a
custom HTTP module that is redirected to authenticate with the SQL Server membership
provider.

• Basic authentication with Active Directory. If your users are already in Active Directory
or in local machine accounts, consider using username password with Basic
authentication. Transport security supports this authentication mode. The service can
be hosted either in Windows service or in IIS.

• Username authentication with a custom store. If your users are already in a custom
store, or you need to use a custom store because other platform applications might
have access to it, consider using username authentication with a custom validator. Both
message security and mixed-mode security support this authentication mode.
Additionally, username authentication can cross firewall boundaries.

• Certificate authentication with Windows. If your clients are partners, or mobile clients
connecting over a virtual private network (VPN), consider using certificate
authentication. This configures a peer-to-peer authentication scenario. Optionally, you
can map the certificates to Windows accounts, for authorization checks based on
Windows roles. Certificate authentication has the benefits of providing a secure

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 264

infrastructure and the ability to cross firewall boundaries. All security modes, depending
on the binding used, support this authentication mode. The tradeoff is that using this
authentication mode requires you to manage certificates. Also, a public key
infrastructure (PKI) can be expensive to maintain.

Intranet
• Username authentication with the SQL Server membership provider. If your users are

not in Active Directory, consider using the SQL Server membership provider. This will
give you a store that can be easily created and deployed. Both message security and
mixed-mode security support username authentication, and the authentication in WCF
can be configured to use this authentication mode. Additionally, username
authentication can cross firewall boundaries. Consider using transport security with a
custom HTTP module that is redirected to authenticate with the SQL Server membership
provider.

• Windows authentication with Active Directory. If your users are already in Active
Directory, consider using Windows authentication to leverage the deployment and
investment in the infrastructure. This authentication mode also gives the benefits of
using Windows roles for authorization checks. Both transport security and message
security support Windows authentication. Windows authentication also supports
message security without requiring you to install certificates.

• Username authentication with a custom store. If your users are already in a custom
store, or you need to use a custom store because other platform applications might
have access to it, consider using username authentication with a custom validator. Both
message security and mixed-mode support this authentication mode. Username
authentication can also cross firewall boundaries.

• Certificate authentication with Windows. Consider using certificate authentication
when you cannot use Windows authentication because of a firewall between the client
and the service. Certificate authentication has the benefits of providing a secure
infrastructure and the ability to cross firewall boundaries. All security modes, depending
on the binding used, support this authentication mode. Optionally, you can map the
certificates to Windows accounts for authorization checks based on Windows roles. The
tradeoff is that using certificate authentication requires you to manage certificates.
Also, a PKI can be expensive to maintain.

Additional Resources
• For more information on authentication, see “Authentication” at

http://msdn2.microsoft.com/en-us/library/ms733082.aspx

Use Windows Authentication When You Can
Use Windows authentication in the following scenarios:

• When both the client and service are in trusted domains, such as in an Intranet scenario.
By using Windows authentication with Active Directory, you benefit from a unified

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 265

identity store, centralized account administration, enforceable account and password
policies, and strong authentication that avoids sending passwords over the network.

• When the service uses a local machine account, the client can authenticate by using the
NTLM protocol. However, because NTLM is not secured, this can expose the service to
man-in-the-middle attacks, where the hash password sent over the network can be
compromised by brute-force attacks. Although Windows authentication can be used
without Active Directory, you should consider using more secure methods such as
certificate authentication.

If Your Users Are in Active Directory but You Can’t Use Windows
Authentication, Consider Using Username Authentication
If your users are in Active Directory and you cannot use Windows authentication (e.g., in an
Internet scenario), consider using username authentication. Your users will be mapped to a
Windows account by default. By using username authentication with Windows accounts, you
benefit from having a unified identity store, centralized account administration, and
enforceable account and password policies.

If You Are Using Username Authentication, use a Membership Provider
Instead of Custom Authentication
If you are using username authentication in WCF and your users are not in Active Directory, use
a membership provider, in this case the SQL Server membership provider. Do not try to
implement your own user authentication mechanism.

The membership feature is a good choice because it allows you to enable username
authentication without writing and maintaining custom code. The membership provider can be
integrated into a WCF application in order to authenticate consumers of your service. Use a
WCF binding such as wsHttpBinding that supports username/password credentials, and set
the client credential type to UserName. Configure the membership provider in your
configuration file to authenticate users against the membership store.

The following configuration snippet shows how to configure the username authentication with
a membership provider:

1. Set the membership provider configuration:

<connectionStrings>
 <add name="MyLocalSQLServer"
 connectionString="Initial Catalog=aspnetdb;data
source=10.3.19.60;Integrated Security=SSPI;"/>
 </connectionStrings>

 <system.web>

 <membership defaultProvider="MySqlMembershipProvider" >
 <providers>
 <clear/>
 <add name="MySqlMembershipProvider"

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 266

 connectionStringName="MyLocalSQLServer"
 applicationName="MyAppName"
 type="System.Web.Security.SqlMembershipProvider" />
 </providers>
 </membership>
 </system.web>

2. Set the client credentials to UserName:

<wsHttpBinding>
 <binding name="BindingConfiguration">
 <security>
 <message clientCredentialType="UserName" />
 </security>
 </binding>
</wsHttpBinding>

3. Set the Service Credentials configuration to use the membership provider:

….
<serviceBehaviors>
 <behavior name="BehaviorConfiguration">
 ….
 <serviceCredentials>
 <userNameAuthentication
userNamePasswordValidationMode="MembershipProvider"
 membershipProviderName=" MySqlMembershipProvider " />
 </serviceCredentials>
 </behavior>
</serviceBehaviors>
….

If Your Users Are in a SQL Server Membership Store, Use the SQL Server
Membership Provider
If your user information is already stored in the aspnetdb database, or if you are building an
Internet-facing WCF application from scratch, use the SQL Server membership provider to
authenticate your WCF service clients. The SQL Server membership provider authenticates all
incoming client credentials against the credentials stored in the SQL Membership database. The
membership feature is a good choice because it allows you to enable username authentication
without writing and maintaining custom code. The SQL Server membership provider is
configured in the Service config file. The following example illustrates a service’s SQL Server
membership provider configuration:

1. Set the SQL membership provider configuration:

…
<connectionStrings>
 <add name="MyLocalSQLServer"
 connectionString="Initial Catalog=aspnetdb;data
source=10.3.19.60;Integrated Security=SSPI;"/>
</connectionStrings>
<system.web>
…

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 267

 <membership defaultProvider="MySqlMembershipProvider" >
 <providers>
 <clear/>
 <add name="MySqlMembershipProvider"
 connectionStringName="MyLocalSQLServer"
 applicationName="MyAppName"
 type="System.Web.Security.SqlMembershipProvider" />
 </providers>
 </membership>
…
</system.web>
…

2. Set your binding to use username authentication as follows:

…
<bindings>
 <wsHttpBinding>
 <binding name="BindingConfiguration">
 <security>
 <message clientCredentialType="UserName" />
 </security>
 </binding>
 </wsHttpBinding>
</bindings>
…

3. Set the service credentials configuration to use the SQL Server membership provider

with username authentication:

…
<serviceBehaviors>
 <behavior name="BehaviorConfiguration">
 <serviceCredentials>
 <userNameAuthentication
userNamePasswordValidationMode="MembershipProvider"
 membershipProviderName="MySqlMembershipProvider" />
 </serviceCredentials>
 </behavior>
</serviceBehaviors>
…

If Your Users Are in a Custom Store, Consider Using Username
Authentication with a Custom Validator
If you need to use a custom authentication store, consider using username authentication with
a custom username and password validator. Configure the custom validator in a service
behavior and implement it in a class library. The username and password validator is used by
your service to authenticate your users based on your custom user store.

The following configuration snippet shows how to configure a custom validator for your WCF
service:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 268

<serviceCredentials>
 <userNameAuthentication
 userNamePasswordValidationMode="Custom"
 customUserNamePasswordValidatorType="MyUserNamePasswordValidator,Host"/>
</serviceCredentials>

The following code snippet shows how to implement a custom username and password
validator:

using System;
using System.Collections.Generic;
using System.IdentityModel.Selectors;
using System.IdentityModel.Tokens;
using System.Text;

namespace DerivativesCalculator
{
 public class MyUserNamePasswordValidator : UserNamePasswordValidator
 {
 public override void Validate(string userName, string password)
 {
 Console.Write("\nValidating username, {0}, and password, {1} ...
", userName, password);
 if ((string.Compare(userName, "don", true) != 0) ||
 (string.Compare(password, "hall", false) != 0))
 {
 throw new SecurityTokenException("Unknown user.");
 }
 Console.Write("Done: Credentials accepted. \n");
 }
 }
}

If Your Clients Have Certificates, Consider Using Client Certificate
Authentication
Client certificates can authenticate a client service account or multiple users to a WCF service. If
you use a client certificate for each user, you can map each certificate to a Windows account.

Enable the Windows account mapping feature by setting the
mapClientCertificateToWindowsAccount attribute to true as follows:

<serviceCredentials>
 <clientCertificate>
 <authentication mapClientCertificateToWindowsAccount="true" />
 </clientCertificate>
</serviceCredentials>

If Your Partner Applications Need to Be Authenticated When Calling WCF
Services, Use Client Certificate Authentication
If you have partners who need to consume your services, consider using transport security with
client certificate authentication. This type of authentication allows clients to authenticate
without prompting for a username and password.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 269

In order to support client certificate authentication, you will need to add a <clientCertificate>
reference to the client configuration file. The following client configuration example links the
client certificate to the binding:

 <behaviors>
 <endpointBehaviors>
 <behavior name="ClientCertificateBehavior">
 <clientCredentials>
 <clientCertificate findValue="client.com"
 storeLocation="CurrentUser"
 storeName="My"
 x509FindType="FindBySubjectName" />
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
 </behaviors>

If You Are Using Username Authentication, Validate User Login
Information
If you are using username authentication, validate the user-provided usernames and passwords
for type, length, format, and range. Input and data validation represents one line of defense in
the protection of your WCF application. Use regular expressions to constrain the input at the
server.

If you are not using the SQL Server membership provider and need to develop your own queries
to access your user store database, do not use login details to dynamically construct SQL
statements because this makes your code susceptible to SQL injection. Instead, validate the
input and then use parameterized stored procedures.

The following code snippet shows how to validate the credentials of a new user by using regular
expressions.

using System;
using System.Text.RegularExpressions;

public void CheckNewUserCredentials(string name, string password)
{
 // Check name contains only lower case or upper case letters,
 // the apostrophe, a dot, or white space. Also check it is
 // between 1 and 40 characters long
 if (!Regex.IsMatch(userIDTxt.Text, @"^[a-zA-Z'./s]{1,40}$"))
 throw new FormatException("Invalid name format");

 // Check password contains at least one digit, one lower case
 // letter, one uppercase letter, and is between 8 and 10
 // characters long
 if (!Regex.IsMatch(passwordTxt.Text,
 @"^(?=.*\d)(?=.*[a-z])(?=.*[A-Z]).{8,10}$"))
 throw new FormatException("Invalid password format");

 // Perform data access logic (using type safe parameters)

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 270

 ...
}

Do Not Store Passwords Directly in the User Store
Do not store user passwords in plaintext or in encrypted format. Instead, store password
hashes with a salt. By storing your password with hashes and salt, you help prevent an attacker
that gains access to your user store from obtaining the user passwords. If you use encryption,
you have the added problem of securing the encryption key. Use one of the membership
providers to help protect credentials in storage and, where possible, specify a hashed password
format on your provider configuration.

If you must implement your own user stores, store one-way password hashes with salt.
Generate the hash from a combination of the password and a random salt value. Use an
algorithm such as SHA256. If your credential store is compromised, the salt value helps to slow
an attacker who is attempting to perform a dictionary attack or rainbow table. This gives you
additional time to detect and react to the compromise.

Enforce Strong Passwords
Ensure that your passwords are complex enough to protect against brute-force or dictionary
attacks against your user credential store.

When using username authentication with the ASP.NET membership provider, users are forced
to use strong passwords by default. For example, the SQL Server membership provider and the
Active Directory membership provider ensure that passwords are at least seven characters in
length, with at least one non-alphanumeric character. Ensure that your membership provider
configuration enforces passwords of at least this strength.

To configure the precise password complexity rules enforced by your provider, you can set the
following additional attributes:

• passwordStrengthRegularExpression. The default is "".
• minRequiredPasswordLength. The default is 7.
• minRequiredNonalphanumericCharacters. The default is 1.

Note: The default values shown here apply to the SQL Server membership provider and the
Active Directory membership provider. The Active Directory membership provider also verifies
passwords against the default domain password policy.

Protect Access to Your Credential Store
Ensure that only those accounts that require access are granted access to your credential store.
This helps to protect the credential store by limiting access to it. For example, consider limiting
access to only your application’s account. Ensure that the connection string used to identify
your credential store is encrypted.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 271

Also consider storing your credential database on a server that is physically separate from your
WCF application server. This makes it more difficult for an attacker to compromise your
credential store even if he or she manages to take control of your server.

If You Are Using Client Certificate Authentication, Limit the Certificates in
the Certificate Store
If you are using certificate authentication, consider reducing the attack surface by limiting the
certificates in the certificates store. Keep in mind the following considerations:

• Consider deleting all the root certificates from the trusted root certification authorities
store that are not required in order to authenticate your clients.

• If your client base is large, consider using chain trust validation instead of peer trust so
that you will have a smaller number of certificates to manage.

• If your client base is small, consider using peer trust validation authentication. This will
require that you manage one certificate per user. Any users not installed in the trusted
people store will be denied access to the service.

Authorization
Authorizing users of your WCF applications helps in reducing the attack surface. You control
authorization by using either resource-based or role-based authorization.

Use the following guidelines to choose an authorization strategy when implementing role-base
authorization:

• If you store role information in Windows groups, consider using the WCF
PrincipalPermissionAttribute class for role authorization.

• If you use ASP.NET roles, use the Role Manager for role authorization.
• If you use Windows groups for authorization, use the ASP.NET Role Provider with

AspNetWindowsTokenRoleProvider.
• If you store role information in SQL Server, consider using the SQL Server role provider

for role authorization.
• If you store role information in ADAM, use the Authorization Manager role provider.
• If you store role information in a custom store, create a custom authorization policy.
• If you need to authorize access to WCF operations, use declarative authorization.
• If you need to perform fine-grained authorization based on business logic, use

imperative authorization.

Each of these guidelines is described in the following sections.

If You Store Role Information in Windows Groups, Consider Using the WCF
PrincipalPermissionAttribute Class for Role Authorization
If you are using Windows groups to store user roles, map your Windows groups to the WCF
service methods by using the PrincipalPermission attribute. Incoming client username
credentials will be mapped to associated Windows groups. Service method access will be

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 272

granted to the user if the user is a member of the group associated with the method being
called.

The following example demonstrates how the WCF service’s Add method will only run for users
belonging to the CalculatorClients Windows group:

// Only members of the CalculatorClients group can call this method.
[PrincipalPermission(SecurityAction.Demand, Role = "CalculatorClients")]
public double Add(double a, double b)
{
 return a + b;
}

Additional Resources
• For more information on authorization, see “Authorization” at

http://msdn2.microsoft.com/en-us/library/ms733071.aspx
• For an authorization Q&A, see the Authorization section of “WCF 3.5 Security Questions

and Answers“ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

If You Use ASP.NET Roles, Use the ASP.NET Role Manager for Role
Authorization
If you are using ASP.NET roles, leverage these roles in your WCF service by using the ASP.NET
role manager. The role information can be stored in SQL Server, Windows Groups, or an
Authorization Manager (AzMan) policy store in ADAM.

The ASP.NET role manager supports role creation and role managemen, and automatically
performs role lookup for authenticated users.

Additional Resources
• For more information on authorization, see “Authorization” at

http://msdn2.microsoft.com/en-us/library/ms733071.aspx
• For an authorization Q&A, see the Authorization section of “WCF 3.5 Security Questions

and Answers“ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

If You Use Windows Groups for Authorization, Use the ASP.NET Role
Provider with AspNetWindowsTokenRoleProvider
If you use Windows groups for authorization, consider using the ASP.NET role provider with the
AspNetWindowsTokenRoleProvider name. This allows you to separate the design of the
authorization from the implementation inside your service. If you decide to change the role
provider, it will not affect the code needed to perform the authorization. Also consider doing

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 273

imperative checks by using the role manager API instead of performing authorization checks
with WindowsPrincipal.IsInrole.

The following configuration example shows how to configure
AspNetWindowsTokenRoleProvider:

<system.web>
…
<roleManager enabled="true"
 defaultProvider="AspNetWindowsTokenRoleProvider" />
…
</system.web>

Configure the service behavior to use ASPNetRoles and the role provider.
….
<behaviors>
 <serviceBehaviors>
 <behavior name="BehaviorConfiguration">
 <serviceAuthorization principalPermissionMode="UseAspNetRoles"
 roleProviderName=" AspNetWindowsTokenRoleProvider " />
 <serviceMetadata />
 </behavior>
 </serviceBehaviors>
</behaviors>
….

The following code example shows how to perform the authorization check in code, using the
role manager API:

if (Roles.IsUserInRole(@"accounting"))
{
 //authorized
}
else
{
 //authorization failed
}

Additional Resources
• For more information on authorization, see “Authorization” at

http://msdn2.microsoft.com/en-us/library/ms733071.aspx
• For information on how to use the role manager , see “How To: Use Role Manager in

ASP.NET 2.0”at http://msdn2.microsoft.com/en-us/library/ms998314.aspx
• For an authorization Q&A, see the Authorization section of “WCF 3.5 Security Questions

and Answers“ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 274

If You Store Role Information in SQL Server, Consider Using the SQL Server
Role Provider for Role Authorization
If you store role information in SQL Server, configure your application to use the SQL Server role
provider for authorization. The role provider allows you to load the roles for users without
writing and maintaining custom code.

The following steps show how to use SQL Server role provider to provide role-based
authorization:

1. Enable the role provider as shown below and configure the connection string pointing to
the role store in SQL Server:

…
<configuration>
…
<connectionStrings>
 <add name="MyLocalSQLServer"
 connectionString="Initial Catalog=aspnetdb;data
source=Sqlserver;Integrated Security=SSPI;"

<system.web>
<roleManager enabled="true" defaultProvider="MySqlRoleProvider" >
 <providers>
 <add name="MySqlRoleProvider"
 connectionStringName="MyLocalSQLServer"
 applicationName="MyAppName"
 type="System.Web.Security.SqlRoleProvider" />
 </providers>
 </roleManager>
…
<system.web>

2. Configure the service behavior. Set the principalPermissionMode attribute to
UseAspNetRoles and the roleProviderName attribute to MySqlRoleProvider.

…
<system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior name="BehaviorConfiguration">
 <serviceAuthorization
principalPermissionMode="UseAspNetRoles"
 roleProviderName="MySqlRoleProvider" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
<services>
 <service behaviorConfiguration=" BehaviorConfiguration "
name="MyService">
 <endpoint binding="wsHttpBinding" bindingConfiguration=""
 name="httpsendpoint" contract="IMyService2" />
 </service>
 </services>
 </system.serviceModel>
…

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 275

Additional Resources
• For more information on authorization, see “Authorization” at

http://msdn2.microsoft.com/en-us/library/ms733071.aspx
• For an authorization Q&A, see the Authorization section of “WCF 3.5 Security Questions

and Answers“ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

If You Store Role Information in ADAM, Use the Authorization Manager
Role Provider
If your application stores role information in an Authorization Manager (AzMan) policy store in
Active Directory Application Mode (ADAM), use the Authorization Manager role provider.
Authorization Manager provides a Microsoft Management Console (MMC) snap-in for creating
and managing roles and managing role membership for users.

Additional Resources
• For more information on the Authorization Manager, see “How To: Use Authorization

Manager (AzMan) with ASP.NET 2.0” at http://msdn2.microsoft.com/en-
us/library/ms998336.aspx

• For more information on authorization, see “Authorization” at
http://msdn2.microsoft.com/en-us/library/ms733071.aspx

• For an authorization Q&A, see the Authorization section of “WCF 3.5 Security Questions
and Answers“ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

If You Store Role Information in a Custom Store, Create a Custom
Authorization Policy
If your application stores authorization data in a custom store such as a SQL Server database,
create a custom authorization policy to authorize your users.

To create a custom authorization policy, you implement a class derived from
IAuthorizationPolicy along with an Evaluate method that you can customize for your user
authorization policy.

The Policy library is configured in the configuration file or in code. The following example
configures the policy location in the configuration file:

<serviceAuthorization
serviceAuthorizationManagerType="Microsoft.ServiceModel.Samples.MyServiceAuth
orizationManager, service">
<!-- The serviceAuthorization behavior allows one to specify custom
authorization policies. -->
<authorizationPolicies>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 276

 <add
policyType="Microsoft.ServiceModel.Samples.CustomAuthorizationPolicy.MyAuthor
izationPolicy, PolicyLibrary" />
</authorizationPolicies>
</serviceAuthorization>

Additional Resources
• For more information on custom authorization policies, see “How to: Create a Custom

Authorization Policy” at http://msdn2.microsoft.com/en-us/library/ms733071.aspx
• For more information on authorization, see “Authorization” at

http://msdn2.microsoft.com/en-us/library/ms733071.aspx

If You Need to Authorize Access to WCF Operations, Use Declarative
Authorization
You can add declarative authorization by specifying required access for a particular method
declared as an attribute on the operation. Declarative authorization checks will work if you are
using the ASP.NET role provider or Windows groups. Use imperative authorization if you need
finer-grained authorization decisions based on business logic.

The following code example shows how to use the PrinciplePermission attribute to perform
declarative authorization:

[PrincipalPermission(SecurityAction.Demand, Role = "accounting")]
public double Add(double a, double b)
{
 return a + b;
}

Additional Resources
• For more information on authorization, see “Authorization” at

http://msdn2.microsoft.com/en-us/library/ms733071.aspx
• For an authorization Q&A, see the Authorization section of “WCF 3.5 Security Questions

and Answers“ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

If You Need to Perform Fine-Grained Authorization Based on Business
Logic, Use Imperative Authorization
Use imperative role-based authorization when you need to make fine-grained authorization
choices based on business logic, or when you require finer-grained access control beyond the
level of a code method.

Imperative check using a Windows principal:

WindowsPrincipal myPrincipal = new
WindowsPrincipal(ServiceSecurityContext.Current.WindowsIdentity);
if(myPrincipal.IsInRole(@"domain\Accounting"))

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 277

{
//authorized
}
else
{
//not authorized
}

Imperative check using the ASP.NET role provider:

if (Roles.IsUserInRole(@"accounting"))
{
//authorized
}
else
{
//authorization failed
}

Additional Resources
• For more information on authorization, see “Authorization” at

http://msdn2.microsoft.com/en-us/library/ms733071.aspx
• For an authorization Q&A, see the Authorization section of “WCF 3.5 Security Questions

and Answers“ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

Bindings
Choosing the right binding for your particular scenario is important from both a security and
performance perspective. One general rule of thumb you can follow is o use netTcpbinding in
an intranet scenario and wsHttpBinding in an Internet scenario. You can then fine-tune your
selection based on your unique needs and your infrastructure limitations.

Consider the following recommendations when choosing a binding option:

• If you need to support clients over the Internet, consider using wsHttpBinding.
• If you need to expose your WCF service to legacy clients as an ASMX Web service, use

basicHttpBinding.
• If you need to support WCF clients within an intranet, consider using netTcpBinding.
• If you need to support WCF clients on the same machine, consider using

netNamedPipeBinding.
• If you need to support disconnected queued calls, use netMsmqBinding.
• If you need to support bidirectional communication between a WCF client and WCF

service, use wsDualHttpBinding or netTcpBinding.

Each of these guidelines is described in the following sections.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 278

If You Need to Support Clients Over the Internet, Consider Using
wsHttpBinding
If your service will be called by clients over the Internet, consider using wsHttpBinding.
wsHttpBinding is a good choice for Internet scenarios in which you do not have to support legacy
clients that expect an ASMX Web service. If you do need to support legacy clients, consider
using basicHttpBinding instead.

wsHttpBinding has the following characteristics:

• It provides interoperability with non-WCF clients that support the WS* stack.
• It supports the WS* stack, including reliable messaging, message security, and secure

transactions.
• Message security is turned on by default. Transport security is also available.
• It allows the service to be hosted in IIS 5.0 or IIS 6.0.
• If you choose transport security, you can use certificate, Windows, or token

authentication.
• If you choose message security, you can use certificate, username, Windows, or issue

token authentication (Windows CardSpace).

The following example shows how to configure wsHttpBinding :

<system.serviceModel>
....
 <services>
 <service behaviorConfiguration="" name="WCFServicecHost.MyService">
 ...
 <endpoint address="" binding="wsHttpBinding"
bindingConfiguration=""
 name="wsBinding" contract="WCFServicecHost.IMyService" />
 ...
 </service>
 </services>
</system.serviceModel>

Additional Resources
• For more information on bindings, see “Windows Communication Foundation Bindings”

at http://msdn2.microsoft.com/en-us/library/ms733027.aspx
• For a binding Q&A, see the Bindings section of “WCF 3.5 Security Questions and

Answers“ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

If You Need to Expose Your WCF Service to Legacy Clients as an ASMX Web
Service, Use basicHttpBinding
If your service needs to support legacy clients that expect an ASMX Web service, consider using
basicHttpBinding. basicHttpBinding does not implement any security by default. If you require

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 279

message or transport security, configure it explicitly using this binding. Use basicHttpBinding to
expose endpoints that are able to communicate with ASMX-based Web services and clients as
well as other services that conform to the WS-I Basic Profile 1.1 specification. When configuring
transport security, basicHttpBinding defaults to no credentials just like a classic ASMX Web
service.

basicHttpBinding has the following characteristics:

• Because it does not support the WS* stack, it does not provide reliable messaging and
secure transactions.

• Neither transport nor message security is turned on by default.
• It allows interoperability with legacy clients that expect to consume an ASMX Web

service.
• It allows the service to be hosted in IIS 5.0 or IIS 6.0.
• If you choose to use message security, you can only use Basic or certificate

authentication.
• If you choose to use transport security, you can use certificate, Windows, or issue token

authentication (Windows CardSpace).

The following example shows how to configure basicHttpBinding:

<system.serviceModel>
....
 <services>
 <service behaviorConfiguration="" name="WCFServicecHost.MyService">
 ...
 <endpoint address="" binding="basicHttpBinding"
bindingConfiguration=""
 name="basicBinding" contract="WCFServicecHost.IMyService" />
 ...
 </service>
 </services>
</system.serviceModel>

Additional Resources
• For more information on bindings, see “Windows Communication Foundation Bindings”

at http://msdn2.microsoft.com/en-us/library/ms733027.aspx
• For a binding Q&A, see the Bindings section of “WCF 3.5 Security Questions and

Answers“ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

If You Need to Support WCF Clients Within an Intranet, Consider Using
netTcpBinding
If you need to support clients within your intranet, consider using netTcpBinding. netTcpBinding
is a good choice for the intranet scenario if transport performance is important and it is
acceptable to host the service as a Windows service instead of in IIS. netTcpBinding uses the

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 280

Transmission Control Protocol (TCP) and provides full support for Simple Object Access Protocol
(SOAP) security, transactions, and reliability. Use this binding when you want to provide a
secure and reliable binding environment for .NET-to-.NET cross-machine communication.

netTcpBinding has the following characteristics:

• It can only be consumed by WCF-enabled clients.
• It supports the WS* stack, including reliable messaging, message security, and secure

transactions.
• Transport security is turned on by default. Message security is also available.
• The service can be hosted in IIS 5.0 or IIS 6.0, but as it is not message-activated, you can

consider hosting in a Windows service or IIS 7.0 instead.
• If you choose to use message security, you can use certificate, username, Windows, or

issue token authentication (Windows CardSpace).
• If you choose to use transport security, you can only use certificate or Windows

authentication.

The following example shows how to configure netTcpBinding:

<system.serviceModel>
....
 <services>
 <service behaviorConfiguration="" name="WCFServicecHost.MyService">
 ...
 <endpoint address="" binding="netTcpBinding"
bindingConfiguration=""
 name="TcpBinding" contract="WCFServicecHost.IMyService" />
 ...
 </service>
 </services>
</system.serviceModel>

Additional Resources
• For more information on bindings, see “Windows Communication Foundation Bindings”

at http://msdn2.microsoft.com/en-us/library/ms733027.aspx
• For a binding Q&A, see the Bindings section of “WCF 3.5 Security Questions and

Answers“ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

If You Need to Support WCF Clients on the Same Machine, Consider Using
netNamedPipeBinding
If you need to support WCF clients on the same machine as your service, consider using
netNamedPipeBinding. Use this binding when you want to make use of the NamedPipe protocol
and provide full support for SOAP security, transactions, and reliability.

netNamedPipeBinding has the following characteristics:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 281

• It can only be consumed by WCF-enabled clients.
• It supports the WS* stack, including reliable messaging and secure transactions.
• It only supports transport security; you cannot turn on message security.
• The service can be hosted in IIS 5.0 or IIS 6.0, but as it is not message activated, you can

consider hosting in a Windows service or IIS 7.0 instead.
• Your only authentication option is Windows.

The following example shows how to configure netNamedPipeBinding:

<system.serviceModel>
....
 <services>
 <service behaviorConfiguration="" name="WCFServicecHost.MyService">
 ...
 <endpoint address="" binding="netNamedPipeBinding"
bindingConfiguration=""
 name="namedPipeBinding" contract="WCFServicecHost.IMyService"
/>
 ...
 </service>
 </services>
</system.serviceModel>

Additional Resources
• For more information on bindings, see “Windows Communication Foundation Bindings”

at http://msdn2.microsoft.com/en-us/library/ms733027.aspx
• For a binding Q&A, see the Bindings section of “WCF 3.5 Security Questions and

Answers“ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

If You Need to Support Disconnected Queued Calls, Use netMsmqBinding
If you need to support disconnected queuing, use netMsmqBinding. Queuing is provided by
using Microsoft Message Queuing (MSMQ) as a transport, which enables support for
disconnected operations, failure isolation, and load leveling. You can use netMsmqBinding when
the client and service do not have to be online at the same time. You can also manage any
number of incoming messages by using load leveling. MSMQ supports failure isolation, where
messages can fail without affecting the processing of other messages.

netMsmqBinding has the following characteristics:

• It supports asynchronous, disconnected operations.
• It can only be consumed by WCF-enabled clients.
• Transport security is turned on by default. Message security is also available.
• The service can be hosted in IIS 5.0 or IIS 6.0, but as it is not message activated, you can

consider hosting in a Windows service or IIS 7.0 instead.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 282

• If you choose to use message security, you can use certificate, username, Windows, or
issued token authentication

• If you choose to use transport security, you can only use certificate or Windows
authentication.

The following example shows how to configure netMsmqBinding:

<system.serviceModel>
....
 <services>
 <service behaviorConfiguration="" name="WCFServicecHost.MyService">
 ...
 <endpoint address="" binding="netMsmqBinding"
bindingConfiguration=""
 name="MsmqBinding" contract="WCFServicecHost.IMyService" />
 ...
 </service>
 </services>
</system.serviceModel>

Additional Resources
• For more information on bindings, see “Windows Communication Foundation Bindings”

at http://msdn2.microsoft.com/en-us/library/ms733027.aspx
• For a binding Q&A, see the Bindings section of “WCF 3.5 Security Questions and

Answers“ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

If You Need to Support Bidirectional Communication Between a WCF Client
and WCF Service, Use wsDualHttpBinding or netTcpBinding
If you need to support a duplex service, use wsDualHttpBinding or netTcpBinding. A duplex service
is a service that uses duplex message patterns, which provides the ability for a service to
communicate back to the client via a callback. You can also use wsDualHttpBinding binding to
support communication via SOAP intermediaries.

wsDualHttpBinding has the following characteristics:

• It supports two-way communication between the client and the service.
• It provides interoperability with non-WCF clients that support the WS* stack.
• It supports the WS* stack, including reliable messaging and secure transactions.
• It only supports message security; you cannot turn on transport security.
• It allows the service to be hosted in IIS 5.0 or IIS 6.0.
• If you choose to use message security, you can use certificate, username, Windows, or

Issue token authentication (Windows CardSpace).

The following example shows how to configure wsDualHttpBinding:

<system.serviceModel>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 283

....
 <services>
 <service behaviorConfiguration="" name="WCFServicecHost.MyService">
 ...
 <endpoint address="" binding="wsDualHttpBinding"
bindingConfiguration=""
 name="DualBinding" contract="WCFServicecHost.IMyService" />
 ...
 </service>
 </services>
</system.serviceModel>

Additional Resources
• For more information on bindings, see “Windows Communication Foundation Bindings”

at http://msdn2.microsoft.com/en-us/library/ms733027.aspx
• For a binding Q&A, see the Bindings section of “WCF 3.5 Security Questions and

Answers “ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

Configuration Management
Follow these guidelines to avoid introducing vulnerabilities when you configure your WCF
application:

• Use replay detection to protect against message replay attacks.
• If you host your service in a Windows service, expose a metadata exchange (mex)

binding.
• If you don’t want to expose your WSDL, turn off HttpGetEnabled and metadata

exchange (mex).
• Encrypt configuration sections that contain sensitive data.

Each of these guidelines is described in the following sections.

Use Replay Detection to Protect Against Message Replay Attacks
Use the WCF replay detection feature to protect your service against message replay attacks. A
message replay attack occurs when an attacker copies a stream of messages between two
parties and replays the stream to one or more of the parties. Unless mitigated, the computers
subject to the attack will process the stream as legitimate messages, resulting in a range of
harmful consequences including unauthorized access to the service.

To enable replay detection in your service:

1. Create a customBinding Element.
2. Create a <security> element.
3. Create a localClientSettings element or localServiceSettings element.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 284

4. Set the following attribute values, as appropriate: detectReplays, maxClockSkew,
replayWindow, and replayCacheSize. The following example sets the attributes of both a
<localServiceSettings> and a <localClientSettings> element:

<customBinding>
 <binding name="NewBinding0">
 <textMessageEncoding />
 <security>
 <localClientSettings
 replayCacheSize="800000"
 maxClockSkew="00:03:00"
 replayWindow="00:03:00" />
 <localServiceSettings
 replayCacheSize="800000"
 maxClockSkew="00:03:00"
 replayWindow="00:03:00" />
 <secureConversationBootstrap />
 </security>
 <httpTransport />
 </binding>
</customBinding>

Additional Resources
• For more information on replay detection, see “How to: Enable Message Replay

Detection” at http://msdn2.microsoft.com/en-us/library/ms733063.aspx
• For a configuration management Q&A, see the Configuration Management section of

“WCF 3.5 Security Questions and Answers “ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

If You Host Your Service in a Windows Service, Expose a Metadata
Exchange (mex) Binding
If you are hosting your service as a Windows service and are exposing the service by using
netTcpBinding, publish the service metadata by creating a mexTcpBinding endpoint so that
your clients can discover and use the service. Clients will be able to generate a proxy file by
using the ServiceModel Metadata Utility Tool (Svcutil.exe).

Additional Resources
• For more information on publishing metadata endpoints, see “Publishing Metadata” at

http://msdn2.microsoft.com/en-us/library/aa751951.aspx
• For a configuration management Q&A, see the Configuration Management section of

“WCF 3.5 Security Questions and Answers “ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 285

If You Don’t Want to Expose Your WSDL, Turn Off HttpGetEnabled and
Remove Metadata Exchange (mex) Endpoints
If you want to block clients from accessing your service’s Web Services Description Language
(WSDL), you should remove all metadata exchange endpoints and set the httpGetEnabled and
httpsGetEnabled attributes to false.

This is potentially important after your clients are built and deployed, if you do not want other
clients to discover and use the WCF service. If the metadata is exposed, unwanted clients will
be able to generate proxy files (e.g., by using Svcutil.exe) and inspect potentially sensitive
methods and parameters offered by the service. If your client programs already have access to
the service proxy, set the httpGetEnabled attribute to false.

The following configuration disables sharing service metadata:

<serviceMetadata httpGetEnabled="False" httpsGetEnabled="False"/>

Additional Resources
• For more information on publishing metadata endpoints, see “Publishing Metadata” at

http://msdn2.microsoft.com/en-us/library/aa751951.aspx
• For a configuration management Q&A, see the Configuration Management section of

“WCF 3.5 Security Questions and Answers “ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

Encrypt Configuration Sections That Contain Sensitive Data
Encrypt configuration sections that contain sensitive data such as SQL connection strings. Use
the Data Protection API (DPAPI) to encrypt the sensitive data in the configuration file on your
WCF server machine.

To encrypt the <connectionStrings> section by using the DPAPI provider with the machine-key
store (the default configuration), run the following command from a command window:

aspnet_regiis -pe "connectionStrings" -app "/MachineDPAPI" -prov
"DataProtectionConfigurationProvider"

The aspnet_regiis options are:

• -pe – Specifies the configuration section to encrypt.
• -app – Specifies your Web application’s virtual path. If your application is nested, you

need to specify the nested path from the root directory; for example,
"/test/aspnet/MachineDPAPI".

• -prov – Specifies the provider name.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 286

Note: If you need to encrypt configuration file data on multiple servers in a Web farm, use the
RSA protected configuration provider because of the ease with which you can export RSA key
containers.

Additional Resources
• For more information on using DPAPI, see “How To: Encrypt Configuration Sections in

ASP.NET 2.0 Using DPAPI” at http://msdn2.microsoft.com/en-us/library/ms998280.aspx
• For more information on using RSA, see “How To: Encrypt Configuration Sections in

ASP.NET 2.0 Using RSA” at http://msdn2.microsoft.com/en-us/library/ms998283.aspx
• For a configuration management Q&A, see the Configuration Management section of

“WCF 3.5 Security Questions and Answers “ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

Exception Management
Correct exception handling in your WCF application prevents sensitive exception details from
being revealed to the user, improves application robustness, and helps avoid leaving your
application in an inconsistent state in the event of errors.

Consider the following guidelines:

• Use structured exception handling.
• Do not divulge exception details to clients in production.
• Use a fault contract to return error information to clients.
• Use a global exception handler to catch unhandled exceptions.

Each of these guidelines is described in the following sections.

Use Structured Exception Handling
Use structured exception handling and catch exception conditions. Doing this improves
robustness and avoids leaving your application in an inconsistent state that may lead to
information disclosure. It also helps protect your application from denial of service (DoS)
attacks.

In C#, you can use the try/catch and finally construct to implement structured exception
handling. You can protect code by placing it inside try blocks, and implement catch blocks to log
and process exceptions. Also, use the finally construct to ensure that critical system resources
such as connections are closed, whether an exception condition occurs or not.

Additional Resources
• For more information about exceptions, see the Exceptions Reference at

http://msdn2.microsoft.com/en-us/library/ms733763.aspx
• For an exception management Q&A, see the Exception Management section of “WCF

3.5 Security Questions and Answers “ at

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 287

http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

Do Not Divulge Exception Details to Clients in Production
Do not divulge exception error details to clients in production. Instead, develop a fault contract
and return it to your client. When exceptions occur, return concise error messages to the client
and log specific details on the server. Do not reveal internal system or application details —
such as stack traces, SQL statement fragments, and table or database names — to the client.
Ensure that this type of information is not allowed to propagate to the end user or beyond your
current trust boundary. If you expose any detailed exception information to the client, a
malicious user could use the system-level diagnostic information to learn about your
application and probe for weaknesses to exploit in future attacks.

By using the FaultContract attribute in a service contract you can specify the possible faults that
can occur in your WCF service. This prevents exposing any other exception details to the clients.
To define a Fault contract, apply the FaultContract attribute directly on a contract operation,
specifying the error detailing type as shown below:

[ServiceContract]
interface ICalculator
{
 [OperationContract]
 [FaultContract(typeof(DivideByZeroException))]
 double Divide(double number1,double number2);
}

In the following example, the FaultContract attribute is limited to the Divide method. Only that
method can throw that fault and have it propagated to the client.

class MyService : ICalculator
{
 public double Divide(double number1,double number2)
 {

 throw new FaultException<DivideByZeroException>(new
DivideByZeroException());
 }
}

Additional Resources
• For more information about exceptions, see the Exceptions Reference at

http://msdn2.microsoft.com/en-us/library/ms733763.aspx
• For an exception management Q&A, see the Exception Management section of “WCF

3.5 Security Questions and Answers “ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 288

Use a Fault Contract to Return Error Information to Clients
Use a fault contract to define the exceptions in your service and return error information to
clients. By using the FaultContract attribute in a service contract, you can specify the possible
faults that can occur in your WCF service. If there is an exception in your WCF service operation,
use the FaultContract attribute to generate a specific SOAP fault message that will be sent back
to the client application. The FaultContract attribute can only be used in operations that return a
response. You cannot use this attribute on a one-way operation.

The following code snippet shows how to use the FaultContract attribute to return error
information.

1. Define the type to pass the details of SOAP faults as exceptions from a service back to a
client.

[DataContract]
public class DatabaseFault
{
 [DataMember]
 public string DbOperation;
 [DataMember]
 public string DbReason
 [DataMember]
 public string DbMessage;
}

2. Use the FaultContract attribute in the ListCustomers method to generate SOAP faults.

[ServiceContract]
public interface ICustomerService
{
 // Get the list of customers
 [FaultContract(typeof(DatabaseFault))]
 [OperationContract]
 List<string> ListCustomers();
 …
}

3. Create and populate the DatabaseFault object with the details of the exception in the

Service implementation class and then throw a FaultException object with the
DatabaseFault object details.

catch(Exception e)
{ DatabaseFault df = new DatabaseFault();
 df.DbOperation = "ExecuteReader";
 df.DbReason = "Exception in querying the Northwind database.";
 df.DbMessage = e.Message;
 throw new FaultException<DatabaseFault>(df);
}

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 289

Use a Global Exception Handler to Catch Unhandled Exceptions
Use a global exception handler to catch unhandled exceptions and prevent them from being
propagated to the client. You can handle the unhandled exceptions in a WCF service by
subscribing to the Faulted event of a service host object. By subscribing to this event, you can
determine the cause of a failure, and then perform the necessary actions to abort or restart the
service.

The following code snippet shows how to subscribe to the Faulted event:

// hosting a WCF service
ServiceHost customerServiceHost;
customerServiceHost = new ServiceHost(…);
…
// Subscribe to the Faulted event of the customerServiceHost object
customerServiceHost.Faulted += new EventHandler(faultHandler);
…
// FaultHandler method - invoked when customerServiceHost enters the Faulted
state
void faultHandler(object sender, EventArgs e)
{ // log the reasons for the fault…
}

Additional Resources
• For more information about exceptions, see the Exceptions Reference at

http://msdn2.microsoft.com/en-us/library/ms733763.aspx
• For an exception management Q&A, see the Exception Management section of “WCF

3.5 Security Questions and Answers “ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

Hosting
Choosing the correct host and process identity to run your WCF application is very important
from a security perspective.

Consider the following guidelines when choosing a host for your WCF application:

• Run your service in a least-privileged account.
• Use IIS to host your service unless you need to use a transport that IIS does not

support.

Each of these guidelines is described in the following sections.

Run Your Service in a Least-Privileged Account
If you are hosting your WCF service in a Windows service or in IIS, run your service using a least-
privileged service account. By default, IIS is run under the ASPNET (in IIS 5.0) or NetworkService
account (in IIS 6.0).

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 290

By using a custom domain account, you can audit and authorize your service individually, and
your service is protected from changes made to the privileges and permissions within the
System account. Configure your account to use the least number of privileges necessary to
allow your service to run. This will reduce the attack surface and constrain the impact of any
malicious attack.

The following steps outline how to use a least-privileged custom domain account:

1. Create a Windows account.
2. Run the following aspnet_regiis.exe command to assign the relevant ASP.NET

permissions to the account:

aspnet_regiis.exe -ga machineName\userName

Note: This step is needed only if your application needs to run in ASP.NET compatibility
mode.

3. Use the Local Security Policy tool to grant the Windows account the Deny logon locally
user right.
This reduces the privileges of the account and prevents anyone from logging on to
Windows locally with this account.

4. If your service is hosted in a Windows service, configure the Windows service to run
using the account identity.
The WCF service will run under the security context of the Windows service.

5. If your service is hosted in IIS 6.0, use IIS Manager to create an application pool running
as an account identity. Use IIS Manager to assign your WCF service to that application
pool.

Additional Resources
• For more information, see “Hosting” at http://msdn2.microsoft.com/en-

us/library/ms729846.aspx
• For more information on running IIS under a least-privileged service account, see “How

To: Create a Service Account for an ASP.NET 2.0 Application” at
http://msdn2.microsoft.com/en-us/library/ms998297.aspx

• For a hosting Q&A, see the Hosting section of “WCF 3.5 Security Questions and Answers
“ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

Use IIS to Host Your Service Unless You Need to Use a Transport That IIS
Does Not Support
Use IIS to host your WCF service because it provides a large number of features for efficient
service management and scalability. IIS 6.0 only supports bindings over HTTP so if you need to
use TCP, Microsoft Message Queuing (MSMQ), or named pipes, you should host in a Windows
service instead. IIS 7.0 supports all of the commonly used transport protocols such as HTTP,
TCP, MSMQ, and named pipes.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 291

By using IIS as your WCF service host, you can take full advantage of IIS features, such as
process recycling, idle shutdown, process health monitoring, and message-based activation.

Additional Resources
• For more information, see “Hosting” at http://msdn2.microsoft.com/en-

us/library/ms729846.aspx
• For a hosting Q&A, see the Hosting section of “WCF 3.5 Security Questions and Answers

“ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

Impersonation/Delegation
By default, WCF applications do not impersonate, although in some scenarios you need to use
impersonation to perform operations or to access resources using the authenticated user’s
identity.

If you use impersonation, consider the following guidelines:

• Know the tradeoffs involved in impersonation.
• Know your impersonation options.
• Know your impersonation methods.
• Consider using programmatic instead of declarative impersonation.
• When impersonating programmatically, be sure to revert to the original context.
• When impersonating declaratively, only impersonate on the operations that require it.
• Consider using the S4U feature for impersonation and delegation when you cannot do

a Windows mapping.
• Consider using the LogonUser API if your WCF service cannot be trusted for

delegation.
• Use constrained delegation if you have to flow the original caller to the back-end

services.

Each of these guidelines is described in the following sections:

Know the Tradeoffs Involved in Impersonation
Be aware that impersonation prevents the efficient use of connection pooling if you access
downstream databases by using the impersonated identity. This impacts the ability of your
application to scale. Also, using impersonation can introduce other security vulnerabilities,
particularly in multi-threaded applications.

You might need impersonation if you need to:

• Flow the original caller’s security context to the middle tier and/or data tier of your Web
application in order to support fine-grained (per-user) authorization.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 292

• Flow the original caller’s security context to the downstream tiers in order to support
operating system–level auditing.

• Access a particular network resource by using a specific identity.

Know Your Impersonation Options
Impersonation is used to restrict or authorize the original caller’s access to a WCF service’s local
resources, such as files. There are three options available for impersonation:

• Impersonate using Windows authentication.
• Impersonate using S4U Kerberos extensions.
• Impersonate using the LogonUser API.

Each of these options is described in the following sections.

Impersonate Using Windows Authentication
With this option, you impersonate by using the Windows token, which is obtained from the
Security Support Provider Interface (SSPI) or Kerberos authentication, or any other
authentication type that cam map to Windows, such as username or certificate authentication.
The Windows identity token obtained by this method is then cached on the service.

This impersonation option supports programmatic and declarative impersonation in WCF.

Impersonate Using S4U Kerberos Extensions
With this option, you impersonate by using a Windows token obtained from the Kerberos
extensions, collectively called Service-for-User (S4U). You can use this option when your clients
are authenticated using non-Windows authentication types such as client certificates but have
mapping to Windows accounts, or when you want to impersonate a service account. This
impersonation option supports programmatic impersonation in WCF.

Note: To impersonate at the impersonation level, you must grant your process account the “Act
as part of the operating system” user right.

Impersonate Using the LogonUser API
With this option, you impersonate by using a Windows token obtained from the LogonUser
Windows API. You can use this option when you want to access network resources (delegation)
but do not have trust for delegation, or if you want to access local resources but do not want to
grant higher privileges to your WCF process identity. This option adds the responsibility of
maintaining the user credentials on the WCF service. This impersonation option supports
programmatic impersonation in WCF.

Additional Resources
• For more information on the S4U extensions and protocol transition, see “Using Protocol

Transition—Tips from the Trenches” by Keith Brown at http://msdn2.microsoft.com/en-
us/magazine/cc163500.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 293

• For more information, see “Delegation and Impersonation with WCF” at
http://msdn2.microsoft.com/en-us/library/ms730088.aspx

Know Your Impersonation Methods
Impersonation is used to restrict or authorize the original caller’s access to a WCF service’s local
resources, such as files. There are three methods of impersonation:

• Impersonate the original caller declaratively on specific operations.
• Impersonate the original caller declaratively on the entire service.
• Impersonate the original caller programmatically within an operation.

Impersonate the Original Caller Declaratively on Specific Operations
Use this option when you want to impersonate the original caller for the entire duration of a
specific operation. Impersonation is a costly operation and is usually used for higher-privileged
original callers, hence you would use impersonation selectively only on the operations that
need a reduced potential attack surface. You can impersonate declaratively by applying the
OperationBehaviorAttribute attribute on any operation that requires client impersonation, as
shown in the following code example:

[OperationBehavior(Impersonation = ImpersonationOption.Required)]
public string GetData(int value)
{
 return “test”;
}

Impersonate the Original Caller Declaratively on the Entire Service
Use this option when you want to impersonate the original caller for the entire duration of all
the operations. Impersonation is a costly operation and is usually used for higher-privileged
original callers. You need to be careful when using this option because it potentially increases
the attack surface. To impersonate the entire service, set the
impersonateCallerForAllOperations attribute to "true" in the WCF configuration file, as shown
in the following example:

...
<behaviors>
 <serviceBehaviors>
 <behavior name="ServiceBehavior">
 <serviceMetadata httpGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="false" />
 <serviceAuthorization impersonateCallerForAllOperations="true" />
 </behavior>
 </serviceBehaviors>
</behaviors>
...

When impersonating for all operations, the Impersonation property of the
OperationBehaviorAttribute applied to each method must also be set to either Allowed or
Required.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 294

Note: When a service has higher credentials than the remote client, the credentials of the
service are used if the Impersonation property is set to Allowed. That is, if a low-privileged user
provides its credentials, a higher-privileged service executes the method with the credentials of
the service, and can use resources that the low-privileged user would otherwise not be able to
use.

Impersonating the original caller programmatically within an operation
Use this option when you want to impersonate the original caller for a short duration in a
service operation. Impersonation is a costly operation and is usually used for higher-privileged
original callers, hence you would use impersonation only when needed to reduce the potential
attack surface. Perform programmatic impersonation as shown in the following example:

public string GetData(int value)
{
 using (ServiceSecurityContext.Current.WindowsIdentity.Impersonate())
 {
 // return the impersonated user (original users identity)
 return string.Format("Hi, {0}, you have entered: {1}",
 WindowsIdentity.GetCurrent().Name, value);
 }
}

Note: It is important to revert to impersonation. Failure to do so can form the basis for denial of
service and elevation of privilege attacks. In the example above, the using statement ensures
that the impersonation is reverted after execution of the using block.

Additional Resources
• For more information, see “Delegation and Impersonation with WCF” at

http://msdn2.microsoft.com/en-us/library/ms730088.aspx
• For an impersonation and delegation Q&A, see the Impersonation/Delegation section of

“WCF 3.5 Security Questions and Answers“ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

Consider Using Programmatic Instead of Declarative Impersonation
Use programmatic impersonation to impersonate the original caller or the ASP.NET service
account calling into your service. Programmatic impersonation allows you to impersonate on
specific lines of code rather than the entire operation. Although this finer-grained approach to
impersonation can reduce security risk, be aware that it is easier to make a mistake during
implementation that could leave your code impersonating at higher privilege in the event of an
error. Use the using statement to revert impersonation automatically.

The following code snippet shows how to impersonate programmatically:

public string GetData(int value)
{
 using (ServiceSecurityContext.Current.WindowsIdentity.Impersonate())
 {

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 295

 // return the impersonated user (original users identity)
 return string.Format("Hi, {0}, you have entered: {1}",
 WindowsIdentity.GetCurrent().Name, value);
 }
}

Additional Resources
• For more information, see “Delegation and Impersonation with WCF” at

http://msdn2.microsoft.com/en-us/library/ms730088.aspx
• For an impersonation and delegation Q&A, see the Impersonation/Delegation section of

“WCF 3.5 security Questions and Answers“ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

When Impersonating Programmatically, Be Sure to Revert to the Original
Context
When using programmatic impersonation, revert to the original security context as soon as
possible. If you do not remember to revert, your application’s attack surface will be increased
because it will be running under higher privileges than necessary. Use the using statement to
revert impersonation automatically.

The following code snippet shows how to impersonate programmatically:

public string GetData(int value)
{
 using (ServiceSecurityContext.Current.WindowsIdentity.Impersonate())
 {
 // return the impersonated user (original users identity)
 return string.Format("Hi, {0}, you have entered: {1}",
 WindowsIdentity.GetCurrent().Name, value);
 }
}

Additional Resources
• For more information, see “Delegation and Impersonation with WCF” at

http://msdn2.microsoft.com/en-us/library/ms730088.aspx
• For an impersonation and delegation Q&A, see the Impersonation/Delegation section of

“WCF 3.5 Security Questions and Answers“ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

When Impersonating Declaratively, Only Impersonate on the Operations
That Require It
Only impersonate on specific operations that require it. If you impersonate on operations that
do not require the additional privileges, you will increase your attack surface as well as the
potential impact of an exploit.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 296

Impersonation is a costly operation and is usually used for higher-privileged original callers. Use
impersonation selectively only on the operations that need to reduce the potential attack
surface. You can impersonate declaratively by applying the OperationBehaviorAttribute
attribute on any operation that requires client impersonation, as shown in the following code
example:

[OperationBehavior(Impersonation = ImpersonationOption.Required)]
public string GetData(int value)
{
 return “test”;
}

Additional Resources
• For more information, see “Delegation and Impersonation with WCF” at

http://msdn2.microsoft.com/en-us/library/ms730088.aspx
• For an impersonation and delegation Q&A, see the Impersonation/Delegation section of

“WCF 3.5 Security Questions and Answers“ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

Consider Using the S4U Feature for Impersonation and Delegation When
You Cannot Do a Windows Mapping
In many situations — for example, if your users access a WCF service over the Internet — you
cannot use Kerberos authentication because firewalls prevent the client computer from directly
communicating with the domain controller. Instead, your service must authenticate the client
by using another approach, such as username authentication, or in an extranet scenario, client
certificate authentication.

In such situations where you cannot map the username or certificate authentication directly to
Windows accounts, you can consider using the protocol transition (S4U) feature that permits
applications to use a non-Windows authentication mechanism to authenticate users, while still
using Kerberos authentication and delegation to access downstream network resources. This
allows your application to access downstream servers that require Windows authentication,
and it allows you to use Windows auditing to track user access to back-end resources.

Use the WindowsIdentity constructor to create a Windows token giving only an account’s user
principal name (UPN).

Important: To impersonate at the impersonation level, you must grant your process account
the "Act as part of the operating system" user right. To impersonate at the delegation level, you
must enable protocol transition in Active Directory in order to access network resources.

The following code snippet shows how to use this constructor to obtain a Windows token for a
given user:

using System;
using System.Security.Principal;

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 297

public void ConstructToken(string upn, out WindowsPrincipal p)
{
 WindowsIdentity id = new WindowsIdentity(upn);
 p = new WindowsPrincipal(id);
}

Additional Resources
• For more information on the S4U feature and Protocol Transition, see “Using Protocol

Transition—Tips from the Trenches” at http://msdn2.microsoft.com/en-
us/magazine/cc163500.aspx

• For more information, see “Delegation and Impersonation with WCF” at
http://msdn2.microsoft.com/en-us/library/ms730088.aspx

• For an impersonation and delegation Q&A, see the Impersonation/Delegation section of
“WCF 3.5 Security Questions and Answers“ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

Consider Using the LogonUser API if Your WCF Service Cannot Be Trusted
for Delegation
Use the Win32 LogonUser API (via P/Invoke) to create delegation-level impersonation tokens,
but only when your WCF service cannot be trusted for delegation, because this option forces
you to store usernames and passwords on your WCF service.

Use the Basic authentication mode to get the original user’s impersonation token so that you
will have access to the username and password. You can then get the impersonation token by
using the LogonUser API. For service accounts, you will have to store the username and
password securely, and then use the LogonUser API to get the impersonation token.

The following code example shows how the LogonUser API is used for impersonation:

using System.Runtime.InteropServices;
…
// Declare the logon types as constants
const long LOGON32_LOGON_NETWORK = 3;

// Declare the logon providers as constants
const long LOGON32_PROVIDER_DEFAULT = 0;

[DllImport("advapi32.dll",EntryPoint = "LogonUser")]
private static extern bool LogonUser(
 string lpszUsername,
 string lpszDomain,
 string lpszPassword,
 int dwLogonType,
 int dwLogonProvider,
 ref IntPtr phToken);
[DllImport("kernel32.dll", CharSet=CharSet.Auto)]
public extern static bool CloseHandle(IntPtr handle);

private void ImpersonateAndUse(string Username,

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 298

 string Password,
 string Domain)
{
 IntPtr token = new IntPtr(0);
 token = IntPtr.Zero;
 // Call LogonUser to obtain a handle to an access token.
 bool returnValue = LogonUser(Username, Domain,Password,
 (int)LOGON32_LOGON_NETWORK,
 (int)LOGON32_PROVIDER_DEFAULT,
 ref token);
 if (false == returnValue)
 {
 int ret = Marshal.GetLastWin32Error();
 string strErr = String.Format("LogonUser failed with error code : {0}",
ret);
 throw new ApplicationException(strErr, null);
 }
 WindowsIdentity newId = new WindowsIdentity(token);
 WindowsImpersonationContext impersonatedUser = newId.Impersonate();
 try
 {
 // do the operations using original user security context
 }
 finally
 {
 // stop impersonating
 impersonatedUser.Undo();
 CloseHandle(token);
 }
}

Additional Resources
• For more information on the LogonUser API, see “How to validate user credentials on

Microsoft operating systems” at http://support.microsoft.com/kb/q180548/
• For more information, see “Delegation and Impersonation with WCF” at

http://msdn2.microsoft.com/en-us/library/ms730088.aspx
• For an impersonation and delegation Q&A, see the Impersonation/Delegation section of

“WCF 3.5 Security Questions and Answers“ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

Use Constrained Delegation if You Have to Flow the Original Caller to the
Back-end Services
Use delegation for flowing the impersonated original user’s security context (Windows identity)
to the remote back-end service. On the remote back-end service, the original user’s Windows
identity can be used to authenticate or impersonate the original caller, in order to restrict or
authorize the original caller’s access to local resources.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 299

When using delegation on Microsoft Windows Server® 2003 or later, use constrained
delegation. This allows administrators to specify exactly which services on a downstream server
or a domain account can be accessed when using an impersonated user’s security context.

Additional Resources
• For more information, see “Delegation and Impersonation with WCF” at

http://msdn2.microsoft.com/en-us/library/ms730088.aspx
• For an impersonation and delegation Q&A, see the Impersonation/Delegation section of

“WCF 3.5 Security Questions and Answers“ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

Message Validation
If you make unfounded assumptions about the type, length, format, or range of input, your
application is unlikely to be robust. Input validation can become a security issue if an attacker
discovers that you have made unfounded assumptions. The attacker can then supply carefully
crafted input that compromises your application. Misplaced trust of user input is one of the
most common and serious vulnerabilities in WCF applications.

Consider these guidelines to help avoid input data validation vulnerabilities:

• If you need to validate parameters, use parameter inspectors.
• Use schemas with message inspectors to validate messages.
• Use regular expressions in schemas to validate format, range, or length.
• Implement the AfterReceiveRequest method to validate inbound messages on the

service.
• Implement the BeforeSendReply method to validate outbound messages on the

service.
• Implement the AfterReceiveReply method to validate inbound messages on the client.
• Implement the BeforeSendRequest method to validate outbound messages on the

client.
• Validate operation parameters for length, range, format, and type.
• Do not rely on client-side validation.
• Avoid user-supplied file name and path input.
• Do not echo untrusted input.

Each of these guidelines is described in the following sections.

If You Need to Validate Parameters, Use Parameter Inspectors
If you need to validate parameters passed to operations, use parameter inspectors. Parameter
inspectors are extensibility points that are plugged into the WCF behaviors that allow the
inspecting of parameter values during message exchange. Parameter validation can happen on
both the client and the service.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 300

You should validate all parameters exposed in WCF service operations to protect the service
from attack by a malicious client. Conversely, you should also validate all return values received
by the client to protect the client from attack by a malicious service.

You can use parameter inspectors to inspect simple types or types with fewer fields, passed to
operations that will not result in complex validation logic. If you need to validate complex types,
or data/message contracts with several fields to be validated, use schema validation with
message inspectors.

Additional Resources
• For more information, see “How to: Inspect or Modify Parameters” at

http://msdn2.microsoft.com/en-us/library/ms733747.aspx
• For more information on how to use parameter inspectors, see “How To – Perform

Input Validation in WCF.”

Use Schemas with Message Inspectors to Validate Messages
If you need to validate parameters, message contracts, or data contracts passed to operations,
use schema validation with message inspectors. Message inspectors are extensibility points that
are plugged into the WCF behaviors that allow the inspecting of messages during message
exchange. Schema validation can happen on both the client and the service. Use schema
validation with message inspectors to validate messages without needing to write validation
code. Additionally, schema validation will allow validating of complex types, message contracts,
and data contracts, passed to operations that will not result in complex validation logic.

Additional Resources
• For information on configuring and extending the runtime with behaviors, see

“Configuring and Extending the Runtime with Behaviors” at
http://msdn2.microsoft.com/en-us/library/ms730137.aspx

• For additional information about the IEndPoint Behavior interface, see
“IEndpointBehavior Interface” at http://msdn2.microsoft.com/en-
us/library/system.servicemodel.description.iendpointbehavior.aspx

• For additional information about the IDispatchMessageInspector interface, see
“IDispatchMessageInspector Interface” at http://msdn2.microsoft.com/en-
us/library/system.servicemodel.dispatcher.idispatchmessageinspector.aspx

• For additional information about the IClientMessageInspector interface, see
“IClientMessageInspector Interface” at http://msdn2.microsoft.com/en-
us/library/system.servicemodel.dispatcher.iclientmessageinspector.aspx

• For additional information about the BehaviorExtensionElement class, see
“BehaviorExtensionElement Class” at http://msdn2.microsoft.com/en-
us/library/system.servicemodel.configuration.behaviorextensionelement.aspx

• For more information on message inspectors, see “Message Inspectors” at
http://msdn2.microsoft.com/en-us/library/aa717047.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 301

• For more information on how to use message inspectors, see “How To – Perform
Message Validation with Schemas in WCF.”

Use Regular Expressions in Schemas to Validate Format, Range, or Length
Consider using regular expressions in schemas to validate format, range, or length. This allows
you to use complex validation logic without the need for implementing the complex validation
code. Using regular expressions also allows you to decouple the validation logic from the
business logic. Schema validation provides a way to create validation for data types using XML
rules, for validity checks regard to format, length, and type. Schema validation also supports
the use of regular expressions. Without regular expressions, complex validation code would be
required.

The following example schema exemplifies the validation of integer with values between 1 and
5, the string of length 5, and a social security number and ZIP code with valid formats:

<xs:schema elementFormDefault="qualified"
targetNamespace="http://Microsoft.PatternPractices.WCFGuide"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://Microsoft.PatternPractices.WCFGuide">
 <xs:element name="GetData">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" name="CustomerInfo" nillable="false"
type="tns:CustomerData" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="CustomerData">
 <xs:sequence>
 <xs:element name="CustomerID" type="tns:CustIDLimitor">
 </xs:element>
 <xs:element name="text" type="tns:CustomerN">
 </xs:element>
 <xs:element name="ssn" type="tns:SSN">
 </xs:element>
 <xs:element name="zip" type="tns:us-zipcode">
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="SSN">
 <xs:restriction base="xs:token">
 <xs:pattern value="[0-9]{3}-[0-9]{2}-[0-9]{4}"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="us-zipcode">
 <xs:restriction base="xs:string">
 <xs:pattern value="[0-9]{5}(-[0-9]{4})?"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="CustomerN">
 <xs:restriction base="xs:string">
 <xs:minLength value="1" />
 <xs:maxLength value="5" />

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 302

 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="CustIDLimitor">
 <xs:restriction base="xs:int">
 <xs:minInclusive value="1" />
 <xs:maxInclusive value="5" />
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="GetDataResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" name="GetDataResult" nillable="false"
type="tns:CustomerData" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Implement the AfterReceiveRequest Method to Validate Inbound Messages
on the Service
If you need to perform validation of inbound messages on your service, implement the
AfterReceiveRequest method of the message inspector’s IDispatchMessageInspector interface.
This will validate the message after the client request has arrived and before service operation
invocation and deserialization.

Inbound message validation will be required if you want to validate the message when it is
received by the client and before invoking the operations in the service. Input data validation
represents one line of defense in the protection of your WCF application. Validate all
parameters exposed in WCF service operations to protect the service from attack by a malicious
client.

The following example shows how to implement the AfterReceiveRequest method:

object IDispatchMessageInspector.AfterReceiveRequest(ref
System.ServiceModel.Channels.Message request,
System.ServiceModel.IClientChannel channel,
System.ServiceModel.InstanceContext instanceContext)
{
 try
 {
 validateMessage(ref request);
 }
 catch (FaultException e)
 {
 throw new FaultException<string>(e.Message);
 }
 return null;

}

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 303

Additional Resources
• For more information, see “How to: Inspect and Modify Messages on the Service” at

http://msdn2.microsoft.com/en-us/library/ms733104.aspx
• For more information, see “How to: Inspect or Modify Parameters” at

http://msdn2.microsoft.com/en-us/library/ms733747.aspx

Implement the BeforeSendReply Method to Validate Outbound Messages
on the Service
If you need to perform validation of outbound messages on your service, implement the
BeforeSendReply method of the message inspector’s IDispatchMessageInspector interface .
This will validate the message before sending the response to the client and the service
operation invocation and serialization.

Outbound message validation is required if you want to validate the message before sending
the response to the client, so that you can validate output parameters and message and data
contracts.

The following code example shows how to implement the BeforeSendReply method:

void IDispatchMessageInspector.BeforeSendReply(ref
System.ServiceModel.Channels.Message reply, object correlationState)
{
 try
 {
 validateMessage(ref reply);
 }
 catch (FaultException fault)
 {
 // if a validation error occurred, the message is replaced
 // with the validation fault.
 reply = Message.CreateMessage(reply.Version, new
FaultException("validation error in reply message").CreateMessageFault() ,
reply.Headers.Action);
 }
}

Additional Resources
• For more information, see “How to: Inspect and Modify Messages on the Service” at

http://msdn2.microsoft.com/en-us/library/ms733104.aspx
• For more information, see “How to: Inspect or Modify Parameters” at

http://msdn2.microsoft.com/en-us/library/ms733747.aspx

Implement the AfterReceiveReply Method to Validate Inbound Messages
on the Client
If you need to perform validation of inbound messages on the client, implement the
AfterReceiveReply method of the message inspector’s IClientMessageInspector interface . This will

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 304

validate the message after the client response has arrived and before deserialization and the
returning of the data to the client application.

The following example shows how to implement the AfterReceiveReply method:

void IClientMessageInspector.AfterReceiveReply(ref
System.ServiceModel.Channels.Message reply, object correlationState)
 {
 validateMessage(ref reply);
 }

Additional Resources
• For more information, see “How to: Inspect or Modify Messages on the Client” at

http://msdn2.microsoft.com/en-us/library/ms733786.aspx
• For more information, see “How to: Inspect or Modify Parameters” at

http://msdn2.microsoft.com/en-us/library/ms733747.aspx

Implement the BeforeSendRequest Method to Validate Outbound Messages
on the Client
If you need to perform validation of outbound messages on client, implement the
BeforeSendRequest method of the message inspector “s IClientMessageInspector interface . This
will validate the message before sending the request to the service and after serialization.

Outbound message validation is required if you want to validate the message before sending
the request to the service, so that you can validate input parameters and message and data
contracts on the client.

The following example shows how to implement the BeforeSendRequest method:

object IClientMessageInspector.BeforeSendRequest(ref
System.ServiceModel.Channels.Message request,
System.ServiceModel.IClientChannel channel)
{
 validateMessage(ref request);
 return null;
}

Additional Resources
• For more information, see “How to: Inspect or Modify Messages on the Client” at

http://msdn2.microsoft.com/en-us/library/ms733786.aspx
• For more information, see “How to: Inspect or Modify Parameters” at

http://msdn2.microsoft.com/en-us/library/ms733747.aspx

Validate Operation Parameters for Length, Range, Format, and Type
Check for known good data and constrain input by validating it for type, length, format, and
range. Do not trust any input. An attacker passing malicious input can attempt SQL injection,

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 305

cross-site scripting, and other injection attacks that aim to exploit your application’s
vulnerabilities.

If the client application that consumes your WCF service is a Web-based application, use the
ASP.NET validator controls, such as the RegularExpressionValidator, RangeValidator, and
CustomValidator, to validate and constrain input. Check all numeric fields for type and range. If
you are not using server controls, you can use regular expressions and the Regex class. You can
validate numeric ranges by converting the input value to an integer or double and then
performing a range check.

Do Not Rely on Client-side Validation
Do not rely on client-side validation because it can be easily bypassed. While you may have
control over the source code for the clients that call your service, clients can be reverse-
engineered or built from scratch to attack your service. Use client-side validation to reduce
round-trips to the server and to improve the user experience, but always use validation in the
service itself to perform security checks.

Avoid User-supplied File Name and Path Input
Wherever possible, avoid writing code that accepts user-supplied file or path input. Failure to
do this can result in attackers coercing your application into accessing arbitrary files and
resources. If your application must accept input file names, file paths, or URL paths, validate
that the path is in the correct format and that it points to a valid location within the context of
your application.

File Names
Ensure that file paths only refer to files within your application’s virtual directory hierarchy if
that is appropriate. When checking file names, obtain the full name of the file by using the
System.IO.Path.GetFullPath method.

File Paths
If you use MapPath to map a supplied virtual path to a physical path on the server, use the
overloaded Request.MapPath method that accepts a bool parameter so that you can prevent
cross-application mapping. The following code example shows this technique:

try
{
 string mappedPath = Request.MapPath(inputPath.Text,
 Request.ApplicationPath, false);
}
catch (HttpException)
{
 // Cross-application mapping attempted
}

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 306

Note: The final false parameter in Request.MapPath() prevents cross-application mapping. This
means that a user cannot successfully supply a path that contains ".." to traverse outside of
your application’s virtual directory hierarchy.

Do Not Echo Untrusted Input
Do not echo input back to the user without first validating and/or encoding the data. Echoing
input directly back to the user can make client applications that rely on your service susceptible
to malicious input attacks, such as cross-site scripting.

Message Security
If your WCF application passes sensitive data over networks, consider the threats of
eavesdropping, tampering, and unauthorized callers accessing your endpoint. In an Internet
scenario where you do not have control over the intermediate systems, consider using message
security.

Consider the following guidelines for choosing message security:

• If you need to support clients over the Internet, consider using message security.
• If there are intermediaries between the client and service, consider using message

security.
• If you need to support selective message protection, use message security.
• If you need to support multiple transactions per session using Secure Conversation, use

message security.
• Do not pass sensitive information in SOAP headers when using HTTP transport and

message security.
• If you need to support interoperability, consider setting negotiateServiceCredentials to

false.
• If you need to streamline certificate distribution to your clients, consider negotiating the

service credentials.
• If you need to limit the clients that will consume your service, consider setting

negotiateServiceCredentials to false.

Each of these guidelines is described in the following sections.

If You Need to Support Clients over the Internet, Consider Using Message
Security
Use message security when your clients are deployed over the Internet and you cannot rely on
transport security (SSL). Message security provides end-to-end security in the following ways:

• Because SSL does not provide protection for the initial client-server handshake, a man-
in-the-middle attack can go undetected.

• You have less control of the communication between the client and service across the
Internet. There is a chance of having intermediaries, which might break transport
security.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 307

The downside of using message security is potentially decreased performance due to the fact
that each message much be encrypted individually. Large message packets especially can create
lag. You can use wsHttpBinding, which by default uses message security and also supports
interoperability because it uses text encoding.

Additional Resources
• For more information on message protection, see “Message Security in WCF” at

http://msdn2.microsoft.com/en-us/library/ms733137.aspx
• For a message security Q&A, see the Message Protection section of “WCF 3.5 Security

Questions and Answers“ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20An
swers&referringTitle=Home

If There Are Intermediaries Between the Client and Service, Consider Using
Message Security
Use message security in scenarios where there may be intermediaries inspecting the message
before the final delivery. You can protect your messages by using message security to encrypt
and sign your messages. By encrypting your messages, you protect your sensitive data from
being compromised. By signing your messages, you protect the client and service from
tampering and man-in-the-middle attacks by protecting message integrity.

The following configuration snippet shows how to use message security to protect the
credentials when using wsHttpBinding:

<wsHttpBinding>
 <binding name="MessageAndUserName">
 <security mode="Message">
 <message clientCredentialType="UserName" algorithmSuite="Default" />
 </security>
 </binding>
</wsHttpBinding>

Additional Resources
• For more information on message protection, see “Message Security” at

http://msdn2.microsoft.com/en-us/library/ms733137.aspx
• For a message security Q&A, see the Message Protection section of “WCF 3.5 Security

Questions and Answers“ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20Answe
rs&referringTitle=Home

If You Need to Support Selective Message Protection, Use Message Security
If you need signatures but not encryption on your messages, use message security to allow
selective reduction of the protection level. This gives you more flexibility than transport

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 308

security, especially if you do not need to protect specific bigger message payloads over the
network.

Be aware that turning off encryption will allow an attacker to view the content of your
messages, including credentials or other sensitive information.

You can set the protection level to signatures only on the entire service as follows:

[ServiceContract(ProtectionLevel=ProtectionLevel.Sign]
public interface IService
{
 string GetData(int value);
}

You can set the protection level to signatures only on a single method at a time as follows:

[OperationContract(ProtectionLevel=ProtectionLevel.Sign]
string GetData(int value);

Additional Resources
• For more information on message protection, see “Message Security” at

http://msdn2.microsoft.com/en-us/library/ms733137.aspx
• For a message security Q&A, see the Message Protection section of “WCF 3.5 Security

Questions and Answers“ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20Answe
rs&referringTitle=Home

If You Need to Support Multiple Transactions per Session Using Secure
Conversation, Use Message Security
If your WCF clients need to exchange multiple messages with the WCF service, you can use the
Secure Conversation feature for improved performance. Using Secure Conversation means the
token negotiation and authentication happens only once for all the requests in a session.

Secure Conversation is enabled with message security on all the standard bindings that support
the WS-Security specification (for example, WsHttpBinding, NetTcpBinding, and netMsmqBinding).

The following configuration example shows the secure conversation turned on:

...
<wsHttpBinding>
 <binding name="NewBinding0">
 <security>
 <message establishSecurityContext="true" />
 </security>
 </binding>
</wsHttpBinding>
...

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 309

Additional Resources
• For more information on message protection, see “Message Security” at

http://msdn2.microsoft.com/en-us/library/ms733137.aspx

Do Not Pass Sensitive Information in SOAP Headers When Using HTTP
Transport and Message Security
Do not use message security if you need to pass sensitive information in Simple Object Access
Protocol (SOAP) headers over the HTTP protocol. Instead, use transport security to protect
sensitive data passed in SOAP headers, such as user identities passed for auditing purposes.

Information contained in SOAP headers is sent in plain text format and can be stolen if you use
message security. SOAP header information is signed by default using message security, so the
information can be read but cannot be spoofed.

Additional Resources
• For more information on message protection, see “Message Security” at

http://msdn2.microsoft.com/en-us/library/ms733137.aspx
• For a message security Q&A, see the Message Protection section of “WCF 3.5 Security

Questions and Answers“ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20Answe
rs&referringTitle=Home

If You Need to Support Interoperability, Consider Setting
negotiateServiceCredentials to False
If you need to support clients that do not understand the WS-Trust and WS-SecureConversation
specifications, set the negotiateServiceCredentials attribute to false.

For Anonymous, Username, or Certificate client credential types, setting this property to false
implies that the service certificate must be made available to the client out of band, and that
the client must specify the service certificate to be used. In the case of Windows credentials,
setting this property to false causes an authentication based on KerberosToken

The following is a configuration example:

. This requires
that the client and service both be part of a Kerberos domain.

<wsHttpBinding>
 <binding name="MessageAndUserName">
 <security mode="Message">
 <message clientCredentialType="UserName" negotiateCredentials=”false”
algorithmSuite="Default" />
 </security>
 </binding>
</wsHttpBinding>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 310

Additional Resources
• For more information on message protection, see “Message Security” at

http://msdn2.microsoft.com/en-us/library/ms733137.aspx
• For a message security Q&A, see the Message Protection section of “WCF 3.5 Security

Questions and Answers“ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20Answe
rs&referringTitle=Home

If You Need to Streamline Certificate Distribution to Your Clients, Consider
Negotiating the Service Credentials
Consider enabling negotiateServiceCredential if you need to streamline certificate distribution to
your clients for message encryption. This option is only available with wsHttpbinding. Keep in
mind that non-Microsoft clients will not be able to consume your service if you enable this
option. Also consider that there is a performance penalty of negotiating credentials, due to
message exchange. Additionally, consider that allowing negotiation of service credentials is less
secure, thereby allowing any client to consume your service.

The following binding configuration shows how to set this option:

<binding name="BindingMessage">
 <security mode="Message">
 <message clientCredentialType="Windows"
negotiateServiceCredential="true" />
 </security>
</binding>

Additional Resources
• For more information on message protection, see “Message Security” at

http://msdn2.microsoft.com/en-us/library/ms733137.aspx
• For message security Q&A, see the Message Protection section of “WCF 3.5 Questions and

Answers“ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=Questions%20and%20Answe
rs&referringTitle=Home

If You Need to Limit the Clients That Will Consume Your Service, Consider
Setting negotiateServiceCredentials to false
If you want to limit the clients that can consume your service, consider setting
negotiateServiceCredentials to false. This option will force you to install a certificate on the
client, in addition to a service certificate with a public key. On the service, you will need to
install a certificate plus the client certificate with the public key. Negotiation of service
credentials is only available with wsHttpBinding.

The following binding configuration shows how to set this option:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 311

<binding name="BindingMessage">
 <security mode="Message">
 <message clientCredentialType="Windows"
negotiateServiceCredential="false" />
 </security>

Transport Security
If your WCF application passes sensitive data over networks, consider the threats of
eavesdropping, tampering, and unauthorized callers accessing your endpoint. In an Intranet
scenario where you have control over the intermediate systems, consider using transport
security.

Consider the following guidelines when choosing transport security:

• Use transport security when possible.
• If you need to support clients in an intranet, use transport security.
• If you need to support interoperability with non-WCF clients, use transport security.
• Use a hardware accelerator when using transport security.

Each of these guidelines is described in the following sections.

Use Transport Security When Possible
Transport security secures the client-server communication channel by using Secure Sockets
Layer (SSL) over HTTP and Transport Layer Security (TLS) over TCP. Transport security is
transport-dependent and does not require that the communicating parties understand XML-
level security concepts. This can improve interoperability.

Consider that, if you are using transport security, you cannot use Service Credential Negotiation
or authentication types such as username or issue token (CardSpace).

Use the following criteria to decide whether or not to use transport security:

• Point-to-point. Transport security supports point-to-point communication and does not
support intermediary scenarios or protocol transition.

• Streaming. Transport security can support streaming data scenarios.
• Binding limitations. Transport security does not work with wsDualHttpBinding.
• Authentication limitations. Transport security does not work with negotiation,

username, issue token (CardSpace), or Kerberos direct authentication.

Additional Resources
• For more information on choosing a transport, see “Choosing a Transport” at

http://msdn2.microsoft.com/en-us/library/ms733769.aspx

If You Need to Support Clients in an Intranet, Use Transport Security
Use transport security when your clients are deployed within an intranet because it provides
point-to-point security and better performance compared to message security.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 312

In an intranet, you have control over the communication between client and service, and very
few chances of having any intermediaries that might break the transport security. You can use
netTCPbinding for better performance than HTTP bindings. By default, netTcpbinding uses binary
encoding and transport security.

Additional Resources
• For more information on choosing a transport, see “Choosing a Transport” at

http://msdn2.microsoft.com/en-us/library/ms733769.aspx

If You Need to Support Interoperability with Non-WCF Clients, Use
Transport Security
If you have non-WCF clients and they do not support the WS-Security specification, use
transport security. Because message security requires the client to understand and support WS-
Security specifications, it will not work with non-WCF clients.

Additional Resources
• For more information on message security, see “Message Security in WCF” at

http://msdn.microsoft.com/en-us/library/ms733137.aspx
• For more information on transport security, see “Transport Security Overview” at

http://msdn.microsoft.com/en-us/library/ms729700.aspx

Use a Hardware Accelerator When Using Transport Security
Transport security can benefit from SSL hardware acceleration that is performed on a network
card in order to avoid burdening the host machine CPU with the encryption and decryption of
the messages.

Transport security requires both the client and service to negotiate the details of the
encryption. This is done automatically as part of the communication protocol in the respective
binding. Hardware acceleration provides high throughput and may even make the security
overhead unnoticeable.

Proxy Considerations
When creating a WCF service proxy, clients needs to access metadata that might consist of
sensitive data such as service location, etc. It is important to secure the metadata because
attackers can leverage this information and exploit your WCF services.

Consider the following guidelines when exposing your service metadata for client proxy
creation:

• Publish your WCF service metadata only when required.
• If you need to publish your WCF service metadata, publish it over the HTTPS protocol.
• If you need to publish your WCF service metadata, publish it using secure binding.
• If you turn off mutual authentication, be aware of service spoofing.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 313

Publish Your WCF Service Metadata Only When Required
Set the httpGetEnabled and httpsGetEnabled attributes to false on the serviceMetadata element,
and remove any endpoints configured on your service that implement IMetadataExchange
contracts.

This is especially important after your clients are built and deployed, and if you do not need
other clients to discover and use the WCF service. If the metadata is exposed, unwanted clients
will be able to generate proxy files (e.g., by using Svcutil.exe) and inspect potentially sensitive
methods and parameters offered by the service. If your client programs already have access to
the service proxy, set the httpGetEnabled attribute to false.

The following configuration disables sharing of service metadata:

<serviceMetadata httpGetEnabled="False" httpsGetEnabled="False"/>

Additional Resources
• For more information on publishing metadata endpoints, see “Publishing Metadata” at

http://msdn2.microsoft.com/en-us/library/aa751951.aspx
• For more information, see “Security Considerations with Metadata” at

http://msdn.microsoft.com/en-us/library/ms734741.aspx

If You Need to Publish Your WCF Service Metadata, Publish It over the
HTTPS Protocol
Publish your service metadata over Secure HTTP (HTTPS) to protect clients from being spoofed
when adding a service reference. Clients cannot be certain that they have added a reference to
the right service if you expose your service metadata over HTTP. The service may have been
spoofed through Domain Name System (DNS) poisoning or a man-in-the-middle attack.

To publish your service metadata over HTTPS, use mexHttpsBinding and configure a server
certificate for the service.

Additional Resources
• For more detailed steps, see “How to: Secure Metadata Endpoints” at

http://msdn.microsoft.com/en-us/library/ms733114.aspx
• For more information on publishing metadata, see “Publishing Metadata“ at

http://msdn2.microsoft.com/en-us/library/aa751951.aspx
• For more information, see “Security Considerations with Metadata” at

http://msdn.microsoft.com/en-us/library/ms734741.aspx

If You Need to Publish Your WCF Service Metadata, Publish It Using Secure
Binding
To protect service metadata from unauthorized access, you can use a secure binding for your
metadata endpoint. The service metadata that a WCF service publishes contains a detailed
description of the service and may intentionally or unintentionally contain sensitive

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 314

information. For example, service metadata may contain information about infrastructure
operations that was not intended to be broadcast publicly.

You can use any standard binding (which has security features) you want for the mex service
endpoint. The only requirement is to use the IMetadataExchange contract.

Additional Resources
• For more information on using secure bindings, see Nicholas Allen’s blog at

http://blogs.msdn.com/drnick/archive/2006/08/31/733173.aspx
• For more information, see “Security Considerations with Metadata” at

http://msdn.microsoft.com/en-us/library/ms734741.aspx

If You Turn Off Mutual Authentication, Be Aware of Service Spoofing
Be aware that your service may be spoofed by a malicious attacker if you are running your
service in a scenario in which mutual authentication has been turned off. Without mutual
authentication, calls to your service could be diverted to a malicious service through DNS
poisoning or a man-in-the-middle attack.

The follow scenarios will result in mutual authentication being turned off:

• If you turn off message and transport security on your binding
• If you use basicHttpBinding, which has message and transport security turned off by

default
• If you use NTLM authentication

Additional Resources
• For more information on authentication, see “Authentication” at

http://msdn2.microsoft.com/en-us/library/ms733082.aspx
• For more information on choosing a transport, see “Choosing a Transport” at

http://msdn2.microsoft.com/en-us/library/ms733769.aspx

Sensitive Data
Sensitive data usually needs to be protected in persistent storage, in memory, and while it is on
the network. Wherever possible, look for opportunities to avoid storing sensitive data. Use
encryption to make sure that sensitive data cannot be viewed.

Follow these guidelines to help protect sensitive data:

• Avoid plain-text passwords or other sensitive data in configuration files.
• Use platform features to manage keys where possible.
• Protect sensitive data over the network.
• Do not cache sensitive data.
• Minimize exposure of secrets in memory.
• Be aware that basicHttpBinding will not protect sensitive data by default.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 315

• Use appropriately sized keys.

Avoid Plain-text Passwords or Other Sensitive Data in Configuration Files
Avoid putting any sensitive information in the configuration files or within code. If you have to
store user credentials or any other sensitive information in the configuration sections, encrypt
the configuration sections by using one of the protected configuration providers. The sensitive
Information should not be stored in plain text, because an attacker that can compromise a
server will be able to read those credentials unless they are adequately protected.

In the .NET Framework version 2.0 and later, there are two libraries that provide encryption
facilities for connection strings: DPAPI and RSA. If your application is deployed in a Web farm,
you should use the RSA protected configuration provider because of the ease with which RSA
keys can be exported. Otherwise, you should use the DPAPI protected configuration provider.

Additional Resources
• For more information on using DPAPI, see “How To: Encrypt Configuration Sections in

ASP.NET 2.0 Using DPAPI” at http://msdn2.microsoft.com/en-us/library/ms998280.aspx
• For more information on using RSA, see “How To: Encrypt Configuration Sections in

ASP.NET 2.0 Using RSA” at http://msdn2.microsoft.com/en-us/library/ms998283.aspx

Use Platform Features to Manage Keys Where Possible
Use platform features where possible to avoid managing keys yourself. For example, by using
DPAPI, the encryption key is derived from an account’s password, so Windows handles this for
you.

Protect Sensitive Data over the NetworkNetwork
Protect sensitive data when it is transmitted over the network. Consider where items of
sensitive data, such as credentials and application-specific data, are transmitted over a network
link. Using a safe protocol to transmit information is important because it adds protection
against inadvertent eavesdropping and modification during transport.

If you need to send sensitive data between the client and WCF service, consider using message
or transport security. If you need to protect server-to-server communication, such as between
your WCF service and a Microsoft SQL Server® database, consider Internet Protocol Security
(IPSec) or SSL.

Do Not Cache Sensitive Data
If your service method contains data that is sensitive, such as a password, credit card number,
or account status, it should not be cached. If sensitive data is cached on the client machine, it
has serious security implications because it leaves interesting data available to attackers.

Perform the following steps to ensure that sensitive data is not cached:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 316

1. Review operations for sensitive data. Review all of your operations for usage of
sensitive data. This could include but is not limited to:

• Information that either contains personally identifiable information (PII) or can
be used to derive PII that should not be shared with users

• Information that a user provides that they would not want shared with other
users of the application

• Information that comes from an external trusted source that is not designed to
be shared with users

2. Review the operations for caching of sensitive data. Review how each operation
manages sensitive data and ensure that it is not cached. There are three patterns of
sensitive data caching that you can review for:

• Custom caching code such as use of a Dictionary or SortedList object
• Use of the ASP.NET cache via System.Web.Caching.Cache.
• Use of an Enterprise Library caching block

Minimize Exposure of Secrets in Memory
When manipulating secrets, consider how the secret data is stored in memory. How long is the
secret data retained in clear-text format? Clear-text secrets held in your process address space
are vulnerable if an attacker is able to probe your application’s address space. Also, if the page
of memory containing the secret is swapped out to the page file, the secret data is vulnerable if
someone gains access to the page file. Similarly, clear text secrets held in memory appear in the
crash dump file if a process crashes.

To minimize the exposure of secrets in memory, consider the following measures:

• Avoid creating multiple copies of the secret. Having multiple copies of the secret data
increases your attack surface. Pass references to secret data instead of making copies of
the data. Also realize that if you store secrets in immutable System.String objects, a new
copy is created after each string manipulatio.

• Keep the secret encrypted for as long as possible. Decrypt the data at the last possible
moment before you need to use the secret.

• Clean the clear-text version of the secret as soon as you can. Replace the clear-text
copy of the secret data with zeros as soon as you have finished with it.

Prior to .NET Framework 2.0, the use of byte arrays was recommended to help implement
these guidelines. Byte arrays can be pinned in memory, encrypted, and replaced with zeros. In
.NET Framework 2.0, use SecureString instead.

Be Aware That basicHttpBinding Will Not Protect Sensitive Data by
Default
If you use basicHttpBinding, be aware that message security and transport security are turned
off by default. All of the bindings, except for basicHttpBinding, have either message or
transport security turned on by default. If you want to secure your WCF messages on the

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 317

network, you will need to explicitly turn on either message or transport security for
basicHttpBinding.

Additional Resources
• For more information on choosing a transport, see “Choosing a Transport” at

http://msdn2.microsoft.com/en-us/library/ms733769.aspx

Use Appropriately Sized Keys
Choosing a key size represents a trade-off between performance and security. If you choose a
key that is too small, the data that you thought was well-protected can be vulnerable to attack.
If you choose a key that is too large, your system will be subject to a performance impact
without a commensurate real-world improvement in security. The appropriate key size changes
based on the cryptographic algorithm in use, and also changes over time as machine processing
speeds increase and attack techniques become more sophisticated.

The following recommendations will give you a margin of safety without sacrificing too much
performance:

• When you use an asymmetric algorithm (RSA), choose a 2048-bit key
• When you use a symmetric algorithm (AES), choose a 128-bit key

Deployment Considerations
To avoid introducing vulnerabilities when you deploy your WCF application into a production
environment, follow these guidleines:

• Do not use temporary certificates in production.
• If you are using Kerberos authentication or delegation, create an SPN.
• Use IIS to host your WCF service wherever possible.
• Use a least-privileged account to run your WCF service.
• Protect sensitive data in your configuration files.

Do Not Use Temporary Certificates in Production
Use temporary certificates when you are developing and testing your WCF service. Temporary
certificates are less expensive than production certificates and are easier to create. Once you
are ready to deploy, replace your temporary certificate with a production certificate provided
by a certificate authority (CA).

Temporary certificates can be created by using the makecert utility. If you are deploying a WCF
service for a real-world production environment, use a certificate provided by a CA such as
Microsoft Windows Server 2003 Certificate Server or a third party.

Additional Resources
• For more information on how to create a certificate, see “Certificate Creation Tool” at

http://msdn2.microsoft.com/en-us/library/bfsktky3(VS.80).aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 318

If You Are Using Kerberos Authentication or Delegation, Create an SPN
If you are using Kerberos authentication, create a service principle name (SPN). Without an
SPN, the Kerberos authentication will stop working when you switch from a machine account,
such as Network Service, to a domain account.

Only SPNs can be configured for delegation in the Active Directory. In a production scenario
using delegation, where you want to run the WCF service using a low-privileged custom domain
account, you need to create an SPN for that account in order to enable delegation

To create an SPN for a domain account, run the Setspn tool from a command prompt as
follows:

setspn -A HTTP/webservername domain\customAccountName
setspn -A HTTP/webservername.fullyqualifieddomainname
domain\customAccountName

This creates an SPN for the custom domain account (domain\customAccountName) and
associates the account with the HTTP service on the specified WCF server. By running the
command twice as shown above, you can associate the account with the NetBIOS server name
and the fully qualified domain name (FQDN) of the server. This ensures that the SPN is
established correctly even if your environment does not consistently use FQDNs.

Additional Resources
• For more information on SPNs, see “Setspn.exe: Manipulate Service Principal Names for

Accounts” at http://technet2.microsoft.com/windowsserver/en/library/b3a029a1-7ff0-4f6f-
87d2-f2e70294a5761033.mspx?mfr=true

Use IIS to Host Your WCF Service Wherever Possible
Use Internet Information Services (IIS) to host your WCF service because it provides a large
number of features for efficient service management and scalability. IIS 6.0 only supports
bindings over HTTP, so if you need to use TCP, MSMQ, or named pipes, you should host in a
Windows service instead. IIS 7.0 supports all of the commonly used transport protocols such as
HTTP, TCP, MSMQ, and named pipes. By using IIS as your WCF service host, you can take full
advantage of IIS features such as process recycling, idle shutdown, process health monitoring,
and message-based activation.

Perform the following steps when you want to develop and deploy a WCF service that is hosted
in IIS:

1. Ensure that IIS, WCF, and the WCF activation component are correctly installed and
registered.

2. Create a new IIS application, or reuse an existing ASP.NET application.
3. Create a .svc file for the WCF service.
4. Deploy the service implementation to the IIS application.
5. Configure the WCF service.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 319

Additional Resources
• For more information, see “How to: Host a WCF Service in IIS” at

http://msdn.microsoft.com/en-us/library/ms733766.aspx

Use a Least-Privileged Account to Run Your WCF Service
Use a least-privileged account to host your WCF service because it will reduce your application’s
attack surface and reduce the potential damage if you are attacked. If the service account
requires additional access rights on infrastructure resources such as MSMQ, the event log,
performance counters, and the file Ssstem, appropriate permissions should be given to these
resources so that the WCF service can run successfully. If your service needs to access specific
resources on behalf of the original caller, use impersonation and delegation to flow the caller’s
identity for a downstream authorization check.

In a development scenario, use the local network service account, which is a special built-in
account that has reduced privileges. In a production scenario, create a least-privileged custom
domain service account.

Additional Resources
• For more information on how to create a custom service account, see “How To - Create a

Service Account for an ASP.NET 2.0 Application” at http://msdn2.microsoft.com/en-
us/library/ms998297.aspx

Protect Sensitive Data in Your Configuration Files
Protect the sensitive data, such as SQL connection strings, in your configuration files by
encrypting it. Connection strings stored in plaintext are dangerous, because an attacker that
can compromise a server will be able to read those connection strings. Even if a machine is not
compromised, connection strings stored in plaintext are accessible to administrators and any
other users with sufficient privileges on the host machine and/or Windows domain.

Use DPAPI to encrypt the sensitive data in the configuration file on your WCF server machine.
To encrypt the <connectionStrings> section by using the DPAPI provider with the machine-key
store (the default configuration), run the following command from a command window:

aspnet_regiis -pe "connectionStrings" -app "/MachineDPAPI" -prov
"DataProtectionConfigurationProvider"

The aspnet_regiis options are:

• -pe – Specifies the configuration section to encrypt.
• -app – Specifies your Web application’s virtual path. If your application is nested, you

need to specify the nested path from the root directory; for example,
"/test/aspnet/MachineDPAPI".

• -prov – Specifies the provider name.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 320

If you need to encrypt configuration file data on multiple servers in a Web farm, use the RSA
protected configuration provider because of the ease with which you can export RSA key
containers.

Additional Resources
• For more information on using DPAPI, see “How To: Encrypt Configuration Sections in

ASP.NET 2.0 Using DPAPI” at http://msdn2.microsoft.com/en-us/library/ms998280.aspx
• For more information on using RSA, see “How To: Encrypt Configuration Sections in

ASP.NET 2.0 Using RSA” at http://msdn2.microsoft.com/en-us/library/ms998283.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 321

Practices at a Glance – WCF Security

Index

Auditing and Logging
• How to Audit Security Events
• How to Enable WCF Message Logging
• How to Enable WCF Tracing
• How to Use Health Monitoring in WCF
• How to Filter Sensitive Data from Your Logs
• How to View Log Information
• How to View Trace Information
• How to Log Traces to a WMI Provider
• How to Turn Off Audit Failure Suppression

Authentication
• How to Authenticate Users Against the SQL Server Membership Provider
• How to Authenticate Users Against Active Directory
• How to Authenticate Users Against Active Directory Without Windows Authentication
• How to Authenticate Users with Certificates
• How to Map Certificates with Windows Accounts
• How to Authenticate Users Against a Custom User Store

Authorization
• How to Authorize Declaratively
• How to Authorize Imperatively if You Use a Role Provider
• How to Authorize Imperatively
• How to Perform Resource-based Authorization
• How to Perform Role-based Authorization
• How to Authorize Users Against Windows Groups
• How to Authorize Users Against Windows Groups Using Aspnetwindowstokenroleprovider
• How to Authorize Users Against the SQL Server Role Provider
• How to Authorize Users Against the ASP.NET Role Provider
• How to Assign the Current Principal with Iauthorizationpolicy to Allow Authorization Using

Custom Authentication
• How to Authorize Users Against ADAM Using the Authorization Manager Role Provider
• How to Map Roles to Certificates

Configuration Management
• How to Encrypt Sensitive Data in Your Configuration Files
• How to Run Your Service Under a Specific Identity

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 322

• How to Create a Service Account for Your WCF Service
• How to Stop Clients from Referencing Your Service
• How to Protect Against Message Replay Attacks

Deployment Considerations
• How to Configure Certificates to Enable SSL In IIS
• How to Map Windows Accounts with Certificates
• How to Create a Service Principle Name (SPN)
• How to Configure WCF For NATs and Firewalls
• How to Create an X.509 Certificate

Exception Management
• How to Shield Exception Information with Fault Contracts
• How to Check the State of a Channel in WCF Proxy Client
• How to Avoid Faulting the Channels with Fault Contracts
• How to Create an Error Handler to Log Details of Faults for Auditing Purposes
• How to Handle Unhandled Exceptions in Downstream Services
• How to Throw an Exception with Complex Types or Data Contracts with a Fault Exception
• How to Handle Unknown Faults in a Service
• How to Implement a Data Contract to Propagate Exception Details for Debugging Purposes
• How to Implement Fault Contracts in Callback Functions

Hosting
• How to Host WCF in IIS
• How to Host WCF in a Windows Service
• How to Self-host WCF
• How to Configure a Least-privileged Account to Host your Service

Impersonation/Delegation
• How to Choose Between a Trusted Subsystem and Impersonation/Delegation
• How to Impersonate the Original Caller When Using Windows Authentication
• How to Impersonate Programmatically in WCF
• How to Impersonate Declaratively in WCF
• How to Delegate the Original Caller to Call Back-end Services When Using Windows

Authentication
• How to Impersonate the Original Caller Without Windows Authentication
• How to Impersonate the Original Caller Using S4U Kerberos Extensions
• How to Delegate the Original Caller Using S4U Kerberos Extensions
• How to Impersonate and Delegate Using the LogonUser Windows API
• How to Flow the Original Caller from an ASP.NET Client to WCF
• How to Control Access to a Remote Resource Based on the Original Caller’s Identity

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 323

Message Validation
• How to Protect Your Service from Malicious Messages
• How to Protect Your Service from Malicious Input
• How to Protect Your Service from Denial of Service Attacks
• How to Validate Parameters with Parameter Inspectors
• How to Validate Parameters with Message Inspectors Using Schemas
• How to Validate Data Contracts with Message Inspectors Using Schemas
• How to Validate Message Contracts with Message Inspectors Using Schemas
• How to Use Regular Expressions to Validate Format, Range, and Length in Schemas
• How to Validate Inbound Messages on a Service
• How to Validate Outbound Messages on a Service
• How to Validate Outbound Messages on the Client
• How to Validate Inbound Messages on the Client
• How to Validate Input Parameters
• How to Validate Output Parameters

Message Security
• How to Use Message Security
• How to Control the Level of Message Encryption
• How to Use Out-of-Band Credentials with Message Security

Proxy Considerations
• How to Avoid Proxy Spoofing
• How to Publish Service Metadata for Your Clients
• How to Create a Proxy for an IIS-hosted Service with Certificate Authentication and

Transport Security

Sensitive Data
• How to Encrypt Sensitive Data in Configuration Files
• How to Protect Sensitive Data in Memory
• How to Protect Sensitive Data on the Network

Transport Security
• How to Use Transport Security
• How to Use Secure Conversations in WCF

X.509 Certificates
• How to Create a Temporary X.509 Certificate for Transport Security
• How to Create a Temporary X.509 Certificate for Message Security
• How to Create a Temporary X.509 Certificate For Certificate Authentication

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 324

Auditing and Logging
• How to Audit Security Events
• How to Enable WCF Message Logging
• How to Enable WCF Tracing
• How to Use Health Monitoring in WCF
• How to Filter Sensitive Data from Your Logs
• How to View Log Information
• How to View Trace Information
• How to Log Traces to a WMI Provider
• How to Turn Off Audit Failure Suppression

How to Audit Security Events
You can use the auditing feature in WCF to audit security events such as authentication and
authorization failures. WCF service auditing can allow you to detect an attack that has occurred
or is in progress. In addition, auditing can help you debug security-related problems. For
example, if an error in the configuration of the authorization or checking policy accidentally
denies access to an authorized user, you can discover and isolate the cause of this error by
examining the auditing events in the event log.

Perform the following steps to enable auditing of authentication and authorization for your
WCF service:

1. Open the web.config file of the WCF service by using the Configuration Editor tool
(SvcConfigEditor.exe).

2. In the Configuration Editor, navigate to the Advanced node.
3. Select the Behavior: ServiceBehavior section and add a new service behavior extension

element.
4. In the Adding Behavior Element Extension Sections dialog box, select

serviceSecurityAudit and then click Add.
5. In the Configuration section, under Service Behaviors, select the serviceSecurityAudit

option.
6. Set the MessageAuthenticationAuditLevel attribute to SuccessOrFailure by choosing

this option from the drop-down list.
7. Set the ServiceAuthorizationAuditLevel attribute to SuccessOrFailure by choosing this

option from the drop-down list.
8. In the Configuration Editor, on the File menu, click Save.
9. In Microsoft Visual Studio®, verify your configuration. The configuration should look as

follows.

…
<behaviors>
 <serviceBehaviors>
 <behavior name="ServiceBehavior">
 <serviceMetadata httpGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="false" />

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 325

 <serviceSecurityAudit
messageAuthenticationAuditLevel="SuccessOrFailure" />
 <serviceSecurityAudit
serviceAuthorizationAuditLevel="SuccessOrFailure" />
 </behavior>
 </serviceBehaviors>
</behaviors>
…

Additional Resources
• For more information on auditing, see “Auditing Security Events” at

http://msdn2.microsoft.com/en-us/library/ms731669.aspx
• For more information on auditing in WCF, see “How to: Audit Windows Communication

Foundation Security Events” at http://msdn2.microsoft.com/en-
us/library/ms734737.aspx

• For auditing guidelines, see the Auditing and Logging section of “WCF 3.5 Security
Guidelines“ at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=WCF%20Security%
20Guidelines&referringTitle=Home

How to Enable WCF Message Logging
You can enable message logging to log the messages processed by your service. Message
logging can be used to diagnose your applications and analyze the root cause of problems.
Message logging is not turned on by default; turn on message logging by setting attributes on
the <messagelogging> element in your configuration file and then add a trace listener to log the
events to a file.

Enabling WCF Message Logging
Perform the following steps to enable WCF message logging:

1. Open the web.config file of the WCF service by using the Configuration Editor tool
(SvcConfigEditor.exe).

2. In the Configuration Editor, navigate to the Diagnostics node and then click the Enable
Message Logging link.
This enables message logging for your service and also creates a listener
(ServiceModelMessageLoggingListener) and a source
(System.ServiceModel.MessageLogging) under the Listeners and Sources folders,
respectively.

Configuring Message Logging Levels
You can configure message logging levels at both the service and transport levels. Perform the
following steps to configure the message logging levels:

1. In the left pane of the Configuration editor, select MessageLogging under the
Diagnostics node.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 326

2. Set the LogMessagesAtServiceLevel attribute to True by choosing this option from the
drop-down list.
The LogMessagesAtTransportLevel attribute is True by default.

Determining Where Messages Will Be Logged
Perform the following step to determine where the messages will be logged:

• Select ServiceModelMessageLoggingListener under the Listeners node and note the
value of the InitData attribute. The default location where messages are logged is
c:\inetpub\wwwroot\WCFService\web_messages.svclog.

The configuration file should look as follows:

 <system.diagnostics>
 <sources>
 <source name="System.ServiceModel.MessageLogging"
 switchValue="Warning, ActivityTracing">
 <listeners>
 <add type="System.Diagnostics.DefaultTraceListener"
 name="Default">
 <filter type="" />
 </add>
 <add name="ServiceModelMessageLoggingListener">
 <filter type="" />
 </add>
 </listeners>
 </source>
 </sources>
 <sharedListeners>
 <add
initializeData="c:\inetpub\wwwroot\auditingwcf\web_messages.svclog"
type="System.Diagnostics.XmlWriterTraceListener, System,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
 name="ServiceModelMessageLoggingListener"
 traceOutputOptions="Timestamp">
 <filter type="" />
 </add>
 </sharedListeners>
 </system.diagnostics>

 <system.serviceModel>
 <diagnostics>
 <messageLogging logMalformedMessages="true"
 logMessagesAtServiceLevel="true"
 logMessagesAtTransportLevel="true" />
 </diagnostics>

Additional Resources
• For more information on auditing, see “Auditing Security Events” at

http://msdn2.microsoft.com/en-us/library/ms731669.aspx
• For message logging information, see “Message Logging” at

http://msdn2.microsoft.com/en-us/library/ms731859.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 327

• For more information on auditing in WCF, see “How to: Audit Windows Communication
Foundation Security Events” at http://msdn2.microsoft.com/en-
us/library/ms734737.aspx

• For auditing guidelines, see the Auditing and Logging section of “WCF 3.5 Security
Guidelines“ at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=WCF%20Security%
20Guidelines&referringTitle=Home

How to Enable WCF Tracing
Use WCF tracing to help debug your WCF service by logging all operations on your service.

Enabling Tracing
Perform the following steps to enable tracing:

1. Open the web.config file of the WCF service by using the Configuration Editor tool
(SvcConfigEditor.exe).

2. In the Configuration Editor, navigate to the Diagnostics node and then click the Enable
Tracing link.
This enables tracing of your WCF service and also creates a listener
(ServiceModelTraceListener) and a source (SystemServiceModel) under the Listeners
and Sources folders, respectively.

Determining Where Traces Will Be Written
Perform the following step to determine where the traces will be written:

• Select ServiceModelTraceListener under the Listeners node and note the value of the
InitData attribute. The default location where trace messages are written is
c:\inetpub\wwwroot\auditingwcf\web_tracelog.svclog.

The configuration file should look as follows:

 <system.diagnostics>
 <sources>
 <source name="System.ServiceModel"
 switchValue="Warning, ActivityTracing"
 propagateActivity="true">
 <listeners>
 <add type="System.Diagnostics.DefaultTraceListener"
 name="Default">
 <filter type="" />
 </add>
 <add name="ServiceModelTraceListener">
 <filter type="" />
 </add>
 </listeners>
 </source>
 </sources>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 328

 <sharedListeners>
 <add
 initializeData="c:\inetpub\wwwroot\auditingwcf\web_tracelog.svclog"
 type="System.Diagnostics.XmlWriterTraceListener, System,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
 name="ServiceModelTraceListener"
 traceOutputOptions="Timestamp">
 <filter type="" />
 </add>
 </sharedListeners>
 </system.diagnostics>

Additional Resources
• For more information on tracing, see “Tracing” at http://msdn.microsoft.com/en-

us/library/ms730342.aspx
• For more information on using the WCF Service Trace Viewer Tool, see “Service Trace

Viewer Tool” at http://msdn.microsoft.com/en-us/library/ms732023.aspx and
“Examining WCF Diagnostic Traces Using Service Trace Viewer Tool
(SvcTraceViewer.exe)” at http://blogs.msdn.com/alikl/archive/2007/10/23/examining-
wcf-diagnostic-traces-using-service-trace-viewer-tool-svctraceviewer-exe.aspx

• For auditing guidelines, see the Auditing and Logging section of “WCF 3.5 Security
Guidelines“ at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=WCF%20Security%
20Guidelines&referringTitle=Home

How to Use Health Monitoring in WCF
You can use the health monitoring feature in WCF to log custom events in your service based
on business logic. You can use health monitoring to instrument your application and monitor
user-management events around authentication and authorization. This instrumentation can
help you to detect and react to potentially suspicious behavior. It also enables you to gather
data on operations; for example, to track who is accessing your application and when user
account passwords need to be reset.

Perform the following high-level steps to configure your WCF service to use health monitoring:

1. Create a custom health monitoring event.
2. Configure your WCF service for health monitoring.
3. Instrument your application to raise a custom event.

Each of these steps is detailed below.

1. Create a custom health monitoring event.
Create a custom user management Web event by first creating a class library and then
creating a class that inherits from WebAuditEvent, as follows:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 329

using System.Web.Management;

 public class MyEvent : WebAuditEvent
 {

 public MyEvent(string msg, object eventSource, int eventCode)
 : base(msg, eventSource, eventCode)
 {
 }

 public MyEvent(string msg, object eventSource, int eventCode,
 int eventDetailCode)
 : base(msg, eventSource, eventCode, eventDetailCode)
 {
 }

 public override void FormatCustomEventDetails(WebEventFormatter
 formatter)
 {
 base.FormatCustomEventDetails(formatter);

 // Display some custom event message
 formatter.AppendLine("Some Critical Event Fired");
 }
 }

2. Configure your WCF Service for health monitoring.
Add a health monitoring element to your configuration file as follows:

…
<system.web>
 <healthMonitoring>
 <eventMappings>
 <add name="Some Custom Event"
 type="MyEventLibrary.MyEvent, MyEventLibrary"/>
 </eventMappings>
 <rules>
 <add name="Custom event"
 eventName="Some Custom Event"
 provider="EventLogProvider"
 minInterval="00:00:01"/>
 </rules>
 </healthMonitoring>
</system.web>
…

3. Instrument your application to raise a custom event.
Instrument the WCF service by raising the custom event in a service contract as follows.

[OperationContract]
string InvokeCriticalEvent();

public string InvokeCriticalEvent()
 {
 MyEvent obj = new MyEvent("Invoking Some Custom Event",
 this, WebEventCodes.WebExtendedBase + 1);

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 330

 obj.Raise();
 return "Critical event invoked";
 }

After completing these steps, you can verify that the custom events are in the system event log
after calling the service method from a test client.

Additional Resources
• For more information on health monitoring, see “How To: Use Health Monitoring in

ASP.NET 2.0” at http://msdn2.microsoft.com/en-us/library/ms998306.aspx
• For additional information on health monitoring, see “ASP.NET Health Monitoring

Overview” at http://msdn.microsoft.com/en-us/library/bb398933.aspx
• For auditing guidelines, see the Auditing and Logging section of “WCF 3.5 Security

Guidelines“ at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=WCF%20Security%
20Guidelines&referringTitle=Home

How to Filter Sensitive Data from Your Logs
You can use message filters to log messages that match the filter criteria. For example, you
could use a message filter to remove personally identifiable information (PII) before it can get
into log files.

Filters support the full XPath syntax. The following code shows how to configure a filter that
records only messages that have a Simple Object Access Protocol (SOAP) header section:

<messageLogging logEntireMessage="true"
 logMalformedMessages="true"
 logMessagesAtServiceLevel="true"
 logMessagesAtTransportLevel="true"
 maxMessagesToLog="420">
 <filters>
 <add nodeQuota="10"
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
 /soap:Envelope/soap:Header
 </add>
 </filters>
</messageLogging>

Filters provide a safety feature using the nodeQuota attribute, which limits the maximum
number of nodes in the XPath Document Object Model (DOM) that can be examined to match
the filter.

Additional Resources
• For more information on message logging, see “Configuring Message Logging” at

http://msdn.microsoft.com/en-us/library/ms730064.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 331

How to View Log Information
You can use the SvcTraceViewer.exe utility to view both message log files and trace files. You
can find this tool at <Drive Name>:\Program Files\Microsoft SDKs\Windows\v6.0\Bin.

This tool gives you a comprehensive analysis of the step-by-step process of the WCF service,
showing each interaction with the WCF run time and the clients. It shows the object activities,
messages, and all errors that occurred in the host’s life. It also provides you a graphical view of
the log or trace data.

Additional Resources
• For more information on using the Service Trace Viewer Tool, see “Service Trace Viewer

Tool” at http://msdn.microsoft.com/en-us/library/ms732023.aspx and
“Examining WCF Diagnostic Traces Using Service Trace Viewer Tool
(SvcTraceViewer.exe)” at http://blogs.msdn.com/alikl/archive/2007/10/23/examining-
wcf-diagnostic-traces-using-service-trace-viewer-tool-svctraceviewer-exe.aspx

• For more information on authentication, see “Authentication” at
http://msdn2.microsoft.com/en-us/library/ms733082.aspx

How to View Trace Information
Perform the following steps to view trace information:

1. Enable tracing by adding configuration information to the application web.config or
app.config file; for example:

<system.diagnostics>
 <trace autoflush="true" />
 <sources>
 <source name="System.ServiceModel"
 switchValue="Information, ActivityTracing"
 propagateActivity="true">
 <listeners>
 <add name="sdt"
 type="System.Diagnostics.XmlWriterTraceListener"
 initializeData= "WCFTraceLog.svclog" />
 </listeners>
 </source>
 </sources>
</system.diagnostics>

2. Navigate to the SvcTraceViewer.exe installation location (C:\Program Files\Microsoft
SDKs\Windows\v6.0\Bin) and run SvcTraceViewer.exe.

3. On the File menu, click Open and then navigate to the location where your trace files
are stored.

4. Double-click the trace log file to open it.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 332

Additional Resources
• For more information on tracing, see “Tracing” at http://msdn.microsoft.com/en-

us/library/ms730342.aspx
• For more information on the Service Trace Viewer Tool, see “Service Trace Viewer Tool

(SvcTraceViewer.exe)” at http://msdn.microsoft.com/en-us/library/ms732023.aspx
• For more information on authentication, see “Authentication” at

http://msdn2.microsoft.com/en-us/library/ms733082.aspx
• For auditing guidelines, see the Auditing and Logging section of “WCF 3.5 Security

Guidelines“ at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=WCF%20Security%
20Guidelines&referringTitle=Home

How to Log Traces to a WMI Provider
Perform the following steps to enable a Windows Management Instrumentation (WMI)
provider for your service:

1. Open the web.config file of the WCF service by using the Configuration Editor tool
(SvcConfigEditor.exe).

2. In the Configuration Editor, navigate to the Diagnostics node and then click the Enable
WMI Provider link. The configuration file should look as follows.

 <system.serviceModel>
 <diagnostics wmiProviderEnabled="true">
 ...
 </diagnostics>
 ...
 </system.serviceModel>

3. To view the WMI trace information, you need to install WMI CIM Studio so that you can
view the WMI interactions. WMI CIM Studio is a Microsoft ActiveX® component that
plugs into Microsoft Internet Explorer®. You can get this as a free download available
from Microsoft.

Additional Resources
• To download the WMI CIM Studio tool, see “WMI Administrative Tools” at

http://www.microsoft.com/downloads/details.aspx?familyid=6430F853-1120-48DB-
8CC5-F2ABDC3ED314&displaylang=en

How to Turn Off Audit Failure Suppression
By default, WCF will ignore audit failures and allow the service to continue running by setting
the SuppressAuditFailure property to true. You can set this property to false, which will turn
off audit failure suppression, thereby throwing an exception when there has been an auditing
failure.

Perform the following step to turn off audit failure suppression:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 333

• Set the suppressAuditFailure property to false as follows:

<configuration>
 <system.serviceModel>
 <behaviors>
 <behavior>
 <serviceSecurityAudit
 auditLogLocation="Application"
 suppressAuditFailure="false"
 serviceAuthorizationAuditLevel="Failure"
 messageAuthenticationAuditLevel="SuccessOrFailure" />
 </behavior>
 </behaviors>
 </system.serviceModel>
</configuration>

Additional Resources
• For more information on auditing in WCF, see “How to: Audit Windows Communication

Foundation Security Events” at http://msdn.microsoft.com/en-
us/library/ms734737.aspx

Authentication
• How to Authenticate Users Against the SQL Server Membership Provider
• How to Authenticate Users Against Active Directory
• How to Authenticate Users Against Active Directory Without Windows Authentication
• How to Authenticate Users with Certificates
• How to Map Certificates with Windows Accounts
• How to Authenticate Users Against a Custom User Store

How to Authenticate Users Against the SQL Server Membership Provider
If your user information is already stored in a Microsoft SQL Server® Membership database, or
if you are building an Internet-facing WCF application from scratch, you can use the SQL Server
membership provider to authenticate your WCF service clients. The SQL Server membership
provider authenticates all incoming client credentials against the credentials stored in the SQL
Server Membership database. The membership feature is a good choice becauseit allows you to
enable username authentication without writing and maintaining custom code.

Perform the following steps to configure the SQL Server membership provider to work with
username authentication in your WCF application:

1. Configure your SQL Server database for membership. From a Visual Studio 2008
command prompt, run the following command:

 aspnet_regsql -S .\SQLExpress -E -A m -d <<YourDatabaseName>>

In this command:

• -S specifies the server, which is (.\SQLExpress) in this example.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 334

• -E specifies to use Windows authentication to connect to SQL Server.
• -A m specifies to add only the membership feature. For simple authentication

against a SQL Server user store, only the membership feature is required.
• -d specifies the SQL server database name. If this option is not used, a default

aspnetdb database will be created.

For a complete list of the commands, run Aspnet_regsql /?

2. Modify your web.config file in your WCF service application by adding the following
sections

<connectionStrings>
 <add name="MyLocalSQLServer"
 connectionString="Initial Catalog=<<YourDatabaseName>>;
 data source=.\sqlexpress;Integrated Security=SSPI;" />
</connectionStrings>

…
<system.web>
 ...
 <membership defaultProvider="MySqlMembershipProvider" >
 <providers>
 <clear/>
 <add name="MySqlMembershipProvider"
 connectionStringName="MyLocalSQLServer"
 applicationName="MyAppName"
 type="System.Web.Security.SqlMembershipProvider" />
 </providers>
 </membership>
</system.web>
…

3. Configure the service to use username authentication:

…
<bindings>
 <wsHttpBinding>
 <binding name="wsHttpEndpointBinding">
 <security>
 <message clientCredentialType="UserName" />
 </security>
 </binding>
 </wsHttpBinding>
</bindings>

4. Configure the service to use the SQL Server membership provider:

<behaviors>
 <serviceBehaviors>
 <behavior name="ServiceBehavior">

 <serviceCredentials>
 <userNameAuthentication
userNamePasswordValidationMode="MembershipProvider"

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 335

 membershipProviderName="MySqlMembershipProvider" />
 </serviceCredentials>

 </behavior>
 </serviceBehaviors>
</behaviors>
…

Additional Resources
• For more information, see “How To – Use Username Authentication with the SQL Server

Membership Provider and Message Security in WCF from Windows Forms” at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=How%20To%20-
%20Use%20Username%20Authentication%20with%20the%20SQL%20Membership%20
Provider%20and%20Message%20Security%20in%20WCF%20from%20Windows%20For
ms&referringTitle=How%20Tos

• For more information, see “How to: Use the ASP.NET Membership Provider” at
http://msdn.microsoft.com/en-us/library/ms731049.aspx

How to Authenticate Users against Active Directory
Use Windows authentication when both the client and service are in trusted domains, or when
users are stored in local machine accounts, such as in an intranet scenario. By using Windows
authentication with the Microsoft Active Directory® directory service, you benefit from a
unified identity store, centralized account administration, enforceable account and password
policies, and strong authentication that avoids sending passwords over the network.

If Windows authentication is not possible because of infrastructure limitations such as a firewall
between clients and Active Directory, consider using username authentication instead. If you
are using username authentication, the username/password for the user will be automatically
mapped to a Windows account.

The following example shows how to configure the client credentials in WCF to use Windows
authentication:

…
<bindings>
 <wsHttpBinding>
 <binding name="wsHttpEndpointBinding">
 <security>
 <message clientCredentialType="Windows" />
 </security>
 </binding>
 </wsHttpBinding>
</bindings>
…

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 336

Additional Resources
• For more information, see “Selecting a Credential Type” at

http://msdn.microsoft.com/en-us/library/ms733836.aspx

How to Authenticate Users Against Active Directory Without Windows
Authentication
Use username authentication to authenticate users against Active Directory or local machine
accounts, when you cannot use Windows authentication. By default, username authentication
will map your user’s credentials to Windows accounts and authenticate the users against Active
Directory.

The following code snippet configures a WCF service to use username authentication:

…
<bindings>
 <wsHttpBinding>
 <binding name="wsHttpEndpointBinding">
 <security>
 <message clientCredentialType="UserName" />
 </security>
 </binding>
 </wsHttpBinding>
</bindings>
…

Note: Use message security to protect user credentials passed over the network.

Additional Resources
• For more information, see “Selecting a Credential Type” at

http://msdn.microsoft.com/en-us/library/ms733836.aspx

How to Authenticate Users with Certificates
Client certificates can authenticate a client service account or multiple users to a WCF service. If
you use a client certificate for each user, you can map each certificate to a Windows account.

Perform the following steps to authenticate users by using a client-side certificate:

1. Install the service certificate on the WCF service machine:
• If you are using message security, configure service credentials to set the name

and location of the service certificate.
• If you are using transport security with wsHttpBinding, install the service

certificate on Internet Information Services (IIS) and configure the virtual
directory to require Secure Sockets Layer (SSL) and client certificates.

2. Configure the service to use certificates for the client credentials type, as shown in the
following example:

 <wsHttpBinding>
 <binding name="WSHttpBinding_ICalculator">

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 337

 <security mode="Message">
 <message clientCredentialType="Certificate" />
 </security>
 </binding>
 </wsHttpBinding>

3. Install the service certificate on the client machine.
4. Configure the endpoint behavior to set the name and location of the client certificate.

Note: Make sure that the root CA certificate is in the Trusted Root Certification Authorities
location on both the server and client machines.

Additional Resources
• For more information on working with WCF and certificates, see “Working with Certificates“

at http://msdn.microsoft.com/en-us/library/ms731899.aspx
• For more information on using certificates with WCF, see “How To – Use Certificate

Authentication and Message Security in WCF Calling from Windows Forms” at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=How%20To%20-
%20Use%20Certificate%20Authentication%20and%20Message%20Security%20in%20WCF%
20calling%20from%20Windows%20Forms&referringTitle=How%20Tos

How to Map Certificates with Windows Accounts
Client certificates are not mapped to Windows accounts by default. To do so, you set the
mapClientCertificateToWindowsAccount property to true.

Perform the following steps to map certificates to Windows accounts:

1. Decide between the IIS certificate mapping versus Active Directory certificate mapping.
a. IIS certificate mapping is useful if you need only a limited number of mappings,

or a different mapping on each WCF service.
b. Use Active Directory certificate mapping when the account mappings are

identical on all IIS servers. Active Directory mapping is easier to maintain than IIS
mapping because you only have to create the mapping in one location.

2. Configure IIS / Active Directory for mapping the certificates.
3. After you have enabled the client certificate mapping feature, set the

mapClientCertificateToWindowsAccount property to true as follows:

<serviceBehaviors>
 <behavior name="MyServiceBehaviorForWebHttp">

 <serviceCredentials>
 <clientCertificate>
 <authentication mapClientCertificateToWindowsAccount="true" />
 </clientCertificate>
 </serviceCredentials>

 </behavior>
</serviceBehaviors>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 338

Additional Resources
• For more information on using certificates with WCF, see “Working with Certificates” at

http://msdn.microsoft.com/en-us/library/ms731899.aspx
• For more information on mapping certificates to Windows accounts, see “Map

certificates to user accounts” at
http://technet2.microsoft.com/WindowsServer/f/?en/library/0539dcf5-82c5-48e6-
be8a-57bca16c7e171033.mspx

• For more information on mapping certificates to Active Directory, see “Mapping Client
Certificates with Directory Service Mapping” at
http://technet2.microsoft.com/windowsserver/en/library/7cce4299-28f2-45fa-8730-
4e0cbe3be8561033.mspx?mfr=true

• For more information on certificate mapping strategies, see “Mapping Strategies” at
http://technet2.microsoft.com/windowsserver/en/library/aa61c564-1599-4414-a12d-
2f64786f6ec31033.mspx?mfr=true

How to Authenticate Users Against a Custom User Store
To authenticate users against a custom user store, configure your application to use username
authentication with a custom username and password validator. Configure the custom
validator in a service behavior and implement it in a class library. Your service uses the
username and password validator to authenticate your users based on your custom user store.

Configuring a custom validator for your WCF service
The following configuration snippet shows how to configure a custom validator for your WCF
service:

 <system.serviceModel>
 ...
 <behaviors>
 <serviceBehaviors>
 <behavior name="ServiceBehavior">
 ...
 <serviceCredentials>
 <serviceCertificate findValue=" CN=FabrikamEnterprises " />
 <userNameAuthentication userNamePasswordValidationMode="Custom"
 customUserNamePasswordValidatorType=
 "MyUserNamePasswordValidator,Host" />
 </serviceCredentials>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>

Implementing a custom username and password validator
The following code snippet shows how to implement a custom username and password
validator:

using System;
using System.Collections.Generic;

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 339

using System.IdentityModel.Selectors;
using System.IdentityModel.Tokens;
using System.Text;

namespace DerivativesCalculator
{
 public class MyUserNamePasswordValidator : UserNamePasswordValidator
 {
 public override void Validate(string userName, string password)
 {
 Console.Write("\nValidating username, {0}, and password, {1} ... ",
userName, password);
 if ((string.Compare(userName, "don", true) != 0) ||
 (string.Compare(password, "hall", false) != 0))
 {
 throw new SecurityTokenException("Unknown user.");
 }
 Console.Write("Done: Credentials accepted. \n");
 }
 }
}

Additional Resources
• For more information on password validators, see “User Name Password Validator” at

http://msdn.microsoft.com/en-us/library/aa354513.aspx

Authorization
• How to Authorize Declaratively
• How to Authorize Imperatively if You Use a Role Provider
• How to Authorize Imperatively
• How to Perform Resource-based Authorization
• How to Perform Role-based Authorization
• How to Authorize Users Against Windows Groups
• How to Authorize Users Against Windows Groups Using

Aspnetwindowstokenroleprovider
• How to Authorize Users Against the SQL Server Role Provider
• How to Authorize Users Against the ASP.NET Role Provider
• How to Assign the Current Principal with Iauthorizationpolicy to Allow Authorization

Using Custom Authentication
• How to Authorize Users Against ADAM Using the Authorization Manager Role

Provider
• How to Map Roles to Certificates

How to Authorize Declaratively
Declarative authorization can be added to application code at design time by specifying
required access for a particular method or class declared as an attribute on the operation.
Declarative role-based authorization is best for authorizing access to WCF at the operation

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 340

level. Declarative authorization can be added to application code at design time by specifying
required access for a particular method or class declared as an attribute on the operation.

Authorize Windows groups declaratively by adding the PrincipalPermission attribute above
each service method that requires authorization. Specify the Windows user group required to
access the method in the Role field as shown in the following example:

[PrincipalPermission(SecurityAction.Demand, Role = "accounting")]
public double Add(double a, double b)
{
 return a + b;
}

The username/password combination supplied by the client will be mapped to a Windows user
account by the WCF service. If the user is successfully authorized, the system will next check to
see if the user belongs to the group declared with the PrinciplePermission role. Method access
will be granted if the user belongs to the role.

Additional Resources
• For more information on authorization, see “Authorization” at

http://msdn2.microsoft.com/en-us/library/ms733071.aspx
• For information on the Roles.IsUserInRole method, see “Roles.IsUserInRole Method

(String)” at http://msdn.microsoft.com/en-us/library/4z6b5d42.aspx

How to Authorize Imperatively if You Use a Role Provider
If you are using a role provider, you can do imperative checks by calling Roles.isUserInRole. If
you are using the AspNetWindowsToken Role Provider, you can use imperative authorization
against Windows roles. Imperative security is useful when the resource to be accessed or action
to be performed is not known until run time, or when you require finer-grained access control
beyond the level of a code method.

Authorize Windows groups or roles that can be SQL or custom roles imperatively by using the
Roles.IsUserInRole method to authorize the client. The role can be contained in a variable and
changed dynamically if needed, as shown in the following example:

 string RequiredGroup = "Administrators";
 try
 {
 if (!Roles.IsUserInRole(User.Identity.Name, "RequiredGroup"))
 {
 Msg.Text = "You are not authorized to view user roles.";
 UsersListBox.Visible = false;
 return;
 }
 }
 catch (HttpException e)
 {
 Msg.Text = "There is no current logged on user. Role membership cannot be
verified.";

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 341

 return;
 }

Additional Resources
• For more information on authorization, see “Authorization” at

http://msdn2.microsoft.com/en-us/library/ms733071.aspx
• For information on the Roles.IsUserInRole method, see “Roles.IsUserInRole Method

(String)” at http://msdn.microsoft.com/en-us/library/4z6b5d42.aspx
• For authorization guidelines, see the Authorization section of “WCF 3.5 Security

Guidelines“ at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=WCF%20Security%
20Guidelines&referringTitle=Home

How to Authorize Imperatively
Imperative role-based authorization is written into your code and processed at run time.
Imperative security is useful when the resource to be accessed or action to be performed is not
known until run time, or when you require finer-grained access control beyond the level of a
code method.

Authorize Windows groups imperatively by using the principal.InInRole method. The following
code snippet exemplifies the authorization check:

string RequiredGroup = "Administrators";

 IPrincipal principal=System.Threading.Thread.CurrentPrincipal;
 if (principal.IsInRole(RequiredGroup))
 return string.Format("You entered: {0}", value);
 else
 return "not authorized";

Additional Resources
• For more information on authorization, see “Authorization” at

http://msdn2.microsoft.com/en-us/library/ms733071.aspx
• For information on the Roles.IsUserInRole method, see “Roles.IsUserInRole Method

(String)” at http://msdn.microsoft.com/en-us/library/4z6b5d42.aspx
• For authorization guidelines, see the Authorization section of “WCF 3.5 Security

Guidelines“ at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=WCF%20Security%
20Guidelines&referringTitle=Home

How to Perform Resource-based Authorization
Resource-based authorization sets permissions on the resource itself. For example, you would
set an access control list (ACL)on a Windows resource and then use the identity of the original
caller to determine access rights to the resource. If you use resource-based authorization in
WCF, you will need to impersonate the original caller through the application layer (e.g.,

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 342

ASP.NET application), through the WCF service layer, and to the business logic code that is
accessing the file resource.

To use resource-based authorization, you need to set permissions on the resource itself by
setting an ACL and then impersonating the original caller.

The following code example impersonates a specific (fixed) identity:

using System.Security.Principal;
…
WindowsIdentity wi = new
WindowsIdentity(“userName@fullyqualifieddomainName”);
WindowsImpersonationContext ctx = null;

try
{
 ctx = wi.Impersonate();

 // Thread is now impersonating you can access resource needed…
}
catch
{
 // Prevent exceptions propagating.
}
finally
{
 // Ensure impersonation is reverted
 ctx.Undo();
}

Additional Resources
• For more information on authorization, see “Authorization” at

http://msdn2.microsoft.com/en-us/library/ms733071.aspx
• For an authorization Q&A, see the Authorization section of “WCF 3.5 Security Questions

and Answers“ at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=WCF%20Questions
%20and%20Answers%20%28Q%26A%29&referringTitle=Home

How to Perform Role-based Authorization
Use role-based authorization to group users into groups (roles) and then set permissions on the
role rather than on individual users. This eases management by allowing you to administer a
smaller set of roles rather than a larger set of users.

The following are the different option for creating role-based authorization based on your
authentication choice:

• If you are using Windows or Basic authentication, you can use Windows groups for role-
based authorization.

• If you are using username authentication, you can use ASP.NET roles for role-based
authorization.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 343

• If you are using certificate authentication, you can map certificates to Windows groups
for role-based authorization.

The following example configures the service to enable the SQL Server role provider for using
ASP.NET roles:

1. Configure the SQL Server role provider:

 <!-- Configure the Sql Role Provider -->
 <roleManager enabled ="true"
 defaultProvider ="SqlRoleProvider" >
 <providers>
 <add name ="SqlRoleProvider"
 type="System.Web.Security.SqlRoleProvider"
 connectionStringName="SqlConn"
 applicationName="MembershipAndRoleProviderSample"/>
 </providers>
 </roleManager>
 <!-- Configure role based authorization to use the Role Provider -->
 <serviceAuthorization principalPermissionMode ="UseAspNetRoles"
 roleProviderName ="SqlRoleProvider" />

2. Include a PrincipalPermission attribute in the service method that specifies the required

authorization access role:

 [PrincipalPermission(SecurityAction.Demand, Role = "Registered
Users")]
 public double Multiply(double n1, double n2)
 {
 double result = n1 * n2;
 return result;
 }

3. The following code shows how to create the authorization check in code:

if (Roles.IsUserInRole(@"accounting"))
{
//authorized
}
else
{
//authorization failed

}

4. The following client connection supplies a username and password to call the method:

 // Set credentials to Alice
 client.ClientCredentials.UserName.UserName = "Alice";
 client.ClientCredentials.UserName.Password = "ecilA-123";

 // Call the Add service operation.
 double value1 = 100.00D;
 double value2 = 15.99D;

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 344

 double result = client.Multiply(value1, value2);

Additional Resources
• For more information on authorization, see “Authorization” at

http://msdn2.microsoft.com/en-us/library/ms733071.aspx
• For an authorization Q&A, see the Authorization section of “WCF 3.5 Security Questions

and Answers“ at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=WCF%20Questions
%20and%20Answers%20%28Q%26A%29&referringTitle=Home

How to Authorize Users Against Windows Groups
Map Windows groups to WCF service methods by using the WCF PrincipalPermission attribute.
Incoming client username credentials will be mapped to the associated Windows group. Service
method access will be granted to a user only if they are a member of the group associated with
the service method being called.

The following example demonstrates how the WCF service “Add” will only run for users
belonging to the “CalculatorClients” Windows group.

// Only members of the CalculatorClients group can call this method.
[PrincipalPermission(SecurityAction.Demand, Role = "CalculatorClients")]
public double Add(double a, double b)
{
 return a + b;
}

Additional Resources
• For more information on authorization, see “Authorization” at

http://msdn2.microsoft.com/en-us/library/ms733071.aspx
• For authorization guidelines, see the Authorization section of “WCF 3.5 Security

Guidelines“ at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=WCF%20Security%
20Guidelines&referringTitle=Home

How to Authorize Users Against Windows Groups Using
AspNetWindowsTokenRoleProvider
If you use Windows groups for authorization, consider using the ASP.NET role provider with the
AspNetWindowsTokenRoleProvider name. This allows you to separate the design of the
authorization from the implementation inside your service. If you decide to change the role
provider, it will not affect the code needed to perform the authorization. Also, when doing
imperative checks, consider using the role manager API instead of performing authorization
checks with WindowsPrincipal.IsInrole.

The following configuration example shows how to configure
AspNetWindowsTokenRoleProvider:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 345

1. Enable the role manager and configure it to use the default
AspNetWindowsTokenRoleProvider as follows:

<system.web>
…
<roleManager enabled="true"
defaultProvider="AspNetWindowsTokenRoleProvider" />
…
</system.web>

2. Configure the service behavior to use ASPNetRoles and the role provider as follows:

<behaviors>
 <serviceBehaviors>
 <behavior name="BehaviorConfiguration">
 <serviceAuthorization
principalPermissionMode="UseAspNetRoles"
 roleProviderName=" AspNetWindowsTokenRoleProvider " />
 <serviceMetadata />
 </behavior>
 </serviceBehaviors>
</behaviors>

Additional Resources
• For more information on authorization, see “Authorization” at

http://msdn2.microsoft.com/en-us/library/ms733071.aspx
• For information on the Roles.IsUserInRole method, see “Roles.IsUserInRole Method

(String)” at http://msdn.microsoft.com/en-us/library/4z6b5d42.aspx
• For authorization guidelines, see the Authorization section of “WCF 3.5 Security

Guidelines“ at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=WCF%20Security%
20Guidelines&referringTitle=Home

How to Authorize Users Against the SQL Server Role Provider
If you store role information in SQL Server, configure your application to use SqlRoleProvider
for authorization. The role provider allows you to load the roles for users without writing and
maintaining custom code.

Perform the following steps to enable SQL Server role authorization to provide role-based
authorization:

1. Enable the role provider as shown below and configure the connection string pointing to
the role store in SQL Server:

…
<configuration>
…
<connectionStrings>
 <add name="MyLocalSQLServer"

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 346

 connectionString="Initial Catalog=aspnetdb;data
source=Sqlserver;Integrated Security=SSPI;"

<system.web>
<roleManager enabled="true" defaultProvider="MySqlRoleProvider" >
 <providers>
 <add name="MySqlRoleProvider"
 connectionStringName="MyLocalSQLServer"
 applicationName="MyAppName"
 type="System.Web.Security.SqlRoleProvider" />
 </providers>
 </roleManager>
<system.web>

2. Configure the service behavior. Set the principalPermissionMode attribute to
UseAspNetRoles and the roleProviderName attribute to MySqlRoleProvider:

…
<system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior name="BehaviorConfiguration">
 <serviceAuthorization
principalPermissionMode="UseAspNetRoles"
 roleProviderName="MySqlRoleProvider" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
<services>
 <service behaviorConfiguration=" BehaviorConfiguration "
name="MyService">
 <endpoint binding="wsHttpBinding" bindingConfiguration=""
 name="httpsendpoint" contract="IMyService2" />
 </service>
 </services>
 </system.serviceModel>

3. Authorize Windows groups declaratively by adding the PrincipalPermission attribute
above each service method that requires authorization. Specify the Windows user group
required to access the method in the Role field:

[PrincipalPermission(SecurityAction.Demand, Role = "accounting")]
public double Add(double a, double b)
{
 return a + b;
}

Additional Resources
• For more information on authorization, see “Authorization” at

http://msdn2.microsoft.com/en-us/library/ms733071.aspx
• For an authorization Q&A, see the Authorization section of “WCF 3.5 Security Questions

and Answers“ at

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 347

http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=WCF%20Questions
%20and%20Answers%20%28Q%26A%29&referringTitle=Home

How to Authorize Users Against the ASP.NET Role Provider
Using ASP.NET Role provider allows you to separate the design of the authorization from the
implementation inside your service. If you decide to change the role provider, it will not affect
the code needed to perform the authorization.

Declaratively authorize users with the ASP.NET role provider
Perform the following steps to declaratively authorize users with the ASP.NET role provider:

1. Configure the ASP.NET role provider in the service app.config or web.config file as
follows:

 <system.web>
 <!-- Configure the ASP.NET Role Provider -->
 <roleManager enabled ="true"
 defaultProvider ="MyRoleProvider" >
 <providers>
 <add name ="MyRoleProvider"
 type="System.Web.Security.<RoleProviderTobeUsed>"
 connectionStringName="ProviderConn"
 applicationName="MembershipAndRoleProviderSample"/>
 </providers>
 </roleManager>
 </system.web>

2. Configure the WCF service to use the ASP.NET role:

 <behaviors>
 <serviceBehaviors>
 <behavior name="CalculatorServiceBehavior">
 <!-- Configure role based authorization to use -->
 <!-- the Role Provider -->
 <serviceAuthorization
 principalPermissionMode ="UseAspNetRoles"
 roleProviderName ="MyRoleProvider" />
 </behavior>
 </serviceBehaviors>
 </behaviors>

3. Authorize users declaratively by adding the PrincipalPermission attribute above each

service method that requires authorization. Specify the user role required to access the
method in the Role field.

[PrincipalPermission(SecurityAction.Demand, Role = "accounting")]
public double Add(double a, double b)
{
 return a + b;
}

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 348

Imperatively authorize users with the ASP.NET role provider
Perform the following steps to imperatively authorize users with the ASP.NET role provider:

1. Configure the ASP.NET role provider in the service app.config or web.config file as
follows:

 <system.web>
 <!-- Configure the ASP.NET Role Provider -->
 <roleManager enabled ="true"
 defaultProvider ="MyRoleProvider" >
 <providers>
 <add name ="SqlRoleProvider"
 type="System.Web.Security.<RoleProviderToBeUsed>"
 connectionStringName="ProviderConn"
 applicationName="MembershipAndRoleProviderSample"/>
 </providers>
 </roleManager>
 </system.web>

2. Configure the WCF Service to use the ASP.NET role provider:

 <behaviors>
 <serviceBehaviors>
 <behavior name="CalculatorServiceBehavior">
 <!-- Configure role based authorization -->
 <!-- to use the Role Provider -->
 <serviceAuthorization principalPermissionMode ="UseAspNetRoles"
 roleProviderName ="MyRoleProvider" />
 </behavior>
 </serviceBehaviors>
 </behaviors>

3. Authorize users imperatively by using the Roles.IsUserInRole method. The role can be
contained in a variable and changed dynamically if needed, as shown in the following
example:

 string RequiredGroup = “Administrators”;
 try
 {
 if (!Roles.IsUserInRole(User.Identity.Name, “RequiredGroup”))
 {
 Msg.Text = "You are not authorized to view user roles.";
 UsersListBox.Visible = false;
 return;
 }
 }
 catch (HttpException e)
 {
 Msg.Text = "There is no current logged on user. Role membership
cannot be verified.";
 return;

 }

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 349

Additional Resources
• For more information on the ASP.NET role provider, see “How to: Use the ASP.NET Role

Provider with a Service” at http://msdn.microsoft.com/en-us/library/aa702542.aspx
• For information on the Roles.IsUserInRole method, see “Roles.IsUserInRole Method

(String)” at http://msdn.microsoft.com/en-us/library/4z6b5d42.aspx
• For more information on authorization, see “Authorization” at

http://msdn2.microsoft.com/en-us/library/ms733071.aspx
• For an authorization Q&A, see the Authorization section of “WCF 3.5 Security Questions

and Answers“ at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=WCF%20Questions
%20and%20Answers%20%28Q%26A%29&referringTitle=Home

How to Assign the Current Principal with IAuthorizationPolicy to Allow
Authorization Using Custom Authentication
If your application uses custom authentication, you will need to create a class that derives from
IAuthorizationPolicy. In this class, you will retrieve the principal from the cache that was
created by the custom authentication, or from the store based on the username, so that WCF
can authorize the user. After you get the principal, you assign it to
EvaluationContext.Properties[“principal”] and the identity to
EvaluationContext.Properties["Identities"] as shown in the following example:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IdentityModel.Claims;
using System.IdentityModel.Policy;
using System.Web;
using System.Security.Principal;
using CustomAuthenticator;

namespace AuthorizationPolicy
{
 public class AuthorizationPrincipalPolicy : IAuthorizationPolicy
 {
 public bool Evaluate(EvaluationContext evaluationContext, ref
 object state)
 {
 object obj;
 if (!evaluationContext.Properties.TryGetValue("Identities",
 out obj))
 return false;
 IList<IIdentity> identities = obj as IList<IIdentity>;

 // make sure there is already a default identity
 if (identities == null || identities.Count <= 0)
 return false;

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 350

 string username = identities[0].Name;

 //get the principal from the cache or build another one

 IPrincipal principal =
 UserNameAuthenticator.GetUser(username);

 if (principal == null)
 {
 string[] roles =
 UserNameAuthenticator.GetRolesForUser(username);
 principal = new GenericPrincipal(new
 GenericIdentity(username, "Custom Provider"), roles);

 }

 evaluationContext.Properties["Principal"] = principal;
 evaluationContext.Properties["Identities"] =
 new List<IIdentity>() { principal.Identity };

 return true;
 }

 public System.IdentityModel.Claims.ClaimSet Issuer
 {
 get { return ClaimSet.System; }
 }

 public string Id
 {
 get { return "ContextPrincipalPolicy"; }
 }
 }
}

The Policy library is configured in the web.config or app.config configuration file or in code. The
following example configures the policy location in the configuration file. Define the custom
authorization policy type in the add element policyType attribute.

<serviceAuthorization
 serviceAuthorizationManagerType
 ="Microsoft.ServiceModel.Samples.MyServiceAuthorizationManager, service">
 <!-- The serviceAuthorization behavior allows one to specify custom
authorization policies. -->

<authorizationPolicies>

 <add policyType
="Microsoft.ServiceModel.Samples.CustomAuthorizationPolicy.MyAuthorizationPol
icy, PolicyLibrary" />

</authorizationPolicies>

</serviceAuthorization>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 351

Additional Resources
• For more information on custom authorization policies, see “How to: Create a Custom

Authorization Policy” at http://msdn.microsoft.com/en-
us/library/ms729794(VS.85).aspx

• For more information on authorization, see “Authorization” at
http://msdn2.microsoft.com/en-us/library/ms733071.aspx

How to Authorize Users Against ADAM Using the Authorization Manager
Role Provider
If your application stores role information in an Authorization Manager (AzMan) policy store in
Active Directory Application Mode (ADAM), use the Authorization Manager Role Provider.
Authorization Manager provides a Microsoft Management Console (MMC) snap-in, to create
and manage roles, and to manage role membership for users.

Perform the following steps to authenticate a directory service with ADAM:

1. Use AzMan to store roles in an ADAM policy store as follows.
Note: You can only currently create an ADAM store only within Microsoft Windows
Server® 2003.

a. At the command prompt, type azman.msc to open the Authorization
Manager snap-in.

b. In AzMan, right-click Authorization Manager and then click New Authorization
Store. Select Active Directory and enter a name to create the ADAM store.

c. Right-click the Groups folder of the Active Directory store you just created,
and then click New Application Group. Enter a name for the group you want to
create. Repeat this step to create as many groups as needed.

d. Add Windows users to the AzMan groups(s) you created. Double-click each
group you created and use the Members tab to add the users.

2. Configure the web.config or app.config file to use the ADAM store. Define a
connection string to the AzMan policy store in ADAM and configure the WCF service
to use the role provider as follows.

<ConnectionStrings>

 <add name="AzManADAMServer" connectionString=
"msldap://servername:port/CN=AzManADAMStore,OU=SecNetPartition,O=Sec
Net,C=US"/>
</ConnectionStrings>

<system.web>
<roleManager
 enabled="true"
 defaultProvider="RoleManagerAzManADAMProvider"
 <providers>
 <add name="RoleManagerAzManADAMProvider"
 type="System.Web.Security.AuthorizationStoreRoleProvider,
System.Web, Version=2.0.0.0, Culture=neutral,

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 352

 publicKeyToken=b03f5f7f11d50a3a"
 connectionStringName="AzManADAMServer"
 applicationName="AzManDemo"/>
 </providers>
</roleManager>
</system.web>

3. Configure the service behavior. Set the principalPermissionMode attribute to

UseAspNetRoles and the roleProviderName attribute to
RoleManagerAzManADAMProvider:

…
<system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior name="BehaviorConfiguration">
 <serviceAuthorization
principalPermissionMode="UseAspNetRoles"
 roleProviderName="RoleManagerAzManADAMProvider" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
….
 </system.serviceModel>
4. Authenticate the users declaratively by adding the PrincipalPermission attribute

above each service method that requires authorization. Specify the Windows user
group required to access the method in the Role field.

[PrincipalPermission(SecurityAction.Demand, Role = "accounting")]
public double Add(double a, double b)
{

return a + b;
}

The username/password combination supplied by the client will be mapped by the
WCF service to a Windows user account. If the user is successfully authorized, the
system will next check to see if the user belongs to the group declared with the
PrinciplePermission role. Method access will be granted if the user belongs to the
role.

Additional Resources
• For more information on AzMan, see “How To: Use Authorization Manager (AzMan)

with ASP.NET 2.0” at http://msdn2.microsoft.com/en-us/library/ms998336.aspx
• For more information on authorization, see “Authorization” at

http://msdn2.microsoft.com/en-us/library/ms733071.aspx
• For an authorization Q&A, see the Authorization section of “WCF 3.5 Security Questions

and Answers“ at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=WCF%20Questions
%20and%20Answers%20%28Q%26A%29&referringTitle=Home

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 353

How to Map Roles to Certificates
If you are using certificate authentication, you can map the certificate to a Windows account
and authorize based on this account.

Perform the following steps to associate roles with a certificate:

1. Configure IIS to enable client certificate mapping.
a. Open the IIS service manager.
b. Right-click the Web site you will be using for your service and then click

Properties.
c. Click the Directory Security tab, and then in the Secure Communications

section, click Edit.
d. Select the Enable Client Certificate Mapping check box. Click the Edit button and

then enter 1-1 or Many-to-1, depending on your configuration.
2. Configure the service to require ClientCredentialType = “Certificate”.

This will require clients to connect by using certificate authentication.

 <message clientCredentialType="Certificate" />

3. Configure the service to map certificates to user accounts in the web.config or
app.config file. Set the mapClientCertificateToWindowsAccount to “true” as follows:

<serviceBehaviors>
 <behavior name="MappingBehavior">
 <serviceCredentials>
 <clientCertificate>
 <authentication certificateValidationMode="None"
 mapClientCertificateToWindowsAccount="true" />
 </clientCertificate>
 </serviceCredentials>
 </behavior>
</serviceBehaviors>

4. Configure clients to supply a certificate as shown below.
The incoming client requests will contain a certificate name and thumbprint ID. IIS will
map the client certificates to a Windows user account.

 <message clientCredentialType="Certificate" />

5. Authorize the required Windows group by adding the PrincipalPermission attribute
above each service method that requires authorization. Specify the Windows user group
required to access the method in the Role field as shown in the following example.

[PrincipalPermission(SecurityAction.Demand, Role = "accounting")]
public double Add(double a, double b)
{
 return a + b;
}

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 354

Additional Resources
• For more information on authorization, see “Authorization” at

http://msdn2.microsoft.com/en-us/library/ms733071.aspx
• For authorization guidelines, see the Authorization section of “WCF 3.5 Security

Guidelines“ at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=WCF%20Security%
20Guidelines&referringTitle=Home

Configuration Management
• How to Encrypt Sensitive Data in Your Configuration Files
• How to Run Your Service Under a Specific Identity
• How to Create a Service Account for Your WCF Service
• How to Stop Clients from Referencing Your Service
• How to Protect Against Message Replay Attacks

How to Encrypt Sensitive Data in Your Configuration Files
Encrypt configuration sections that contain sensitive data such as SQL connection strings. Use
DPAPI to encrypt the sensitive data in the configuration file on your WCF server machine. To
encrypt sensitive data in your configuration files, use the aspnet_regiis.exe tool with the -pe
(provider encryption) option.

For example, to encrypt the connectionStrings section, using the DPAPI provider with the
machine key store (the default configuration), run the following command from a command
prompt:

aspnet_regiis -pe "connectionStrings" -app "/MachineDPAPI" -prov
"DataProtectionConfigurationProvider"

The aspnet_regiis settings are:

• -pe – specifies the configuration section to encrypt.
• -app – specifies your Web application’s virtual path. If your application is nested, you

need to specify the nested path from the root directory; for example,
"/test/aspnet/MachineDPAPI"

• -prov – specifies the provider name.

The Microsoft .NET Framework supports the following protected configuration providers:

• RSAProtectedConfigurationProvider. This is the default provider. It uses the RSA public
key encryption to encrypt and decrypt data. Use this provider to encrypt configuration
files for use on multiple WCF services in a Web farm.

• DPAPIProtectedConfigurationProvider. This provider uses the Windows Data Protection
API (DPAPI) to encrypt and decrypt data. Use this provider to encrypt configuration files
for use on a single Windows Server.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 355

You do not need to take any special steps for decryption because the .NET run time takes care
of this for you.

Additional Resources
• For more information on encrypting configuration sections, see “How To: Encrypt

Configuration Sections in ASP.NET 2.0 Using DPAPI” at http://msdn2.microsoft.com/en-
us/library/ms998280.aspx and “How To: Encrypt Configuration Sections in ASP.NET 2.0
Using RSA” at http://msdn2.microsoft.com/en-us/library/ms998283.aspx

• For more information on the aspnet_regiis tool, see “ASP.NET IIS Registration Tool
(Aspnet_regiis.exe)“ at http://msdn.microsoft.com/en-us/library/k6h9cz8h(VS.80).aspx

How to Run Your Service Under a Specific Identity
Running your WCF service with a specific identity helps to isolate the service, allows you to
restrict service resources to your application’s account, and allows you to use Windows auditing
to track the application’s activity separately from other applications or services.

If your service is hosted in IIS 6.0, use IIS Manager to create an application pool running as a
specific identity. Use IIS Manager to assign your WCF service to that application pool. This
would enable your WCF service to run under the security context of the specific identity.

If your service is hosted in a Windows service, configure the Windows service to run using the
specific identity. This would enable the WCF service to run under the security context of the
specific identity.

Additional Resources
• For information on IIS 6.0 management, see the “Server Administration Guide (IIS 6.0)“

at
http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/33e0
a51a-5f8a-40f2-9923-cdd604e1a812.mspx

• For configuration management guidelines, see the Configuration Management section
of “WCF 3.5 Security Guidelines” at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=WCF%20Security%
20Guidelines&referringTitle=Home

How to Create a Service Account for Your WCF Service
Running your WCF service with a specific identity, such as a service account, helps to isolate the
service. It allows you to restrict service resources to your application’s account, and allows you
to use Windows auditing to track the application’s activity separately from other applications
or services.

Perform the following steps to create a service account to run your WCF service:

1. Create a Windows account.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 356

2. Run the following aspnet_regiis.exe command to assign the relevant ASP.NET
permissions to the account:

aspnet_regiis.exe -ga machineName\userName

Note: This step is required when your application needs to run in ASP.NET compatibility
mode; otherwise you can skip this step.

3. Use the Local Security Policy tool to grant the Windows account the Deny logon locally
user right.
This reduces the privileges of the account and prevents anyone from logging on to
Windows locally with this account.

Additional Resources
• For more information on the aspnet_regiis tool, see “ASP.NET IIS Registration Tool

(Aspnet_regiis.exe)“ at http://msdn.microsoft.com/en-us/library/k6h9cz8h(VS.80).aspx

How to Stop Clients from Referencing Your Service
If you want to block clients from accessing the Web Services Description Language (WSDL) of
your service, you should remove all metadata exchange (mex) endpoints and set the
httpGetEnabled and httpsGetEnabled attributes to false. If the metadata is exposed, unwanted
clients will be able to generate proxy files (e.g., using SvcUtil.exe) and inspect potentially
sensitive methods and parameters offered by the service.

To stop your clients from referencing your service, stop your service from publishing its
metadata. To do this, remove all the mex endpoints from your service configuration and
configure HttpGetEnabled and HttpsGetEnabled to false in the ServiceBehavior section as
shown below:

 <serviceMetadata httpGetEnabled="False" httpsGetEnabled="False"/>

Additional Resources
• For more information on publishing metadata endpoints, see “Publishing Metadata

Endpoints” at http://msdn.microsoft.com/en-us/library/ms788760.aspx

How to Protect Against Message Replay Attacks
A replay attack occurs when an attacker copies a stream of messages between two parties and
replays the stream to one or more of the parties. To protect against message replay attacks,
enable replay detection in the service.

Perform the following steps to enable replay detection:

1. Create a customBinding Element.
2. Create a <security> element.
3. Create a localClientSettings element or localServiceSettings element.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 357

4. Set the following attribute values, as appropriate: detectReplays, maxClockSkew,
replayWindow, and replayCacheSize.

The following example sets the attributes of both a <localServiceSettings> and a
<localClientSettings> element:

<customBinding>
 <binding name="NewBinding0">
 <textMessageEncoding />
 <security>
 <localClientSettings
 replayCacheSize="800000"
 maxClockSkew="00:03:00"
 replayWindow="00:03:00" />
 <localServiceSettings
 replayCacheSize="800000"
 maxClockSkew="00:03:00"
 replayWindow="00:03:00" />
 <secureConversationBootstrap />
 </security>
 <httpTransport />
 </binding>
</customBinding>

Additional Resources
• For more information on replay detection, see “How to: Enable Message Replay

Detection” at http://msdn2.microsoft.com/en-us/library/ms733063.aspx
• For a configuration management Q&A, see the Configuration Management section of

“WCF 3.5 Security Questions and Answers“ at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=WCF%20Questions
%20and%20Answers%20%28Q%26A%29&referringTitle=Home

Deployment Considerations
• How to Configure Certificates to Enable SSL In IIS
• How to Map Windows Accounts with Certificates
• How to Create a Service Principle Name (SPN)
• How to Configure WCF for NATs and Firewalls
• How to Create an X.509 Certificate

How to Configure Certificates to Enable SSL in IIS
Use Secure Sockets Layer (SSL) in Internet Information Services (IIS) to protect the
communication channel between your WCF-enabled Web application and the Web client. SSL
protects sensitive data on the network from being stolen or modified.

Perform the following steps to configure certificates for SSL communication in IIS.

1. Click Start and then click Run.
2. In the Run dialog box, type inetmgr and then click OK.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 358

3. In the Internet Information Services (IIS) Manager dialog box, expand the (local
computer) node, and then expand the Web Sites node.

4. Right-click Default Web Site and then click Properties.
5. In the Default Web Site Properties dialog box, click the Directory Security tab, and then

in the Secure Communications section, click Server Certificate.
6. On the Welcome screen of the Web Server Certificate Wizard, click Next to continue.
7. On the Server Certificate screen, select the Assign an existing certificate radio button

option, and then click Next.
8. On the Available Certificates screen, select the certificate you created and installed in

the previous step, and then click Next.
9. Verify the information on the certificate summary screen, and then click Next.
10. Click Finish to complete the certificate installation.
11. In the Default Web Site Properties dialog box, click OK.

Additional Resources
• For information on installing a server certificate, see “Install a Server Certificate (IIS 6.0)”

at
http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/a2f35
fcd-d3b6-4f39-ba93-041a86f7e17f.mspx?mfr=true

• For a Q&A on deployment considerations, see the Deployment Considerations section of
“WCF 3.5 Security Questions and Answers“ at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=WCF%20Questions
%20and%20Answers%20%28Q%26A%29&referringTitle=Home

• For deployment guidelines, see the Deployment Considerations section of “WCF 3.5
Security Questions and Answers“ at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=WCF%20Security%
20Guidelines&referringTitle=Home

How to Map Windows Accounts with Certificates
If you are using certificate authentication, you can map certificates to Windows accounts in
order to enable authentication and authorization based on the Windows account.

You can map an X.509 certificate to a Windows account by setting the
mapClientCertificateToWindowsAccount property to true. By default, when using the
certificate client credential type on bindings, the certificate is not mapped to Windows
accounts.

Perform the following steps to map certificates to Windows accounts:

1. Decide between the IIS certificate mapping versus Active Directory certificate mapping.
a. IIS mapping is useful if you need only a limited number of mappings, or a

different mapping on each WCF service.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 359

b. Use Active Directory mapping when the account mappings are identical on all IIS
servers. Active Directory mapping is easier to maintain than IIS mapping because
you only have to create the mapping in one location.

2. Configure IIS / Active Directory for mapping the certificates.
3. After you have enabled the client certificate mapping feature, set the

mapClientCertificateToWindowsAccount property to true as follows:

<serviceBehaviors>
 <behavior name="MyServiceBehaviorForWebHttp">

 <serviceCredentials>
 <clientCertificate>
 <authentication mapClientCertificateToWindowsAccount="true" />
 </clientCertificate>
 </serviceCredentials>

 </behavior>
</serviceBehaviors>

Additional Resources
• For more information on certificates, see “Working with Certificates” at

http://msdn.microsoft.com/en-us/library/ms731899.aspx
• For more information on mapping certificates to Windows accounts, see “Map

certificates to user accounts” at
http://technet2.microsoft.com/WindowsServer/f/?en/library/0539dcf5-82c5-48e6-
be8a-57bca16c7e171033.mspx

• For more information on mapping certificates to Active Directory, see “Mapping Client
Certificates with Directory Service Mapping” at
http://technet2.microsoft.com/windowsserver/en/library/7cce4299-28f2-45fa-8730-
4e0cbe3be8561033.mspx?mfr=true

• For more information on certificate mapping strategies, see “Mapping Strategies” at
http://technet2.microsoft.com/windowsserver/en/library/aa61c564-1599-4414-a12d-
2f64786f6ec31033.mspx?mfr=true

How to Create a Service Principle Name (SPN)
A service principal name (SPN) is the name by which a client uniquely identifies an instance of a
service. The Kerberos authentication service can use an SPN to authenticate a service. When a
client wants to connect to a service, it locates an instance of the service, composes an SPN for
that instance, connects to the service, and then presents the SPN for the service to
authenticate.

To create an SPN for a domain account, run the Setspn tool from a command prompt as shown
below:

setspn -A HTTP/webservername domain\customAccountName
setspn -A HTTP/webservername.fullyqualifieddomainname
domain\customAccountName

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 360

The setspn tool creates an SPN for the custom domain account (domain\customAccountName)
and associates the account with the HTTP service on the specified Web server. By running the
command twice as shown above, you can associate the account with the NetBIOS server name
and the fully qualified domain name (FQDN) of the server. This ensures that the SPN is
established correctly even if your environment does not consistently use FQDNs.

Additional Resources
• For more information on SPN, see “Setspn.exe: Manipulate Service Principal Names for

Accounts” at http://technet2.microsoft.com/windowsserver/en/library/b3a029a1-7ff0-
4f6f-87d2-f2e70294a5761033.mspx?mfr=true

How to Configure WCF for NATs and Firewalls
Network address translators (NATs) and firewalls can impact the strategy by which your WCF
clients and services communicate.

Perform the following steps to determine WCF configuration for a NAT or firewall:

1. Determine the addressability of the service and client machines. If the service or the
client is behind a NAT and is not directly addressable, use a technology such as
Microsoft Teredo to enable communication.

2. Determine if there are protocol or port constraints on the service or client machines. For
example, port 80 might be open through a firewall while other ports might be blocked.

Once you understand the addressability, protocol, and port constraints on your service and its
clients, you can determine service and endpoint configuration. Use the table in the MSDN®
article “Working with NATS and Firewalls” at http://msdn.microsoft.com/en-
us/library/ms731948.aspx to determine the best configuration for your particular scenario.

Additional Resources
• For more information on Microsoft Teredo, see “Teredo Overview” at

http://technet.microsoft.com/en-us/library/bb457011.aspx
• For more information on configuring WCF for NATs and firewalls, see “Working with

NATS and Firewalls” at http://msdn.microsoft.com/en-us/library/ms731948.aspx

How to Create an X.509 Certificate
You might need to create an X.509 certificate to aid in development and debugging of your
WCF service. Temporary certificates are easier to generate and cost less money than a
certificate issued by a trusted certificate authority (CA), so they are well suited for a
development environment.

To create a temporary X.509 certificate in a development environment use the Makecert utility.
In a production environment, use an X.509 certificate issued by a CA such as VeriSign.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 361

Note: Do not use temporary development certificates in a production environment because
this will open your communication channel to malicious spoofing, sniffing, and tampering.

Additional Resources
• For more information, see “How To – Create and Install Temporary Certificates in WCF

for Message Security During Development” and “How To – Create and Install Temporary
Certificates in WCF for Transport Security During Development” at
http://www.codeplex.com/WCFSecurityGuide - Scroll to the How To’s section.

• For more information on creating a certificate, see “Certificate Creation Tool” at
http://msdn2.microsoft.com/en-us/library/bfsktky3(VS.80).aspx

Exception Management
• How to Shield Exception Information with Fault Contracts
• How to Check the State of a Channel in WCF Proxy Client
• How to Avoid Faulting the Channels with Fault Contracts
• How to Create an Error Handler to Log Details of Faults for Auditing Purposes
• How to Handle Unhandled Exceptions in Downstream Services
• How to Throw an Exception with Complex Types or Data Contracts with a Fault

Exception
• How to Handle Unknown Faults in a Service
• How to Implement a Data Contract to Propagate Exception Details for Debugging

Purposes
• How to Implement Fault Contracts in Callback Functions

How to Shield Exception Information with Fault Contracts
A fault contract details the set of exceptions that can be reported to the caller. You can specify
the possible faults that can occur in your WCF service. This prevents exposing exception details
beyond the defined set to your clients. Because a fault contract lists the types of errors that a
WCF service can throw, it also allows your clients to distinguish between contracted faults and
other possible errors.

Perform the following steps to shield exception information with fault contracts:

1. Define a fault contract by applying the FaultContract attribute directly on a contract
operation, and specifying the error detailing type to the method as follows:

[ServiceContract]
interface ICalculator
{
 [OperationContract]
 [FaultContract(typeof(DivideByZeroException))]
 double Divide(double number1,double number2);
}

2. Implement the Divide operation that throws the fault and have it propagated to the
client by throwing exactly the same detailing type listed in the fault contract.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 362

class MyService : ICalculator
{
 public double Divide(double number1,double number2)
 {
 throw new FaultException<DivideByZeroException>(new
DivideByZeroException());
 }
}

Additional Resources
• For more information on fault contracts, see “Specifying and Handling Faults in

Contracts and Services” at http://msdn.microsoft.com/en-us/library/ms733721.aspx

How to Check the State of a Channel in WCF Proxy Client
You can check the state of a channel during proxy invocation by checking its value (proxy.State).
This allows you to avoid throwing an exception on the proxy channel as a result of the channel
being closed due to an unhandled exception on the service. Following code examples shows
you how to check the state of the channel.

try
 {
 ServiceClient proxy = new ServiceClient();
 proxy.ClientCredentials.UserName.UserName = "user";
 proxy.ClientCredentials.UserName.Password = "password";
 proxy.GetData(2);
 if (proxy.State = CommunicationState.Opened)
 {
 proxy.GetData("data");
 }
 proxy.Close();
 }
 catch (FaultException ex)
 {
 // handle the exception
 }

How to Avoid Faulting the Channels with Fault Contracts
When calling a WCF service, if the service throws any exceptions, the communication channel
goes into the faulted state and you cannot use the proxy for any further calls. You can avoid this
by throwing a FaultException in your service operations. The service operation that throws a
FaultException must be decorated with one or more FaultContract attributes.

Perform the following steps to throw a FaultException:

1. Define a fault contract by applying the FaultContract attribute directly on a contract
operation and specifying the error detailing type to the method, as shown below:

[ServiceContract]
interface ICalculator
{
 [OperationContract]

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 363

 [FaultContract(typeof(DivideByZeroException))]
 double Divide(double number1,double number2);
}

2. Implement the Divide operation that throws the fault and have it propagated to the
client by throwing exactly the same detailing type listed in the fault contract:

class MyService : ICalculator
{
 public double Divide(double number1,double number2)
 {
 throw new FaultException<DivideByZeroException>(new
DivideByZeroException());
 }
}

3. Handle the faults at the client side by catching the FaultException and any other
communication exceptions that could occur when calling the service operations:

try
{
 proxy.Divide();
}
catch (FaultException<DivideByZeroException> ex)
{
 // only if a fault contract of type DivideByZeroException was
specified
}

catch (FaultException ex)
{
 // any other faults
}

catch (CommunicationException ex)
{
 // any communication errors?
}

Additional Resources
• For more information on fault contracts, see “Specifying and Handling Faults in

Contracts and Services” at http://msdn.microsoft.com/en-us/library/ms733721.aspx

How to Create an Error Handler to Log Details of Faults for Auditing
Purposes
You can create an error handler to log fault details by implementing the IErrorHandler interface
methods in your service. This allows you to log and suppress the exceptions, or to log and
throw them as a FaultException. Following code sample shows the methods of the
IErrorHandler interface.

public interface IErrorHandler

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 364

{
 bool HandleError(Exception error, MessageFault fault);
 void ProvideFault(Exception error, ref MessageFault fault, ref string
faultAction);
}

To suppress the fault message, implement the HandleError method and return false. In this
method, you can add your code for logging capabilities.

To raise a FaultException instead of suppressing the fault, implement the ProvideFault method to
provide the MessageFault value. The following code shows a sample implementation of the
ProvideFault method:

public void ProvideFault(Exception error, MessageVersion version, ref Message
fault)
{
 FaultException newEx = new FaultException();
 MessageFault msgFault = newEx.CreateMessageFault();
 fault = Message.CreateMessage(version, msgFault, newEx.Action);
}

Additional Resources
• For more information on fault contracts, see “Specifying and Handling Faults in

Contracts and Services” at http://msdn.microsoft.com/en-us/library/ms733721.aspx

How to Handle Unhandled Exceptions In Downstream Services
Use a global exception handler to catch unhandled exceptions and prevent them from being
propagated to the client.

You can handle the unhandled exceptions in a WCF service by subscribing to the Faulted event
of a service host object. By subscribing to this event, you can determine the cause of a failure
and then perform the necessary actions to abort or restart the service.

The following code snippet shows how to subscribe to the Faulted event:

// hosting a WCF service
ServiceHost customerServiceHost;
customerServiceHost = new ServiceHost(…);
…
// Subscribe to the Faulted event of the customerServiceHost object
customerServiceHost.Faulted += new EventHandler(faultHandler);
…
// FaultHandler method - invoked when customerServiceHost enters the Faulted
state
void faultHandler(object sender, EventArgs e)
{ // log the reasons for the fault…
}

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 365

Additional Resources
• For more information on fault contracts, see “Specifying and Handling Faults in

Contracts and Services” at http://msdn.microsoft.com/en-us/library/ms733721.aspx

How to Throw an Exception with Complex Types or Data Contracts with a
Fault Exception
The following steps show an example of how to throw an exception with a data contract that
has a complex type:

1. Define the DataContract type to pass the details of Simple Object Access Protocol
(SOAP) faults as exceptions from a service back to a client:

[DataContract]
public class DatabaseFault
{
[DataMember]
public string DbOperation;
[DataMember]
public string DbReason
[DataMember]
public string DbMessage;
}

2. Use the FaultContract attribute in the ListCustomers method to generate SOAP faults as

follows:

[ServiceContract]
public interface ICustomerService
{
// Get the list of customers
[FaultContract(typeof(DatabaseFault))]
[OperationContract]
List<string> ListCustomers();
…
}

3. Create and populate the DatabaseFault object with the details of the exception in the

service implementation class, and then throw a FaultException object with the
DatabaseFault object details as follows:

catch(Exception e)
{ DatabaseFault df = new DatabaseFault();
df.DbOperation = "ExecuteReader";
df.DbReason = "Exception in querying the Northwind database.";
df.DbMessage = e.Message;
throw new FaultException<DatabaseFault>(df);
}

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 366

Additional Resources
• For more information on fault contracts, see “Specifying and Handling Faults in

Contracts and Services” at http://msdn.microsoft.com/en-us/library/ms733721.aspx

How to Handle Unknown Faults in a Service
To handle unknown faults in a service, throw an instance of FaultException directly. Any
FaultException<T> thrown by the service always reaches the client as a FaultException<T> or as
FaultException. The FaultException<T> class is derived from the FaultException class.

throw new FaultException("Specify some reason");

Additional Resources
• For more information on fault contracts, see “Specifying and Handling Faults in

Contracts and Services” at http://msdn.microsoft.com/en-us/library/ms733721.aspx

How to Implement a Data Contract to Propagate Exception Details for
Debugging Purposes
Perform the following steps to implement a data contract to propagate exception details for
debugging purposes:

1. Create a DataContract, with a member variable for storing the fault reason:

 [DataContract]
 public class MyDCFaultException
 {
 private string _reason;

 [DataMember]
 public string Reason
 {
 get { return _reason; }
 set { _reason = value; }
 }
 }

2. Create a service contract, specifying a FaultContract with the above DataContract type for
an operation:

 [ServiceContract()]
 public interface IService
 {
 [OperationContract]
 [FaultContract(typeof(MyDCFaultException))]
 string DoSomeComplexWork();
 }

3. Implement the service operation. If there any errors occur, send the exception details

by throwing a FaultException of type MyDCFaultException as follows:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 367

 public class Service : IService
 {

 public string DoSomeComplexWork()
 {
 try
 {

 // some complex operations
 }
 catch (Exception exp)
 {
 MyDCFaultException theFault = new MyDCFaultException();
 theFault.Reason = "Some Error " + exp.Message.ToString();
 throw new FaultException<MyDCFaultException>(theFault);
 }
 return "No Error";

 }

4. Call the service operation from a client application. Get the original service exception

reason by using the Detail.Reason property as follows:

 try
 {
 localhost.IService proxy = new localhost.ServiceClient();
 result = proxy.DoSomeComplexWork();
 }

 catch (FaultException<localhost.MyDCFaultException> ex)
 {
 result = "Exception: " + ex.Detail.Reason;
 }

 Console.WriteLine(result);
 Console.ReadLine();

You can also send managed exception information to the clients by using the
IncludeExceptionDetailInFaults property in the serviceDebug element of your service behavior as
shown below. By default, its value is false; you can change it to true for debugging or problem
diagnosis.

<system.serviceModel>
 <services>
 <service name="MyService"
 behaviorConfiguration="MyServiceBehavior">
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior name="MyServiceBehavior">
 <serviceDebug includeExceptionDetailInFaults="true"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
</system.serviceModel>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 368

Additional Resources
• For more information on fault contracts, see “Specifying and Handling Faults in

Contracts and Services” at http://msdn.microsoft.com/en-us/library/ms733721.aspx

How to Implement Fault Contracts in Callback Functions
In duplex bindings, you need to implement the service with a callback contract specifying the
interface so that the client can implement it. Use the CallbackContract attribute in the service
contract to specify the type of callback contract that has the callback function.

The following code example shows a service that specifies a callback contract:

[ServiceContract(CallbackContract = typeof(IMyContractCallback))]
interface IMyContract
{
 [OperationContract]
 void DoSomething();
}
interface IMyContractCallback
{
 [OperationContract]
 [FaultContract(typeof(InvalidOperationException))]
 void OnCallBack();
}

Additional Resources
• For more information on fault contracts, see “Specifying and Handling Faults in

Contracts and Services” at http://msdn.microsoft.com/en-us/library/ms733721.aspx

Hosting
• How to Host WCF in IIS
• How to Host WCF in a Windows Service
• How to Self-host WCF
• How to Configure a Least-privileged Account to Host Your Service

How to Host WCF in IIS
Use IIS to host your WCF service, unless you need to use a transport that IIS does not support.
IIS provides a large number of features for efficient service management and scalability. By
using IIS as your WCF service host, you can take full advantage of IIS features, such as process
recycling, idle shutdown, process health monitoring, and message-based activation.

HTTP Bindings can be hosted in IIS 6.0 and IIS 7.0. You can host TCP and MSMQ bindings in IIS
7.0 or a Windows service. You can also host in IIS 6.0, but you must first activate the host W3wp
process before using the service.

Perform the following high-level steps to host your WCF service in IIS:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 369

1. Create a virtual directory in IIS.
2. Create a .svc file for the WCF service.
3. Deploy the WCF service implementation to the IIS virtual directory.
4. Configure the WF service.

Additional Resources
• For more information on hosting in IIS, see “Hosting in Internet Information Services” at

http://msdn.microsoft.com/en-us/library/ms734710.aspx
• For more information, see “Deploying an Internet Information Services-Hosted WCF

Service” at http://msdn.microsoft.com/en-us/library/aa751792.aspx
• For more information on hosting a WCF service in IIS, see “How to: Host a WCF Service

in IIS” at http://msdn.microsoft.com/en-us/library/ms733766.aspx

How to Host WCF in a Windows Service
You should use a Windows service when you have to support transports such as TCP, MSMQ, or
named pipes. Windows services have advantages over self-hosting in that they give the benefit
of automatic startup, the service lifetime is controlled by the operating system, it is easier to
run under a least-privileged account, and the Windows service host will restart your service if it
fails. Windows services can be managed by using the Service Control Manager in the Microsoft
Management Console (MMC).

Perform the following steps to host your WCF service in a Windows service:

1. Create a Windows Service Project using Visual Studio 2008.
2. Add service installers to the Windows Service Project.
3. Override the OnStart and OnStop methods to start and stop the service inside the

Windows service, as shown in the following code example:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Linq;
using System.ServiceProcess;
using System.Text;
using System.ServiceModel;

namespace WindowsService1
{
 public partial class WCFServiceHost1 : ServiceBase
 {
 internal static ServiceHost myServiceHost = null;

 public WCFServiceHost1()
 {
 InitializeComponent();
 }
 protected override void OnStart(string[] args)

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 370

 {
 if (myServiceHost != null)
 {
 myServiceHost.Close();
 }
 myServiceHost = new ServiceHost(typeof(Service1));
 myServiceHost.Open();
 }
 protected override void OnStop()
 {
 if (myServiceHost != null)
 {
 myServiceHost.Close();
 myServiceHost = null;
 }
 }
 }
}

4. Install the Windows service by using the InstallUtil.exe command from the Visual Studio

2008 command prompt.

Additional Resources
• For more information, see “How To – Host WCF in a Windows Service Using TCP”

contained in this Guide or at
http://www.codeplex.com/WCFSecurityGuide/Wiki/Print.aspx?title=How%20To%20-
%20Host%20WCF%20in%20a%20Windows%20Service%20Using%20TCP&version=1&act
ion=Print

• For more information, see “How to: Host a WCF Service in a Managed Windows Service”
at http://msdn.microsoft.com/en-us/library/ms733069.aspx

How to Self-host WCF
Self-hosting is best suited for development and debugging scenarios in which you want
maximum flexibility and you want to get the service running as quickly as possible. When
readying for deployment, you should choose between hosting in a Windows service or in IIS.

Use the following methods to self-host your WCF service in any .NET application:

1. Create a method to start the service, as shown in the following code example:

// Host the service within the application.
public static void Main()
{
 // Create a ServiceHost for the CalculatorService type.
 using (ServiceHost serviceHost =
 new ServiceHost(typeof(Service1)))
 {
 // Open the ServiceHost to create listeners
 // and start listening for messages.
 serviceHost.Open();

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 371

 Console.ReadLine();
 }
}

2. In the self-hosted case, you must specify the base address. The following example shows
how to configure the configuration file:

<service
 name="Service1"
 behaviorConfiguration="ServiceBehavior">
 <host>
 <baseAddresses>
 <add
baseAddress="http://localhost:8000/WCFSecuritySamples/service"/>
 </baseAddresses>
 </host>
 ...
</service>

Additional Resources
• For more information on self-hosting, see “Self-Host” at http://msdn.microsoft.com/en-

us/library/ms750530.aspx
• For more information on hosting a WCF service in a managed application, see “How to:

Host a WCF Service in a Managed Application” at http://msdn.microsoft.com/en-
us/library/ms731758.aspx

How to Configure a Least-privileged Account to Host Your Service
Use a least-privileged account to host your service in order to reduce your application’s overall
attack surface and reduce the potential impact of security vulnerabilities in your service. Using
a least-privileged account allows you to audit and authorize your services individually. Your
service is also protected from changes made to the privileges and permissions within the
default account.

Perform the following steps to create a least-privileged account to host your service:

1. Create a Windows account
2. Run the following aspnet_regiis.exe command to assign the relevant ASP.NET

permissions to the account:

aspnet_regiis.exe -ga machineName\userName

Note: This step is needed if your application needs to run in ASP.NET compatibility
mode; otherwise, you can skip the step.

3. Use the Local Security Policy tool to grant the Windows account the Deny logon locally
user right.
This reduces the privileges of the account and prevents anyone from logging on to
Windows locally with this account.

4. Use the least-privileged account to run your WCF service:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 372

o If your service is hosted in IIS 6.0, use IIS Manager to create an application pool
running as an account identity. Use IIS Manager to assign your WCF service to
that application pool.

o If your service is hosted in Windows service, configure the Windows service to
run using the account identity. This would enable the WCF service will run under
the security context of account identity.

Additional Resources
• For more information on the aspnet_regiis.exe tool, see “ASP.NET IIS Registration Tool

(Aspnet_regiis.exe)“ at http://msdn.microsoft.com/en-us/library/k6h9cz8h(VS.80).aspx

Impersonation/Delegation
• How to Choose Between a Trusted Subsystem and Impersonation/Delegation
• How to Impersonate the Original Caller when Using Windows Authentication
• How to Impersonate Programmatically in WCF
• How to Impersonate Declaratively in WCF
• How to Delegate the Original Caller to Call Back-end Services when Using Windows

Authentication
• How to Impersonate the Original Caller Without Windows Authentication
• How to Impersonate the Original Caller Using S4U Kerberos Extensions
• How to Delegate the Original Caller Using S4U Kerberos Extensions
• How to Impersonate and Delegate Using the LogonUser Windows API
• How to Flow the Original Caller from an ASP.NET Client to WCF
• How to Control Access to a Remote Resource Based on the Original Caller’s Identity

How to Choose Between a Trusted Subsystem and
Impersonation/Delegation
With the trusted subsystem model, you use your WCF service's process identity to access
downstream network resources such as databases. With impersonation/delegation, you use
impersonation and use the original caller’s identity to access the database.

A trusted subsystem offers better scalability because your application benefits from efficient
connection pooling. You also minimize back-end ACL management. Only the trusted identity
can access the database — your end users have no direct access. In the trusted subsystem
model, the WCF service is granted broad access to back-end resources. As a result, a
compromised WCF service could potentially make it easier for an attacker to gain broad access
to back-end resources. Keeping the service account’s credentials protected is essential.

With impersonation/delegation, you benefit from operating system auditing because you can
track which users have attempted to access specific resources. You can also enforce granular
access controls in the database, and individual user accounts can be restricted independently of
one another in the database.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 373

Additional Resources
• For more information on the trusted subsystem model, see “Trusted Subsystem” at

http://msdn.microsoft.com/en-us/library/ms730288.aspx
• For more information on delegation and impersonation, see “Delegation and

Impersonation with WCF” at http://msdn2.microsoft.com/en-us/library/ms730088.aspx
• For more information on impersonation, see “How To – Impersonate the Original Caller

in WCF Calling from Windows Forms” at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=How%20To%20-
%20Impersonate%20the%20Original%20Caller%20in%20WCF%20calling%20from%20Wi
ndows%20Forms&referringTitle=How%20Tos

• For more information on impersonation, see “How To – Impersonate the Original Caller
in WCF Calling from a Web Application” at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=How%20To%20-
%20Impersonate%20the%20Original%20Caller%20in%20WCF%20calling%20from%20W
eb%20Application&referringTitle=How%20Tos

How to Impersonate the Original Caller when Using Windows
Authentication
When using Windows authentication, you have access to original callers Windows identities.
You can impersonate the original caller whenever downstream code needs to authorize based
on the original caller’s identity. For instance, you may have authorization checks in business
logic called by WCF, or you may want to access resources that have access control lists (ACLs)
allowing specific user access.

You can impersonate the original caller either declaratively or programmatically, depending on
the following circumstances:

• Impersonate the original caller declaratively when you want to access Microsoft
Windows® resources that are protected with ACLs configured for your application’s
domain user accounts.

• Impersonate the original caller programmatically when you want to access resources
predominantly by using the application’s process identity, but specific sections of the
operation need to use the original caller’s identity.

Additional Resources
• For more information on delegation and impersonation, see “Delegation and

Impersonation with WCF” at http://msdn2.microsoft.com/en-us/library/ms730088.aspx
• For more information on impersonation, see “How To – Impersonate the Original Caller

in WCF Calling from Windows Forms” at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=How%20To%20-
%20Impersonate%20the%20Original%20Caller%20in%20WCF%20calling%20from%20Wi
ndows%20Forms&referringTitle=How%20Tos

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 374

• For more information on impersonation, see “How To – Impersonate the Original Caller
in WCF Calling from a Web Application” at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=How%20To%20-
%20Impersonate%20the%20Original%20Caller%20in%20WCF%20calling%20from%20W
eb%20Application&referringTitle=How%20Tos

How to Impersonate Programmatically in WCF
Programmatic impersonation allows you to impersonate on specific lines of code rather than
the entire operation. This fine-grained approach to impersonation can reduce security risks;
however, be aware that it is easier to make a mistake during implementation that could leave
your code impersonating at higher privilege in the event of an error. Use the using statement to
revert impersonation automatically.

To impersonate the original caller programmatically, you need to have access to Windows
identity of the original caller, calling into your WCF service. For this, you need to configure your
WCF service to require Windows authentication.

Use the Impersonate method of the ServiceSecurityContext.Current.WindowsIdentity class as
follows:

public string GetData(int value)
{
 using (ServiceSecurityContext.Current.WindowsIdentity.Impersonate())
 {
 // Execute under security context of the original caller
 }
}

Important: Revert the impersonation when you are done; in the above example, the using
statement does this for you.

Additional Resources
• For more information on delegation and impersonation, see “Delegation and

Impersonation with WCF” at http://msdn2.microsoft.com/en-us/library/ms730088.aspx
• For more information on impersonation, see “How To – Impersonate the Original Caller

in WCF Calling from Windows Forms” at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=How%20To%20-
%20Impersonate%20the%20Original%20Caller%20in%20WCF%20calling%20from%20Wi
ndows%20Forms&referringTitle=How%20Tos

• For more information on impersonation, see “How To – Impersonate the Original Caller
in WCF Calling from a Web Application” at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=How%20To%20-
%20Impersonate%20the%20Original%20Caller%20in%20WCF%20calling%20from%20W
eb%20Application&referringTitle=How%20Tos

• For an impersonation and delegation Q&A, see the Impersonation/Delegation section of
“WCF 3.5 Security Questions and Answers“ at

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 375

http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=WCF%20Questions
%20and%20Answers%20%28Q%26A%29&referringTitle=Home

How to Impersonate Declaratively In WCF
Use the OperationBehavior attribute to impersonate declaratively. There are two options for
declarative impersonation:

• Impersonating on specific operations
• Impersonating on the entire service

Impersonating on Specific Operations
Use this option when you want to impersonate the original caller for the entire duration of a
specific operation. You can impersonate declaratively by applying the
OperationBehaviorAttribute attribute on any operation that requires client impersonation, as
shown in the following code example:

 [OperationBehavior(Impersonation = ImpersonationOption.Required)]
public string GetData(int value)
{
 return “test”;
}

Impersonating on the Entire Service
Use this option when you want to impersonate the original caller for the entire duration of all
the operations. To impersonate the entire service, set the impersonateCallerForAllOperations
attribute to "true" in the WCF configuration file, as shown in the following example:

…
<behaviors>
 <serviceBehaviors>
 <behavior name="ServiceBehavior">
 <serviceMetadata httpGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="false" />
 <serviceAuthorization impersonateCallerForAllOperations="true" />
 </behavior>
 </serviceBehaviors>
</behaviors>
…

When impersonating for all operations, the Impersonation property of the
OperationBehaviorAttribute applied to each method must also be set to either Allowed or
Required.

Additional Resources
• For more information on delegation and impersonation, see “Delegation and

Impersonation with WCF” at http://msdn2.microsoft.com/en-us/library/ms730088.aspx
• For more information on impersonation, see “How To – Impersonate the Original Caller

in WCF Calling from Windows Forms” at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=How%20To%20-

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 376

%20Impersonate%20the%20Original%20Caller%20in%20WCF%20calling%20from%20Wi
ndows%20Forms&referringTitle=How%20Tos

• For more information on impersonation, see “How To – Impersonate the Original Caller
in WCF Calling from a Web Application” at

http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=How%20To%20-
%20Impersonate%20the%20Original%20Caller%20in%20WCF%20calling%20from%20W
eb%20Application&referringTitle=How%20Tos

• For an impersonation and delegation Q&A, see the Impersonation/Delegation section of
“WCF 3.5 Security Questions and Answers“ at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=WCF%20Questions
%20and%20Answers%20%28Q%26A%29&referringTitle=Home

How to Delegate the Original Caller to Call Back-end Services when Using
Windows Authentication
Use delegation for flowing the impersonated original user’s security context (Windows identity)
to the remote back-end service. On the remote back-end service, the original user’s Windows
identity can be used to authenticate or impersonate the original caller, in order to restrict or
authorize the original caller’s access to local resources.

Perform the following steps to delegate the original caller to back-end resources:

1. Configure the WCF process Identity to be trusted for delegation. On Windows Server
2003 or later, use constrained delegation. This allows administrators to specify exactly
which services can be accessed on a downstream server or a domain account.

2. Impersonate the original caller by using either programmatic impersonation or
declarative impersonation, when accessing the downstream resources.

Additional Resources
• For more information on delegation and impersonation, see “Delegation and

Impersonation with WCF” at http://msdn2.microsoft.com/en-us/library/ms730088.aspx
• For an impersonation and delegation Q&A, see the Impersonation/Delegation section of

“WCF 3.5 Security Questions and Answers“ at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=WCF%20Questions
%20and%20Answers%20%28Q%26A%29&referringTitle=Home

How to Impersonate the Original Caller Without Windows Authentication
When using non-Windows authentication such as certificate or username authentication, if you
need to impersonate the original caller (if the caller has a Windows account) or a service
account, you have the following two options:

1. Using the service for user (S4U) Kerberos extensions. To use this option, you must grant
your process account the “Act as part of the operating system” user right.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 377

2. Using the LogonUser Windows API. This needs to have access to the user credentials
(username and password), which increases the security risk of maintaining the user
credentials in the WCF service.

Note: S4U Kerberos extensions place your process within the trusted computing base (TCB) of
the Web server, which makes your Web server process very highly privileged. Where possible,
you should avoid this approach because an attacker who manages to inject code and
compromise your Web application will have unrestricted capabilities on the local computer.

Additional Resources
• For more information on delegation and impersonation, see “Delegation and

Impersonation with WCF” at http://msdn2.microsoft.com/en-us/library/ms730088.aspx
• For an impersonation and delegation Q&A, see the Impersonation/Delegation section of

“WCF 3.5 Security Questions and Answers“ at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=WCF%20Questions
%20and%20Answers%20%28Q%26A%29&referringTitle=Home

How to Impersonate the Original Caller Using S4U Kerberos Extensions
Perform the following steps to impersonate the original caller using S4U Kerberos extensions:

1. Grant your WCF process account the Act as part of the operating system user right. If
you are running using the network service account, the account has this right by default.

2. Get the user name for the original caller and create a user principal name (UPN) for the
user n a format similar to the following:

username@FullyQualifiedDomainName.com

3. Using the WindowsIdentity constructor, pass the UPN string as the parameter, get the
WindowsIdentity token, and impersonate the original caller as follows:

String username = “username@FullyQualifiedDomainName.com”;
WindowsIdentity winId = new WindowsIdentity(userName);
using (winId.Impersonate())
{
 // access the local resources on behalf of the original callers
}

4. Make sure to revert the impersonation; in the above example, the using statement does
this for you automatically.

Additional Resources
• For more information on delegation and impersonation, see “Delegation and

Impersonation with WCF” at http://msdn2.microsoft.com/en-us/library/ms730088.aspx
• For more information on delegation and impersonation, see “How To – Use Protocol

Transition for Impersonating and Delegating the Original Caller in WCF.”

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 378

How to Delegate the Original Caller Using S4U Kerberos Extensions
Perform the following steps to delegate the original caller using S4U Kerberos extensions:

1. Grant your WCF process account the Act as part of the operating system user right. If
you are running using the network service account, the account has this right by default.

2. Configure the WCF Process Identity with “Trust this computer for delegation to your
specified services only,” by selecting the Use any authentication protocol option.

3. Get the user name for the original caller and create a UPN for the user in a format
similar to the following:

username@FullyQualifiedDomainName.com

4. Using the WindowsIdentity constructor, pass the UPN string as the parameter, get the
WindowsIdentity token, and impersonate the original caller as follows:

 String username = “username@FullyQualifiedDomainName.com”;
 WindowsIdentity winId = new WindowsIdentity(userName);
 using (winId.Impersonate())
 {
 // access the remote resources on behalf of the original caller
 }

5. Make sure to revert the impersonation; in the above example, the using statement does
this for you automatically.

Additional Resources
• For more information on delegation and impersonation, see “Delegation and

Impersonation with WCF” at http://msdn2.microsoft.com/en-us/library/ms730088.aspx
• For more information on delegation and impersonation, see “How To – Use Protocol

Transition for Impersonating and Delegating the Original Caller in WCF.”

How to Impersonate and Delegate Using the LogonUser Windows API
You can use the Microsoft Win32® LogonUser() API (via P/Invoke) to create impersonation
tokens, but only when your WCF service is not trusted for delegation, because this option
forces you to store usernames and passwords on your WCF service.

The following code example shows how the LogonUser API is used for impersonation:

using System.Runtime.InteropServices;
…
// Declare the logon types as constants
const long LOGON32_LOGON_NETWORK = 3;

// Declare the logon providers as constants
const long LOGON32_PROVIDER_DEFAULT = 0;

[DllImport("advapi32.dll",EntryPoint = "LogonUser")]
private static extern bool LogonUser(

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 379

 string lpszUsername,
 string lpszDomain,
 string lpszPassword,
 int dwLogonType,
 int dwLogonProvider,
 ref IntPtr phToken);
[DllImport("kernel32.dll", CharSet=CharSet.Auto)]
public extern static bool CloseHandle(IntPtr handle);

private void ImpersonateAndUse(string Username,
 string Password,
 string Domain)
{
 IntPtr token = new IntPtr(0);
 token = IntPtr.Zero;
 // Call LogonUser to obtain a handle to an access token.
 bool returnValue = LogonUser(Username, Domain,Password,
 (int)LOGON32_LOGON_NETWORK,
 (int)LOGON32_PROVIDER_DEFAULT,
 ref token);
 if (false == returnValue)
 {
 int ret = Marshal.GetLastWin32Error();
 string strErr = String.Format("LogonUser failed with error code : {0}",
ret);
 throw new ApplicationException(strErr, null);
 }
 WindowsIdentity newId = new WindowsIdentity(token);
 WindowsImpersonationContext impersonatedUser = newId.Impersonate();
 try
 {
 // do the operations using original user security context
 }
 finally
 {
 // stop impersonating
 impersonatedUser.Undo();
 CloseHandle(token);
 }
}

Additional Resources
• For more information on the LogonUser API, see “How to validate user credentials on

Microsoft operating systems” at http://support.microsoft.com/kb/q180548/
• For more information on delegation and impersonation, see “Delegation and

Impersonation with WCF” at http://msdn2.microsoft.com/en-us/library/ms730088.aspx
• For an impersonation and delegation Q&A, see the Impersonation/Delegation section of

“WCF 3.5 Security Questions and Answers“ at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=WCF%20Questions
%20and%20Answers%20%28Q%26A%29&referringTitle=Home

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 380

How to Flow the Original Caller from an ASP.NET Client to WCF
Perform the following steps to impersonate the original caller from an ASP.NET client to a WCF
service:

1. Configure your WCF service to use Windows authentication.
2. Configure the ASP.NET application’s process identity for constrained delegation to the

WCF service.
3. Impersonate the Original Caller in ASP.NET when calling the WCF service, as follows:

using System.Security.Principal;
…
protected void Button1_Click(object sender, EventArgs e)
{
 // Obtain the authenticated user's Identity and impersonate the
original caller
 using
(((WindowsIdentity)HttpContext.Current.User.Identity).Impersonate())
 {
 WCFTestService.ServiceClient myService = new
WCFTestService.ServiceClient();
 Response.Write(myService.GetData(123) + "
");
 myService.Close();
 }
}
…

Additional Resources
• For more information on delegation and impersonation, see “Delegation and

Impersonation with WCF” at http://msdn2.microsoft.com/en-us/library/ms730088.aspx
• For more information on impersonation, see “How To – Impersonate the Original Caller

in WCF Calling from a Web Application” at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=How%20To%20-
%20Impersonate%20the%20Original%20Caller%20in%20WCF%20calling%20from%20W
eb%20Application&referringTitle=How%20Tos

How to Control Access to a Remote Resource Based on the Original Caller’s
Identity
Use delegation to flow the impersonated original user’s security context (Windows identity) to
the remote back-end service. On the remote back-end service, the original user’s Windows
identity can be used to authenticate or impersonate the original caller, in order to restrict or
authorize the original caller’s access to local resources.

When using delegation, on Windows Server 2003 or later, use constrained delegation. This
allows administrators to specify exactly which services on a downstream server or a domain
account can be accessed when using an impersonated user’s security context.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 381

Additional Resources
• For more information on delegation and impersonation, see “Delegation and

Impersonation with WCF” at http://msdn2.microsoft.com/en-us/library/ms730088.aspx
• For more information on impersonation, see “How To – Impersonate the Original Caller

in WCF Calling from Windows Forms” at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=How%20To%20-
%20Impersonate%20the%20Original%20Caller%20in%20WCF%20calling%20from%20Wi
ndows%20Forms&referringTitle=How%20Tos

• For more information on impersonation, see “How To – Impersonate the Original Caller
in WCF Calling from a Web Application” at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=How%20To%20-
%20Impersonate%20the%20Original%20Caller%20in%20WCF%20calling%20from%20W
eb%20Application&referringTitle=How%20Tos

Message Validation
• How to Protect Your Service from Malicious Messages
• How to Protect Your Service from Malicious Input
• How to Protect Your Service from Denial of Service Attacks
• How to Validate Parameters with Parameter Inspectors
• How to Validate Parameters with Message Inspectors Using Schemas
• How to Validate Data Contracts with Message Inspectors Using Schemas
• How to Validate Message Contracts with Message Inspectors Using Schemas
• How to Use Regular Expressions to Validate Format, Range, and Length in Schemas
• How to Validate Inbound Messages on a Service
• How to Validate Outbound Messages on a Service
• How to Validate Outbound Messages on the Client
• How to Validate Inbound Messages on the Client
• How to Validate Input Parameters
• How to Validate Output Parameters

How to Protect Your Service from Malicious Messages
Use schema validation to validate and protect your service from maliciously formed messages.
Validation of messages with schemas can protect parameters and/or fields in operation, data,
and message contracts. Use schema validation to validate for format, range, type, and length.
Using schema validation allows separation of business code from validation logic. It also allows
validating message and data contract which include several fields. Complex types in parameters
can also be validated with schemas. Without scehemas, such validation can often require
writing complex validation code.

Additional Resources
• For more information, see “Message Inspectors” at http://msdn.microsoft.com/en-

us/library/aa717047.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 382

How to Protect Your Service from Malicious Input
Use schemas to validate your service against malicious input. You can protect parameters in
operation contracts, and fields in message and data contracts. The parameters in operation
contracts can be simple or complex types. This protection level will require that you implement
message inspectors to be used by your service and/or by the clients that consume your service.
You can also protect your service by validating the parameters in the operation contracts. This
protection level will require that you implement parameter inspectors to be used by your
service and/or the clients that consume your service. You can do client-side and service-side
validation for both schema and parameter validation.

Additional Resources
• For more information, see “Message Inspectors” at http://msdn.microsoft.com/en-

us/library/aa717047.aspx
• For more information, see “How To Validate an XML Document by Using DTD, XDR, or

XSD in Visual C# .NET” at http://support.microsoft.com/kb/307379

How to Protect Your Service from Denial Of Service Attacks
Protect against denial of service (DoS) attacks by limiting message sizes, and by using quotas to
restrict memory consumption by WCF.

Restrict the message size that is processed by WCF by using the maxReceivedMessageSize
configuration present in the bindings, as shown below:

<binding name="wsHttpEndpointBindingconfig" maxReceivedMessageSize="65535">
 <security>
 <message negotiateServiceCredential="false" />
 </security>
</binding>

Restrict the buffer size used by WCF by using the maxBufferPoolSize configuration present in the
bindings, as shown below:

<binding name="wsHttpEndpointBindingconfig" maxBufferPoolSize="524287"
 maxReceivedMessageSize="65535">
 <security>
 <message negotiateServiceCredential="false" />
 </security>
</binding>

In streaming scenarios, use the reader quotas to limit the size of arrays with maxArrayLength,
the length of the string in XML elements with maxStringContentLength, the maximum depth of
the XML node with maxDepth, the maximum bytes to be read with maxBytesPerRead, and the
maximum number of characters in a table with maxNameTableCharCount.

<basicHttpBinding>
 <binding name="BasicBindingConfiguration">
 <readerQuotas maxDepth="2" maxStringContentLength="200"
maxArrayLength="2000"

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 383

 maxBytesPerRead="1000" maxNameTableCharCount="1000" />
 <security mode="Transport">
 <transport clientCredentialType="None" />
 </security>
 </binding>
 </basicHttpBinding>

How to Validate Parameters with Parameter Inspectors
Perform the following steps to validate parameters with parameter inspectors:

1. Create a class that implements the validation logic. This class has to derive from
IParameterInspector. The class has the following characteristics:

• It implements the AfterCall() and BeforeCall() methods, both of which will have
the validation logic.

• When used as part of the service, BeforeCall() will be invoked before the
parameters are dispatched to the service operation. AfterCall() will be invoked
after the service has processed the call and is returning a the response to the
client. Use BeforeCall() to validate your input parameters, and use AfterCall() to
validate your output parameters.

• When used as part of the client, BeforeCall() will be invoked before calling the
service, and AfterCall()will be invoked before the service’s response is
dispatched to the client code. Use AfterCall() to validate the response from the
service, and use BeforeCall() to validate input parameters before calling the
service.

2. Create a class that implements a custom endpoint behavior. This class derives from
IEndpointBehavior, which the service and/or client endpoint will use as a configuration
extensibility point for the endpoint. This class has the following characteristics:

• It implements ApplyClientBehavior() to add the ParamaterInspector to the
client operation and enable client-side validation.

• It implements ApplyDispatchBehavior() to add the ParameterInspector to the
dispatch operation and enable service-side validation.

• It verifies that it is enabled in the configuration before adding the
ParameterInspector to the client or dispatch run time.

3. Create a class that implements a custom configuration element. This class derives from
BehaviorExtensionElement. This class allows you to expose the endpoint configuration
in WCF as a behavior element extension, which can be used by the service as an
endpoint behavior configuration. This class has the following characteristics:

• It implements CreateBehavior() to create an instance of the ValidationBehavior
class.

• It implements BehaviorType() to return the ValidationBehavior type. This allows
the custom behavior to be exposed in the service or client configuration
sections.

4. Add the custom behavior to the configuration file . Add the custom behavior element to
the behavior element extension items so that it can be used by the endpoint behavior.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 384

You add it in the configuration file by using the configuration tool to browse to the
assembly and then selecting your custom behavior type.

5. Create an endpoint behavior and map it to use the custom behavior. The custom
behavior is the extensibility point containing the parameter validation. The behavior is
instantiated by the assembly implementing the parameter inspector logic.

6. Configure the service endpoint to use the endpoint behavior. Configure the endpoint to
use the endpoint behavior that is using the parameter inspector.

Additional Resources
• For more information, see “How to: Inspect or Modify Parameters“ at

http://msdn.microsoft.com/en-us/library/ms733747.aspx?wt.svl=overview
• For more information, see “Message Inspectors” at http://msdn.microsoft.com/en-

us/library/aa717047.aspx
• For more information, see “How to Perform Input Validation” contained in the “How

To” section of this guide.

How to Validate Messages with Message Inspectors Using Schemas
Perform the followings steps to validate messages with message inspectors using schemas:

1. Create a class that implements the validation logic. This class has to derive from
IClientMessageInspector,IDispatchMessageInspector, depending on whether you want
to do client-side and/or server-side validation. This class implements the
AftterReceiveRequest(), BeforeSendReply(), BeforeSendRequest(), and
AfterReceiveReply() methods. This class has the following characteristics:
• On the dispatcher: AfterReceiveRequest will be implemented when inbound

messages are received by the dispatcher, before the operation is invoked and
deserialization of messages has occurred. If the message is encrypted, decryption
will take place first. BeforeSendReply will be implemented when outbound messages
are to be sent back to the client, after the operation is invoked and serialization has
occurred. If the message is encrypted, encryption will not take place.

• On the client: BeforeSendRequest will be implemented when outbound messages
are sent by the client, after serialization has occurred. If a message is encrypted,
encryption will not take place. AfterReceiveReply will be implemented when inbound
messages are received by the client, before deserialization of message has occurred.
If the message is encrypted, decryption will take place first.

2. Create a class that implements a custom endpoint behavior. This class derives from
IEndpointBehavior, which the service and/or client endpoint will use as a configuration
extensibility point for the endpoint. This class has the following characteristics:

• It implements ApplyClientBehavior() to add the ParamaterInspector to the
client operation and enable client-side validation.

• It implements ApplyDispatchBehavior() to add the ParameterInspector to the
dispatch operation and enable service-side validation.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 385

• It verifies that it is enabled in the configuration before adding the
ParameterInspector to the client or dispatch run time.

3. Create a class that implements a custom configuration element. This class derives from
BehaviorExtensionElement, which allows you to expose the endpoint configuration in
WCF as a behavior element extension that can be used by the service as an endpoint
behavior configuration. This class has the following characteristics:

• It implements CreateBehavior() to create an instance of the ValidationBehavior
class.

• It implements BehaviorType() to return the ValidationBehavior type. This allows
the custom behavior to be exposed in the service or client configuration
sections.

4. Add the custom behavior to the configuration file. Add the custom behavior element to
the behavior element extension items, so that it can be used by the endpoint behavior.
You add it in the configuration file by using the configuration tool to browse to the
assembly and then selecting your custom behavior type.

5. Create an endpoint behavior and map it to use the custom behavior. The custom
behavior is the extensibility point containing the parameter validation. The behavior is
instantiated by the assembly implementing the parameter inspector logic.

6. Configure the service endpoint to use the endpoint behavior. Configure the endpoint to
use the endpoint behavior that is using the message inspector.

Additional Resources
• For more information, see “Message Inspectors” at http://msdn.microsoft.com/en-

us/library/aa717047.aspx
• For more information, see “How to Perform Input Validation” contained in the “How

To” section of this guide.

How to Validate Data Contracts with Message Inspectors Using Schemas
Perform the following high-level steps to validate data contracts passed to operations in WCF:

1. Create a message inspector to perform schema validation.
2. Create a schema file to validate the fields of the data contract with facets in the schema

file.

See the following example, in which the CustomerData complex type is validated by using
CustomerN and CustIDLimitor. This example limits integers to a value no greater than 5, and the
string can be no longer than five characters.

<?xml version="1.0" encoding="utf-8"?>
<xs:schema elementFormDefault="qualified"
targetNamespace="http://Microsoft.PatternPractices.WCFGuide"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://Microsoft.PatternPractices.WCFGuide">
 <xs:element name="GetData">
 <xs:complexType>
 <xs:sequence>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 386

 <xs:element minOccurs="1" name="CustomerInfo"
 nillable="false" type="tns:CustomerData" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="CustomerData">
 <xs:sequence>
 <xs:element name="CustomerID" type="tns:CustIDLimitor">
 </xs:element>
 <xs:element name="text" type="tns:CustomerN">
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="CustomerN">
 <xs:restriction base="xs:string">
 <xs:minLength value="1" />
 <xs:maxLength value="5" />
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="CustIDLimitor">
 <xs:restriction base="xs:int">
 <xs:minInclusive value="1" />
 <xs:maxInclusive value="5" />
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="GetDataResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" name="GetDataResult"
 nillable="false" type="tns:CustomerData" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Additional Resources
• For more information, see “Message Inspectors” at http://msdn.microsoft.com/en-

us/library/aa717047.aspx

How to Validate Message Contracts with Message Inspectors Using
Schemas
Perform the following steps to validate message contracts passed to operations in WCF:

1. Create a message inspector to perform schema validation.
2. Create a schema file to validate the fields of the message contract with facets in the

schema file.

See the following example, in which the message contract CustomerData is validated by using
CustomerN and CustIDLimitor. This example limits integers to a value no greater than 5, and the
string can be no longer than five characters.

<?xml version="1.0" encoding="utf-8"?>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 387

<xs:schema elementFormDefault="qualified"
targetNamespace="http://Microsoft.PatternPractices.WCFGuide"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://Microsoft.PatternPractices.WCFGuide">
 <xs:element name="GetData">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" name="CustomerInfo"
 nillable="false" type="tns:MessageData" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="CustomerData">
 <xs:sequence>
 <xs:element name="CustomerID" type="tns:CustIDLimitor">
 </xs:element>
 <xs:element name="text" type="tns:CustomerN">
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="CustomerN">
 <xs:restriction base="xs:string">
 <xs:minLength value="1" />
 <xs:maxLength value="5" />
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="CustIDLimitor">
 <xs:restriction base="xs:int">
 <xs:minInclusive value="1" />
 <xs:maxInclusive value="5" />
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="GetDataResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" name="GetDataResult"
 nillable="false" type="tns:CustomerData" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Additional Resources
• For more information, see “Message Inspectors” at http://msdn.microsoft.com/en-

us/library/aa717047.aspx

How to Use Regular Expressions to Validate Format, Range, and Length in
Schemas
Use regular expressions in schemas to validate format, range, or length. This allows you to use
complex validation logic without needing to implement the code. It also allows decoupling of
the validation logic from the business logic. The example schema below exemplifies the
validation of integers with values between 1 and 5, the string of length 5, and a Social Security
Number (SSN) and ZIP code with good formats:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 388

<?xml version="1.0" encoding="utf-8"?>
<xs:schema elementFormDefault="qualified"
targetNamespace="http://Microsoft.PatternPractices.WCFGuide"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://Microsoft.PatternPractices.WCFGuide">
 <xs:element name="GetData">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" name="CustomerInfo"
 nillable="false" type="tns:CustomerData" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="CustomerData">
 <xs:sequence>
 <xs:element name="CustomerID" type="tns:CustIDLimitor">
 </xs:element>
 <xs:element name="text" type="tns:CustomerN">
 </xs:element>
 <xs:element name="socialSecurity" type="tns:SSN">
 </xs:element>
 <xs:element name="custZipCode" type="tns:CustomerN">
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="CustomerN">
 <xs:restriction base="xs:string">
 <xs:minLength value="1" />
 <xs:maxLength value="5" />
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="CustIDLimitor">
 <xs:restriction base="xs:int">
 <xs:minInclusive value="1" />
 <xs:maxInclusive value="5" />
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="SSN">
 <xs:restriction base="xs:token">
 <xs:pattern value="[0-9]{3}-[0-9]{2}-[0-9]{4}"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="us-zipcode">
 <xs:restriction base="xs:string">
 <xs:pattern value="[0-9]{5}(-[0-9]{4})?"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="GetDataResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" name="GetDataResult"
 nillable="false" type="tns:CustomerData" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 389

How to Validate Inbound Messages on a Service
Implement the AfterReceiveRequest method of the message inspector’s
IDispatchMessageInspector interface in order to validate inbound messages on a service. This
allows you to validate the message after the request has arrived but before service operation
invocation and deserialization.

object IDispatchMessageInspector.AfterReceiveRequest(ref
System.ServiceModel.Channels.Message request,
System.ServiceModel.IClientChannel channel,
System.ServiceModel.InstanceContext instanceContext)
{
 try
 {
 validateMessage(ref request);
 }
 catch (FaultException e)
 {
 throw new FaultException<string>(e.Message);
 }
 return null;
}

Additional Resources
• For more information, see “Message Inspectors” at http://msdn.microsoft.com/en-

us/library/aa717047.aspx

How to Validate Outbound Messages on a Service
Implement the BeforeSendReply method of the message inspector’s
IDispatchMessageInspector interface in order to validate outbound messages on a service. This
allows you to validate the message before sending the response to the client and before service
operation invocation and serialization.

void IDispatchMessageInspector.BeforeSendReply(ref
System.ServiceModel.Channels.Message reply, object correlationState)
{
 try
 {
 validateMessage(ref reply);
 }
 catch (FaultException fault)
 {
 // if a validation error occurred, the message is replaced
 // with the validation fault.
 reply = Message.CreateMessage(reply.Version, new
FaultException("validation error in reply message").CreateMessageFault() ,
reply.Headers.Action);
 }
}

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 390

Additional Resources
• For more information, see “Message Inspectors” at http://msdn.microsoft.com/en-

us/library/aa717047.aspx

How to Validate Outbound Messages on the Client
Implement the BeforeSendRequest method of the message inspector’s
IClientMessageInspector interface in order to validate outbound messages on the client. This
allows you to validate the message after serialization but before sending the request to the
service.

object IClientMessageInspector.BeforeSendRequest(ref
System.ServiceModel.Channels.Message request,
System.ServiceModel.IClientChannel channel)
{
 validateMessage(ref request);
 return null;
}

Additional Resources
• For more information, see “Message Inspectors” at http://msdn.microsoft.com/en-

us/library/aa717047.aspx

How to Validate Inbound Messages on the Client
Implement the AfterReceiveReply method of the message inspector’s IClientMessageInspector
interface in order to validate inbound messages on the client. This allows you to validate the
message after the client response has arrived but before deserialization and before returning
the data to the client application.

void IClientMessageInspector.AfterReceiveReply(ref
System.ServiceModel.Channels.Message reply, object correlationState)
 {
 validateMessage(ref reply);
 }

Additional Resources
• For more information, see “Message Inspectors” at http://msdn.microsoft.com/en-

us/library/aa717047.aspx

How to Validate Input Parameters
Implement the BeforeCall() method on the parameter inspector to validate input parameters
on a client or service. Inside BeforeCall(), implement the validation logic to validate the
parameters.

public class ValidationParameterInspector : IParameterInspector
{
 public object BeforeCall(string operationName, object[] inputs)
 { … }
}

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 391

Additional Resources
• For more information, see “How to: Inspect or Modify Parameters“ at

http://msdn.microsoft.com/en-us/library/ms733747.aspx?wt.svl=overview

How to Validate Output Parameters
Implement the AfterCall() method on the parameter inspector to validate output parameters
on a client or service. Inside AfterCall(), implement the validation logic to validate the
parameter.

public class ValidationParameterInspector : IParameterInspector
{
 public void AfterCall(string operationName, object[] outputs,
 object returnValue, object correlationState)
 { … }
}

Additional Resources
• For more information, see “How to: Inspect or Modify Parameters” at

http://msdn.microsoft.com/en-us/library/ms733747.aspx?wt.svl=overview

Message Security
• How to Use Message Security
• How to Control the Level of Message Encryption
• How to Use Out-of-band Credentials with Message Security

How to Use Message Security
Use the <Security mode> attribute to configure message security on your binding.

Perform the following steps to configure wsHttpBinding to use message security:

1. Open your app.config or web.config file and set the security mode to Message as
follows:

<bindings>
 <wsHttpBinding>
 <binding name="wsHttpEndpointBinding">
 <security mode="Message">
 </security>
 </binding>
 </wsHttpBinding>
</bindings>

2. Save the configuration file.

Message security is available on all of the bindings except for netNamedPipeBinding.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 392

Additional Resources
• For more information, see “Message Security in WCF” at

http://msdn.microsoft.com/en-us/library/ms733137.aspx

How to Control the Level of Message Encryption
If you are using message security, use the [ServiceContract(ProtectionLevel)] attribute to
specify message security protection levels on the interface or operation level.

The protection level options available are:

• None. Use None to turn off signing and encryption on the operation or interface.
• Sign. Use Sign to sign the interface or operation but not encrypt it.
• EncryptAndSign. Use EncryptAndSign to both encrypt and sign the interface or

operation.

If you are using transport security, you cannot partially encrypt your messages.

The following code example shows how set the protection level to Sign on an interface:

[ServiceContract(ProtectionLevel=ProtectionLevel.Sign]
public interface IService
{
 string GetData(int value);
}

The following code example shows how to set the protection level to Sign on an:

[OperationContract(ProtectionLevel=ProtectionLevel.Sign]
string GetData(int value);

Additional Resources
• For more information on protection level sand partial encryption, see “Understanding

Protection Level” at http://msdn.microsoft.com/en-us/library/aa347692.aspx

How to Use Out-of-band Credentials with Message Security
Set the negotiateCredentials attribute to false to use out-of-band credentials. This will require
you to provide certificates to the client so that they can encrypt and sign messages.

Perform the following steps to configure the negotiateCredentials attribute:

1. Open your app.config or web.config file and set the security mode to Message.

<wsHttpBinding>
 <binding name="MessageAndUserName">
 <security mode="Message">
 <message clientCredentialType="UserName"
negotiateCredentials=”false” algorithmSuite="Default" />
 </security>
 </binding>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 393

</wsHttpBinding>

2. Save the configuration file.

Proxy Considerations
• How to Avoid Proxy Spoofing
• How to Publish Service Metadata for Your Clients
• How to Create a Proxy for an IIS-hosted Service with Certificate Authentication and

Transport Security

How to avoid proxy spoofing
Consider the following to avoid proxy spoofing at the time of adding a WCF service reference:

• Publish metadata securely, over Secure HTTP (HTTPS). Use mexHttpsBinding and
configure a server certificate for the service. The following configuration shows how to
publish metadata securely:

<serviceMetadata httpGetEnabled="False" httpsGetEnabled="True"/>

• If you are required to use a mex endpoint instead of exposing your service reference by
using httpGet, use a secure binding. Use any standard binding (that has security
features) for the mex service endpoint; the only requirement is to use the
IMetadataExchange contract. This will require you to use a custom
serviceutil.exe.config file to generate the proxy.

Consider the following to avoid proxy spoofing at run time:

• Make sure that your WCF service uses mutual authentication. Mutual authentication is
enforced when using either message or transport security.

• If you are using basicHttpBinding, this binding does not use any security by default.
Make sure that it is configured to use either transport or message security.

• Do not rely on the NTLM protocol for authentication because it does not provide mutual
authentication.

How to Publish Service Metadata for Your Clients
To publish service metadata for your clients:

1. If your service uses HTTP binding, you will need to enable metadata via HttpGet or
HttpsGet. HttpGet is required if you are not using transport security. HttpsGet is
required if you are using transport security. The trade-off with this configuration is that
clients will be able to browse your service metadata.

<serviceMetadata httpsGetEnabled="true" />
<serviceMetadata httpGetEnabled="true" />

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 394

2. If your service uses HTTP binding, you can use a mex endpoint without enabling HttpGet
or HttpsGet. In this case, browsers will not be able to browse metadata, but the clients
will be able to create proxies using the mex endpoint. The trade-off with this
configuration is that mex endpoints are not possible if IIS does not have anonymous
authentication enabled.

<system.serviceModel>
 <services>
 <service behaviorConfiguration="" name="Service">
 <endpoint address="" binding="wsHttpBinding"
bindingConfiguration=""
 name="WsBinding" contract="IService" />
 <endpoint address="mex" binding="mexHttpBinding"
bindingConfiguration=""
 name="mexendpoint" contract="IMetadataExchange" />
 </service>
 </services>
 ….
 </system.serviceModel>

3. If your service uses HTTP binding, you can use a custom endpoint that implements

IMetadataExchange without enabling HttpGet or HttpsGet. In this case, browsers will
not be able to browse metadata ,but the clients will be able to create proxies using the
mex endpoint. Additionally, you will be able to use the mex endpoint with any
authentication scheme.

 <services>
 <service behaviorConfiguration="returnFaults" name="MyService">
 <endpoint binding="wsHttpBinding" bindingConfiguration=""
 name="wsHttpEndpoint" contract="IService" />
 <endpoint address="mex" binding="wsHttpMexBinding"
 bindingConfiguration=""
 name="mexEndpoint" contract="IMetadataExchange" />
 </service>
 </services>
…

4. If your service does not use HTTP binding, you will need to configure service metadata
and create a mex endpoint as follows:

<system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior name="BehaviorConfiguration">
 <serviceDebug includeExceptionDetailInFaults="true" />
 <serviceMetadata />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 ….
 <services>
 <service behaviorConfiguration="BehaviorConfiguration"
 name="WCFServicecHost.MyService">
 <endpoint

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 395

 address="Mex"
 binding="mexTcpBinding"
 bindingConfiguration=""
 name="MexEndpoint"
 contract="IMetadataExchange" />
 <endpoint
 address=""
 binding="netTcpBinding"
 bindingConfiguration="BindingConfiguration"
 name="TcpBinding"
 contract="WCFServicecHost.IMyService" />
 </service>
 </services>
 </system.serviceModel>

Additional Resources
• For more information on metadata endpoints, see “How to: Secure Metadata Endpoints

“ at http://msdn.microsoft.com/en-us/library/ms733114.aspx

How to Create a Proxy for an IIS-hosted Service with Certificate
Authentication and Transport Security
Perform the following steps to create a proxy to a service hosted in IIS that requires certificate
authentication and transport security:

1. Create a new wsHttpBinding endpoint on the service that implements
IMexdataExchange and uses a binding configuration with the certificate authentication
type.

<services>
 <service behaviorConfiguration="returnFaults" name="MyService">
 <endpoint binding="wsHttpBinding" bindingConfiguration=""
 name="wsHttpEndpoint" contract="IService" />
 <endpoint address="mex" binding="wsMexHttpBinding"
 bindingConfiguration=""
 name="mexEndpoint" contract="IMetadataExchange" />
 </service>
</services>…

2. Create a svcutil.exe.config file on the client with configuration pointing to the certificate

used to authenticate the service. The endpoint should have the contract with the
IMetadataExchange type and will point to a binding configuration with certificate
authentication.

<configuration>
 <system.serviceModel>
 <client>
 <endpoint behaviorConfiguration="ClientCertificateBehavior"
 binding="wsHttpBinding"
 bindingConfiguration="Binding1" contract="IMetadataExchange"
 name="https" />
 </client>
 <bindings>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 396

 <wsHttpBinding>
 <binding name="Binding1">
 <security mode="Transport">
 <transport clientCredentialType="Certificate" />
 </security>
 </binding>
 </wsHttpBinding>
 </bindings>
 <behaviors>
 <endpointBehaviors>
 <behavior name="ClientCertificateBehavior">
 <clientCredentials>
 <clientCertificate findValue="CN=clienttempcert"
 storeLocation="CurrentUser"
 storeName="My"
 x509FindType="FindBySubjectDistinguishedName" />
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

3. Copy svcutil from C:\Program Files\Microsoft Visual Studio 8\Common7\IDE to the same

location where svcutil.exe.config was created on the client, and then run the command
svcutil serviceurl

Additional Resources
• For more information on metadata, see “Publishing Metadata“ at

http://msdn.microsoft.com/en-us/library/aa751951.aspx

Sensitive Data
• How to Encrypt Sensitive Data in Configuration Files
• How to Protect Sensitive Data in Memory
• How to Protect Sensitive Data on the Network

How to Encrypt Sensitive Data in Configuration Files
To encrypt sensitive data in configuration files, use the aspnet_regiis.exe tool with the -pe
(provider encryption) option.

Use the following command to encrypt the connectionStrings section using the Data Protection
API (DPAPI) provider with the machine key store (the default configuration). Run the following
command from a command prompt:

aspnet_regiis -pe "connectionStrings" -app "/MachineDPAPI" -prov
"DataProtectionConfigurationProvider"

In this command:
• -pe specifies the configuration section to encrypt.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 397

• -app specifies your Web application’s virtual path. If your application is nested, you need to
specify the nested path from the root directory; for example,
"/test/aspnet/MachineDPAPI".

• -prov specifies the provider name.

The Microsoft .NET Framework supports the R following protected configuration providers:

• RSAProtectedConfigurationProvider. This is the default provider. It uses RSA public key
encryption to encrypt and decrypt data. Use this provider to encrypt configuration files for
use on multiple WCF services in a Web farm.

• DPAPIProtectedConfigurationProvider. This provider uses DPAPI to encrypt and decrypt
data. Use this provider to encrypt configuration files for use on a single Windows Server.

You do not need to take any special steps for decryption; the .NET run time takes care of this
for you.

Additional Resources
• For more information on encrypting configuration sections, see “How To: Encrypt

Configuration Sections Using DPAPI” at http://msdn2.microsoft.com/en-
us/library/ms998280.aspx and “How To: Encrypt Configuration Sections Using RSA” at
http://msdn2.microsoft.com/en-us/library/ms998283.aspx

How to Protect Sensitive Data in Memory
To minimize exposure of secrets in memory, consider the following measures:

• Avoid creating multiple copies of the secret. Having multiple copies of the secret data
increases your attack surface. Pass references to secret data instead of making copies of
the data. Also, be aware that if you store secrets in immutable objects such as
System.String, a new copy is created after each object manipulation.

• Keep the secret encrypted for as long as possible. Decrypt the data at the last possible
moment before you need to use the secret.

• Clean the clear text version of the secret as soon as you are done using it.

You can use the SecureString method to implement the above measures. The value of a
SecureString object is automatically encrypted, can be modified until your application marks it
as read-only, and can be deleted from computer memory by either your application or the .NET
Framework garbage collector.

The following C# code creates an instance of the SecureString class and stores a data value in it.

using System;
using System.Collections.Generic;
using System.Text;

namespace TestSecureString
{

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 398

 class Program
 {

static void Main(string[] args)
{
System.Security.SecureString secstr = new
System.Security.SecureString();
secstr.AppendChar('W');
secstr.AppendChar('C');
secstr.AppendChar('F');
secstr.MakeReadOnly();
Console.WriteLine(secstr);
}

 }
}

An exception is thrown if you attempt to alter the data because the code locks the string value
with the MakeReadOnly method after the final character has been added. Therefore this string
value cannot be altered.

Additional Resources
• For more information on the SecureString class, see “SecureString Class“ at

http://msdn.microsoft.com/en-
us/library/system.security.securestring.aspx?ref=herseybedava.info

• For more information on the SecureString class, see “SecureString Application Sample“
at http://msdn.microsoft.com/en-us/library/07b9wyhy.aspx

How to Protect Sensitive Data on the Network
Use message or transport security to encrypt your messages and keep sensitive information
from being sniffed off the network. Message security encrypts each individual message to
protect sensitive data. Transport security secures the end-to-end network connection to
protect the network traffic.

Additional Resources
• For more information on transport security, see “Transport Security” at

http://msdn.microsoft.com/en-us/library/ms733043.aspx
• For more information on message security, see “Message Security in WCF” at

http://msdn.microsoft.com/en-us/library/ms733137.aspx

Transport Security
• How to Use Transport Security
• How to Use Secure Conversations in WCF

How to Use Transport Security
Use the <Security mode> attribute to configure transport security on your binding. The
following example shows wsHttpBinding configured to use transport security:

<bindings>
 <wsHttpBinding>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 399

 <binding name="wsHttpEndpointBinding">
 <security mode="Transport">
 </security>
 </binding>
 </wsHttpBinding>
</bindings>

Transport security is available on all of the bindings except for wsDualHttpBinding.

Additional Resources
• For more information on transport security, see “Transport Security” at

http://msdn.microsoft.com/en-us/library/ms733043.aspx

How to Use Secure Conversations in WCF
Secure conversations are turned on by default for all bindings that support Web Services
Security (WS-Security). This includes wsHttpBinding, netTcpBinding, and netMsmqBinding. If you
are using a custom binding, turn on secure conversations with the authenticationMode
attribute as follows:

 <customBinding>
 <binding name="ServiceBinding">
 <security authenticationMode="SecureConversation"
 requireSecurityContextCancellation ="false">
 <secureConversationBootstrap authenticationMode="MutualCertificate">
 </secureConversationBootstrap>
 </security>
 <httpTransport/>
 </binding>
 </customBinding>

Additional Resources
• For more information on secure conversations, see “How to: Create a Stateful Security

Context Token for a Secure Session“ at http://msdn.microsoft.com/en-
us/library/ms731814.aspx

X.509 Certificates
• How to Create a temporary X.509 Certificate for Transport Security
• How to Create a temporary X.509 Certificate for Message Security
• How to Create a temporary X.509 Certificate for Certificate Authentication

How to Create a Temporary X.509 Certificate for Transport Security
Perform the following steps to create a temporary X.509 certificate for transport security:

1. Create a certificate to act as your root Certificate Authority (CA):

makecert -n "CN=RootCATest" -r -sv RootCATest.pvk RootCATest.cer

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 400

2. Install your root CA on both the server and client machines. Use Microsoft Management
Console (MMC) to install RootCATes.cer on the client and server machines in the
Trusted Root Certification Authorities store.

3. Create and install your temporary service certificate:

makecert -sk keyName -iv RootCATest.pvk -n "CN=MachineName.domain.com"
-ic RootCATest.cer -sr localmachine -ss my -sky exchange -pe

4. Use Inetmgr to configure the Web site and virtual directory to use the certificate and to
require Secire Sockets Layer (SSL) to secure communication.

Additional Resources
• For more information on creating certificates, see “Certificate Creation Tool

(Makecert.exe)“ at http://msdn.microsoft.com/en-us/library/bfsktky3(VS.80).aspx

How to Create a Temporary X.509 Certificate for Message Security
Perform the following steps to create a temporary X.509 certificate for message security:

1. Create a certificate to act as your root Certificate Authority (CA):

makecert -n "CN=RootCATest" -r -sv RootCATest.pvk RootCATest.cer

2. Create a Certificate Revocation List (CRL) file from the root certificate:

makecert -crl -n "CN=RootCATest" -r -sv RootCATest.pvk RootCATest.crl

3. Install your root CA on both the server and client machines. Use Microsoft Management
Console (MMC) to install RootCATes.cer on the client and server machines in the
Trusted Root Certification Authorities store.

4. Install the CRL file on both the server and client machines. Use MMC to install

RootCATes.crl on the client and server machines in the Trusted Root Certification
Authorities store.

5. Create and install your temporary service certificate:

makecert -sk MyKeyName -iv RootCATest.pvk -n "CN=tempCert" -ic
RootCATest.cer -sr localmachine -ss my -sky exchange -pe

6. Give the WCF process identity access to the temporary certificate’s private key:

FindPrivateKey.exe My LocalMachine -n "CN=tempCert"
cacls.exe "C:\Documents and Settings\All Users\Application
Data\Microsoft\Crypto\RSA\Machinekeys\4d657b73466481beba7b0e1b5781db81_
c225a308-d2ad-4e58-91a8-6e87f354b030" /E /G "NT AUTHORITY\NETWORK

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 401

SERVICE":R

The value "C:\Documents and Settings\All Users\Application
Data\Microsoft\Crypto\RSA\Machinekeys\4d657b73466481beba7b0e1b5781db81_c22
5a308-d2ad-4e58-91a8-6e87f354b030" should be the one returned by findprivatekey.

Additional Resources
• For more information on creating certificates, see “Certificate Creation Tool

(Makecert.exe)“ at http://msdn.microsoft.com/en-us/library/bfsktky3(VS.80).aspx

How to Create a Temporary X.509 Certificate for Certificate Authentication
Perform the following steps to create a temporary X.509 certificate for certificate
authentication:

1. Create a certificate to act as your Root Certificate Authority (CA):

makecert -n "CN=RootCATest" -r -sv RootCATest.pvk RootCATest.cer

2. Create a Certificate Revocation List (CRL) file from the root certificate:

makecert -crl -n "CN=RootCATest" -r -sv RootCATest.pvk RootCATest.crl

3. Install your root CA on both the server and client machines. Use Microsoft Management

Console (MMC) to install the RootCATes.cer on the client and server machines in the
Trusted Root Certification Authorities store.

4. Install the CRL file on both the server and client machines. Use MMC to install

RootCATes.crl on the client and server machines in the Trusted Root Certification
Authorities store.

5. Create and install your temporary service certificate:

makecert -sk MyKeyName -iv RootCATest.pvk -n "CN=tempCert" -ic
RootCATest.cer -sr currentuser -ss my -sky signature –pe

Additional Resources
• For more information on creating certificates, see “Certificate Creation Tool

(Makecert.exe)“ at http://msdn.microsoft.com/en-us/library/bfsktky3(VS.80).aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 402

WCF Security Question and Answers (Q&A)

Index

Design Considerations
• How do I decide on an authentication strategy?
• How do I decide on an authorization strategy?
• When should I use message security versus transport security?
• How do I use my existing Active Directory infrastructure?
• What bindings should I use over the Internet?
• What bindings should I use over the intranet?
• When should I use resource-based authorization versus roles-based authorization?
• When should I impersonate the original caller?
• When should I flow the original caller’s identity to back-end resources?
• How do I migrate to WCF from an ASMX Web service?
• How do I migrate to WCF from a COM application?
• How do I migrate to WCF from a DCOM application?
• How do I migrate to WCF from a WSE application?

Auditing and Logging
• What WCF service security events should be logged?
• How do I enable logging and auditing in WCF?
• How do I stop my service if there has been an auditing failure?
• How do I log important business events in WCF?
• How do I implement log throttling in WCF?
• How do I use the health monitoring feature with WCF?
• How do I protect my log files?
• How do I pass user identity information in a message for auditing purpose?

Authentication
• How do I decide on an authentication strategy in WCF?
• When should I use the SQL Server membership provider?
• How do I authenticate against Active Directory?
• How do I authenticate against a SQL store?
• How do I authenticate against a custom store?
• How do I protect passwords in my user store?
• How do I use certificate authentication with X.509 certificates?
• What is the most common authentication scenario for intranet applications?
• What is the most common authentication scenario for Internet applications?
• How do I support authentication for multiple client types?
• What is federated security?

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 403

• How do I send credentials in the message when I am using transport security?
• How do I avoid cleartext passwords?

Authorization
• How do I decide on an authorization strategy in WCF?
• What’s the difference between resource-based, roles-based, and claims-based

authorization?
• How do I use Windows groups for role authorization in WCF?
• How do I use the SQL Server role provider for ASP.NET role authorization in WCF?
• How do I use the Windows Token role provider for ASP.NET role authorization in WCF?
• How do I use the Authorization Store role provider for ASP.NET role authorization in

WCF?
• What is the difference between declarative and imperative roles authorization?
• How do I restrict access to WCF operations to specific Windows users?
• How do I associate roles with a certificate?
• What is a service principal name (SPN)?
• How do I create a service principal name (SPN)?

Bindings
• What is a binding?
• What bindings are available?
• Which bindings are best suited for the Internet?
• Which bindings are best suited for an intranet?
• How do I choose an appropriate binding?

Configuration Management
• How do I encrypt sensitive data in the WCF configuration file?
• How do I run a WCF service with a particular identity?
• How do I create a service account for running my WCF service?
• When should I use a configuration file versus the WCF object model?
• What is a metadata exchange (MEX) binding?
• How do I keep clients from referencing my service?

Deployment Considerations
• What are the additional considerations for using WCF in a Web farm?
• How do I configure Active Directory groups and accounts for role-based authorization

checks?
• How do I create an X.509 certificate?
• When should I use a service principal name (SPN)?
• How do I configure a least-privileged account for my service?

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 404

Exception Management
• How do I implement a global exception handler?
• What is a fault contract?
• How do I define a fault contract?
• How do I avoid sending exception details to the client?

Hosting
• How do I configure a least-privileged account to host my service?
• When should I host my service in Internet Information Services (IIS)?
• When should I host my service in a Windows service?
• When should I self-host my service?

Impersonation/Delegation
• What are my impersonation options?
• What is the difference between impersonation and delegation?
• How do I impersonate the original caller for an operation call?
• How do I temporarily impersonate the original caller in an operation call?
• How do I impersonate a specific (fixed) identity?
• What is constrained delegation?
• What is protocol transition?
• How do I flow the original caller from the ASP.NET client to a WCF service?
• What is the difference between declarative and programmatic impersonation?
• What is the trusted subsystem model?
• When should I flow the original caller to back-end code?
• How do I control access to a remote resource based on the original caller’s identity?

Input/Data Validation
• How do I implement input and data validation in WCF?
• What is schema validation?
• What is parameter validation?
• Should I validate before or after message serialization?
• How do I protect my service from denial of service (DoS) attacks?
• How do I protect my service from malicious input attacks?
• How do I protect my service from malformed messages?

Message Protection
• When should I use message security?
• When should I use transport security?
• How do I protect my message when there are intermediaries routing my message?
• How do I protect my message when there are multiple protocols used during message

transit?

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 405

Proxy Considerations
• When should I use a channel factory?
• When do I need to expose a metadata exchange (MEX) endpoint for my service?
• How do I avoid proxy spoofing?

Sensitive Data
• How do I protect sensitive data in configuration files?
• How do I protect sensitive data in memory?
• How do I protect my metadata?
• How do I protect sensitive data from being read on the wire?
• How do I protect sensitive data from being tampered with on the wire?

X.509 Certificates
• How do I create X.509 certificates?
• Do I need to create a certificate signed by the root CA certificate?
• How do I use X.509 certificate revocation?

Design Considerations
• How do I decide on an authentication strategy?
• How do I decide on an authorization strategy?
• When should I use message security versus transport security?
• How do I use my existing Active Directory infrastructure?
• What bindings should I use over the Internet?
• What bindings should I use over the intranet?
• When should I use resource-based authorization versus roles-based authorization?
• When should I impersonate the original caller?
• When should I flow the original caller’s identity?
• How do I migrate to WCF from an ASMX Web service?
• How do I migrate to WCF from a COM application?
• How do I migrate to WCF from a DCOM application?
• How do I migrate to WCF from a WSE application?

How do I decide on an authentication strategy?
Decide your authentication strategy based on your user credential store location and the
location of your clients on the Internet or intranet.
Internet

• Username authentication with SQL Membership Provider. If your users are not in
active directory, consider SQL Membership Provider. This will give you a store that can
be easily deployed and created. Configure message or mixed mode security to protect
your users’ credentials.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 406

• Basic authentication with Windows. If your users are already in active directory, or
local machine accounts, consider using basic authentication. Use transport security to
secure the communication channel and protect your credentials.

• Username authentication with Custom Store. If your users are in a custom store,
consider using user name authentication with a custom validator in order to validate
user credentials against your custom store. Unlike the other scenarios, you will have to
write custom code to validate your user’s credentials. Use message or mixed mode
security to protect your users’ credentials.

• Certificate authentication with certificates. If your clients are partners or mobile clients
connecting over VPN in a peer-to-peer authentication scenario, consider using
certificate authentication. If your users have Windows accounts in your domain you can
map the certificates to Windows accounts and enable authorization checks based on
Windows roles. Certificate authentication requires that you manage certificates,
however, it allows seamless authentication for clients who are outside your firewall. Use
transport security to secure the communication channel and protect your credentials.

Intranet

• Username authentication with SQL Membership Provider. If your users are not in
active directory, consider SQL Membership Provider. This will give you a store that can
be easily deployed and created. Use transport security to secure the communication
channel and protect your credentials.

• Windows authentication with windows. If your users are already in active directory or
local machine accounts, consider using windows authentication to leverage this
infrastructure. Windows authentication will give you also the benefits of using Windows
roles for authorization checks. Use transport security to secure the communication
channel and protect your credentials. Consider that local machine accounts configure a
authentication with NTLM protocol, which is prone to brute force attacks. For more
secure peer to peer authentication, consider using certificate authentication.

• Username authentication with Custom Store. If your users are in a custom store,
consider using user name authentication with a custom validator in order to validate
user credentials against your custom store. Unlike the other scenarios, you will have to
write custom code to validate your user’s credentials. Use message or mixed mode
security to protect your users’ credentials.

• Certificate authentication with certificates. If your clients are partners or mobile clients
connecting over VPN in a peer-to-peer authentication scenario, consider using
certificate authentication. If your users have Windows accounts in your domain you can
map the certificates to Windows accounts and enable authorization checks based on
Windows roles. Certificate authentication requires that you manage certificates,
however, it allows seamless authentication for clients who are outside your firewall. Use
transport security to secure the communication channel and protect your credentials.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 407

Additional Resources
For more information on choosing a security mode, see “When should I use message security
vs. transport security?“ at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=When%20should%20I%20use%2
0message%20security%20vs.%20transport%20security%3f&referringTitle=Questions%20and%2
0Answers

How do I decide on an authorization strategy?
Know your authorization options and choose the most appropriate for your scenario. First
decide if you want to use resource-based or role-based authorization. Resource-based
authorization uses ACLs on the resource to authorize the original caller. Role-based allows you
to authorize access to service operations or resources based upon the group a user is in.
• If you choose to use role-based authorization then you can store your roles in Windows

groups or in ASPNET roles.
• If you are using Active Directory then consider using Windows groups based on ease of

maintenance and the fact you maintain both roles and credentials in the Active Directory
store. If you are not using Active Directory, consider using ASPNET roles and the ASP.NET
Role Provider.

Your authorization strategy may also be influenced by your choice of authentication type:
Resource-based authorization

o If you are using certificates authentication you will need to map certificates to
Windows groups.

o If you are using username authentication you will need to perform protocol
transition.

o Windows authentication will work with resource-based authorization by default.
o Basic authentication will work with resource-based authorization by default.
o Note: You need to impersonate for resource-based authorization.

Role-based authorization

o If you are using certificates authentication you will need to map certificates to
Windows groups.

o If you are using username authentication with Windows groups, you will need to
perform protocol transition.

o Username authentication will work with ASPNET roles by default.
o Windows authentication will work with Windows groups by default.
o Basic authentication will work with Windows groups by default.

Additional Resources
• For more information on authorization, see “Authorization” at

http://msdn2.microsoft.com/en-us/library/ms733071.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 408

• For more information on protocol transition, see
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=What%20is%20protocol
%20transition%3f&referringTitle=Questions%20and%20Answers

When should I use message security vs. transport security?
Message security encrypts each individual message to protect sensitive data. Transport security
secures the end-to-end network connection to protect the network traffic.

Use the following criteria to decide whether to use transport security:

• Point-to-point – Transport security supports point-to-point communication and does
not support intermediary scenarios or protocol transition.

• Streaming – Transport security can support streaming data scenarios.
• Binding limitations – Transport security does not work with wsDualHttpBinding.
• Authentication limitations – Transport security does not work with negotiation,

username, or Kerberos direct authentication.
• Performance – Transport security may provide better performance than message

security.

Use the following criteria to decide whether to use message security:
• Intermediaries – Message security supports scenarios with intermediaries or protocol

transition.
• Encryption flexibility – Message security allows you to encrypt part of a message while

leaving other parts in cleartext format.
• Binding limitations – Message security does not work with netNamedPipeBinding.
• Secure conversations – Secure conversations only works with message security.
• Authentication limitations – Message security does not work with Basic or Digest

authentication

Additional Resources
• For more information on message protection, see “Message Security in WCF” at

http://msdn2.microsoft.com/en-us/library/ms733137.aspx
• For more information on choosing a transport, see “Choosing a Transport” at

http://msdn2.microsoft.com/en-us/library/ms733769.aspx

How do I use my existing Active Directory infrastructure?
If your users are in Active Directory, consider using Windows, Username or Basic
authentication. All of these authentication schemes can be mapped to users in Active Directory.

• Windows authentication. This authentication scheme will default to users in Active
Directory. It has the benefits of providing support for message security without
requiring to install certificates. It also provides support for transport security with
netTcpBinding withour requiring to install certificates. It cannot cross firewall
boundaries

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 409

• Basic authentication. Basic authentication maps to users in Active Directory. Transport
security will be required to protect user credentials. It has the benefits of crossing
firewall boundaries.

• Username authentication. Client username/password information is automatically
mapped to Windows user accounts. Message security will be required to protect
credentials. It has the benefits of crossing firewall boundaries.

What bindings should I use over the Internet?
The following bindings work well over the Internet, depending on your scenario:

• If your service is interacting with WCF clients, use wsHttpBinding because this binding
provides the best WS-* interoperability features, including depending on your scenario,
WS-Addressing, and WS-AtomicTransaction. The combination of features offered by
wsHttpBinding provides the most reliable connection offered by WCF over the Internet.

• If your service is interacting with ASP.NET Web Services (ASMX) clients, you must use
basicHttpBinding because it is the only WCF binding that supports ASMX clients.

• Clients and services that require full-duplex communication should use
wsDualHttpBinding because it is the only binding that supports full-duplex.

• If your service interacts with Web Services Enhancements (WSE) clients, you must use
customBinding. The service must use a custom binding to be compatible with the
August 2004 version of WS-Addressing.

What bindings should I use over the intranet?
Although you can use any binding over an intranet, netTcpBinding will provide the best
throughput performance. On an intranet, you generally do not need to be as concerned about
the connection going down as with an Internet connection, so some of the WS-* advantages
that are supplied with wsHttpBinding may not be as necessary.

When should I use resource-based authorization vs. roles-based
authorization?
Use resource-based authorization when you want to allow access to ACL-secured resources
based on the original caller. Use roles-based authorization when you want to manage multiple
users in groups to authorize on or within operations based on business logic.

When should I impersonate the original caller?
Impersonation allows your service to run in a least-privileged security context and only elevate
privileges when it is necessary. Use impersonation when the service needs to use the original
caller’s credentials to access resources. Without impersonation, the service will authorize
resource access based on the least-privileged account under which it is running.

The most common impersonation scenarios in WCF are:

• Resource-based authorization on any resource using an ACL.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 410

• Role-based authorization in which the user’s security context will be authorized
downstream in another component.

• Database authorization based on original caller.

Additional Resources
For more information, see “How To: Impersonate the Original Caller in WCF Calling from
Windows Forms” at
http://www.codeplex.com/WCFSecurityGuide/Wiki/View.aspx?title=How%20To%20-
%20Impersonate%20the%20Original%20Caller%20in%20WCF%20calling%20from%20Windows
%20Forms&referringTitle=How%20Tos

When should I flow the original caller’s identity?
You flow the original caller’s identity when some action needs to be done on the client’s behalf.
There are two methods that this can be accomplished: Impersonation, which allows the service
to act as the client while doing some business operation; that can be access to a resource or
backend system. Delegation is another way of flowing the caller’s identity. In this case the
service flows impersonation capabilities to a backend service. The backend service is passed the
caller identity and it acts on behalf of the original caller. So delegation includes another hop to
another service with machine boundary, which will impersonate the original caller.
Impersonation and delegation are features with Kerberos based authentication. They require a
windows identity.

Additional Resources
For more information, see “Delegation and Impersonation with WCF” at
http://msdn2.microsoft.com/en-us/library/ms730088.aspx

How do I migrate to WCF from an ASMX Web service?
In order to migrate to WCF from an ASMX web service, you will have to update the service
contract definition, elements, attributes, and configuration definitions. You can keep the
exposed methods, properties, and business logic contained within the ASMX service.

Note the following considerations:

• WCF requires .NET Framework version 3.0 or above.
• You can leave your ASMX clients as-coded after you upgrade the service by using

basicHttpBinding for the service. The basicHttpBinding binding is compatible with ASMX
clients.

• The client proxy is nearly identical between ASMX and WCF, but should be regenerated
using SvcUtil.exe to be sure that it is up to date.

• Because WCF configuration is different from ASMX configuration, it needs to be
changed (e.g., for the app.config or web.config file).

• WCF implements a [ServiceContract] attribute to define the service interface, and an
[OperationContract] attribute for each method or property exposed. Web services

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 411

implement a [WebService()] attribute to define the service and a [WebMethod()]
attribute for each method or property exposed.

For example:
ASMX Web Service

[WebService()]
public class ThisService : WebService
{
 [WebMethod()]
 public String Hello(String inputName)
 {
 return "Hello, " + inputName;
 }

WCF Service:
 [ServiceContract(Namespace="http://Microsoft.ServiceModel.Samples")]
 public interface IThisService
 {
 [OperationContract]
 string Hello(String inputName);
 }

public class ThisService : IThisService
{
 public String Hello(String inputName)
 {
 return "Hello, " + inputName;
 }

How do I migrate to WCF from a COM application?
WCF offers the advantage of a more distributable Service Oriented Architecture (SOA). Your
application can call the service objects on the same computer, or across different computers on
an intranet or across the Internet. The service will be available to other applications as well.

To migrate a COM object to WCF:
1. Install .NET Framework 3.0 or above.
2. Create a WCF service project. Move your code from the legacy COM application to the

managed-code WCF service project.
3. Add WCF [ServiceContract] and [OperationContract] attributes to define the service contract

and operation contract elements. See “How do I migrate to WCF from an ASMX Web
service?” above for more information on how to specify the [ServiceContract] and
[OperationContract] attributes.

4. Fill in the WCF service configuration file. If hosting in Internet Information Services (IIS),
configure in the web.config file. If self-hosting, configure in the app.config file. If your
application is calling the WCF service on the same computer, the Named Pipes binding will
offer the best performance.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 412

How do I migrate to WCF from a DCOM application?
WCF will eliminate the difficulties of DCOM reliability and configuration. WCF offers the
advantages of a more distributable Service Oriented Architecture (SOA). Your application can
call the service objects on the same computer, or across different computers on an Intranet or
across the Internet. The service will be available to other applications as well.

To migrate a DCOM object to WCF:
1. Install .NET Framework 3.0 or above.
2. Create a WCF service project. Move your code from the legacy DCOM application to the

managed-code WCF service project.
3. Add WCF [ServiceContract] and [OperationContract] attributes to define the service contract

and operation contract elements. See “How do I migrate to WCF from an ASMX Web
service?” above for more information on how to specify the [ServiceContract] and
[OperationContract] attributes.

4. Fill in the WCF service configuration file. If hosting in IIS, configure in the web.config file. If
self-hosting, configure in the app.config file. If your application is calling the WCF service
on the same computer, the Named Pipes binding will offer the best performance.

How do I migrate to WCF from a WSE application?
You can keep the exposed methods, properties, and business logic contained within the WSE
service. Update the service contract definition, elements, attributes, and configuration
definitions to update the service from WSE to WCF. Note the following considerations:

• WCF requires .NET Framework 3.0 or above.
• The client proxy is nearly identical between WSE and WCF, but should be regenerated

using SvcUtil.exe to be sure that it is up to date.
• WCF requires a different configuration than WSE (e.g., for the app.config or web.config

file).
• WCF implements a [ServiceContract] attribute to define the service interface, and an

[OperationContract] attribute for each method or property exposed. Web services
implement a [WebService()] attribute to define the service and a [WebMethod()]
attribute for each method or property exposed.

For example:
ASMX Web Service

[WebService()]
public class ThisService : WebService
{
 [WebMethod()]
 public String Hello(String inputName)
 {
 return "Hello, " + inputName;
 }

WCF Service:
 [ServiceContract(Namespace="http://Microsoft.ServiceModel.Samples")]
 public interface IThisService

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 413

 {
 [OperationContract]
 string Hello(String inputName);
 }

public class ThisService : IThisService
{
 public String Hello(String inputName)
 {
 return "Hello, " + inputName;
 }

WCF services are wire-level compatible with WSE clients when configured to use the August
2004 version of WS-Addressing. WCF services that interact with WSE clients require a custom
binding configuration to facilitate the WS-Addressing compatibility.

Additional Resources
For more information on migrating from WSE, see “How to: Configure WCF Services to
Interoperate with WSE 3.0 Clients” at http://msdn2.microsoft.com/en-
us/library/ms730049.aspx

Auditing and Logging
• What WCF service security events should be logged?
• How do I enable logging and auditing in WCF?
• How do I stop my service if there has been an auditing failure?
• How do I log important business events in WCF?
• How do I implement log throttling in WCF?
• How do I use the health monitoring feature with WCF?
• How do I protect my log files?
• How do I pass user identity information in a message for auditing purpose?

What WCF service security events should be logged?
In order to improve auditing and increase your chances of discovering an attack on your
system, the following security events should be logged:

• Use WCF auditing to log authentication successes and failures.
• Use WCF auditing to log authorization successes and failures.
• Use WCF message logging to log malformed Simple Object Access Protocol (SOAP)

messages.
• Use ASP.NET health monitoring in conjunction with your input and data validation

routines to log malformed parameters and schema in incoming WCF messages.

How do I enable logging and auditing in WCF?
There are three key technologies you can use to audit and log operations in your WCF service:

1. Use WCF auditing to audit security events such as authentication and authorization
failures.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 414

2. Use WCF message logging to log malformed SOAP messages or to trace incoming
messages.

3. Use ASP.NET health monitoring to provide custom logging; for instance, to log the
occurrence of malformed input parameters or other significant occurrences.

Enable WCF Auditing in your config file with a serviceSecurityAudit service behavior as follows:
…
<behaviors>
 <serviceBehaviors>
 <behavior name="ServiceBehavior">
 <serviceSecurityAudit auditLogLocation="Application"
serviceAuthorizationAuditLevel="SuccessOrFailure"
 messageAuthenticationAuditLevel="SuccessOrFailure" />
 </behavior>
 </serviceBehaviors>
</behaviors>
…

Enable message logging in your config file by creating a ServiceModelMessageLoggingListener and
System.ServiceModel.MessageLogging source and then add MessageLogging under the diagnostics
node as follows:

…
<configuration>
<system.diagnostics>
 <sources>
 <source name="System.ServiceModel.MessageLogging"
switchValue="Warning, ActivityTracing">
 <listeners>
 <add type="System.Diagnostics.DefaultTraceListener"
name="Default">
 <filter type="" />
 </add>
 <add name="ServiceModelMessageLoggingListener">
 <filter type="" />
 </add>
 </listeners>
 </source>
 </sources>
 <sharedListeners>
 <add
initializeData="c:\inetpub\wwwroot\WCFService\web_messages.svclog"
 type="System.Diagnostics.XmlWriterTraceListener, System,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
 name="ServiceModelMessageLoggingListener"
traceOutputOptions="Timestamp">
 <filter type="" />
 </add>
 </sharedListeners>
</system.diagnostics>
</configuration>
…
…
<system.serviceModel>
 <diagnostics>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 415

 <messageLogging logEntireMessage="false" logMalformedMessages="true"
 logMessagesAtServiceLevel="false"
logMessagesAtTransportLevel="true" />
 </diagnostics>
…

Additional Resources
• For more information on auditing, see “Auditing Security Events” at

http://msdn2.microsoft.com/en-us/library/ms731669.aspx
• For more information see “How to: Audit Windows Communication Foundation Security

Events” at http://msdn2.microsoft.com/en-us/library/ms734737.aspx

How do I stop my service if there has been an auditing failure?
If non-repudiation is more important to you than ensuring that your service is always running
and providing service, you can set the SuppressAuditFailure element to false to throw an
exception when there has been an auditing failure. By default, this property is set to true, which
means your service can continue running even after auditing has failed and no additional
events are being logged.

The following configuration code shows how to stop the service if there is an audit failure:
<configuration>
 <system.serviceModel>
 <behaviors>
 <behavior>
 <serviceSecurityAudit
 auditLogLocation="Application"
 suppressAuditFailure="false"
 serviceAuthorizationAuditLevel="Failure"
 messageAuthenticationAuditLevel="SuccessOrFailure" />
 </behavior>
 </behaviors>
 </system.serviceModel>
</configuration>

You can also shut down the Windows system immediately when there is a failure to audit
events by enabling the following Windows Local Security Setting property:
Audit: Shut down system immediately if unable to log security audits

To set the property, open the Control Panel and then under Administrative Tools, open the Local
Security Settings dialog box . Click Local Policies and then click Security Options to find the above
property.

Additional Resources
• For more information on auditing, see “Auditing Security Events” at

http://msdn2.microsoft.com/en-us/library/ms731669.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 416

• For additional information on auditing, see “How to: Audit Windows Communication
Foundation Security Events” at http://msdn2.microsoft.com/en-
us/library/ms734737.aspx

How do I log important business events in WCF?
You can use ASP.NET Health Monitoring to log sensitive operations. For instance, you could
track usage of methods that relate to financial transactions or access to sensitive data.

To instrument your application with Health Monitoring:

1. Create a class library and a class that inherits from WebSuccessAuditEvent that displays
some business information, such as bank account transactions.
using System.Web.Management;

 public class MyAccountTransactions : WebSuccessAuditEvent
 {

 public MyAccountTransactions(string msg, object eventSource,
int eventCode)
 : base(msg, eventSource, eventCode)
 {
 // Do some processing
 }

 public MyAccountTransactions(string msg, object eventSource,
int eventCode, int eventDetailCode)
 : base(msg, eventSource, eventCode, eventDetailCode)
 {
 // Do some processing
 }
 public override void FormatCustomEventDetails(WebEventFormatter
formatter)
 {
 base.FormatCustomEventDetails(formatter);

 // Display some transaction information
 formatter.AppendLine("Some Credit\Debit information");
 }

2. Configure your WCF service for health monitoring.
…
<system.web>
 <healthMonitoring>
 <eventMappings>
 <add name="SomeTransactionInfo"
type="MyEventLibrary.MyAccountTransactions, MyEventLibrary"/>
 </eventMappings>
 <rules>
 <add name="Custom event"
eventName="SomeTransactionInfo" provider="EventLogProvider"
minInterval="00:00:01"/>
 </rules>
 </healthMonitoring>
</system.web>
…

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 417

3. Instrument the WCF service by raising the custom event in a service contract.
public string InvokeBusinessEvent()
 {
 MyAccountTransactions obj = new
MyAccountTransactions("Invoking some business operation", this,
WebEventCodes.WebExtendedBase + 1);
 obj.Raise();
 return "Displaying some transaction details";
 }

4. Verify the service events in the Event Log after calling the service method from a test
client.

Additional Resources
• For more information on health monitoring, see “How To: Use Health Monitoring in

ASP.NET 2.0” at http://msdn2.microsoft.com/en-us/library/ms998306.aspx
• For additional information on health monitoring, see “ASP.NET Health Monitoring

Overview” at http://msdn.microsoft.com/en-us/library/bb398933.aspx
• For more information on auditing, see “Auditing Security Events” at

http://msdn2.microsoft.com/en-us/library/ms731669.aspx
• For additional information on auditing, see “How to: Audit Windows Communication

Foundation Security Events” at http://msdn2.microsoft.com/en-
us/library/ms734737.aspx

How do I implement log throttling in WCF?
If you are using WCF message logging, you can specify the maximum messages to log as well as
the maximum size message to log. These attributes can be found in the <messagelogging>
element:

• maxMessagesToLog – Allows you to limit the size of the log file, by reducing the total
number of messages in the log. This setting can be used to reduce the chances of a
denial of service (DoS) attack on your log but can be used by an attacker to fill up the log
and conceal their intrusion.

• maxSizeOfMessagesToLog – Allows you to limit the size of the log file, by restricting
very large messages from being logged. This setting can be used to reduce the chances
of a DoS attack on your log but could potentially be used by an attacker to conceal their
intrusion by ensuring that certain messages are not logged.

When the message limit is reached, a trace at the Information level is produced, and all
message logging activities stop.

Additional Resources
For more information on log throttling, see “Configuring Message Logging” at
http://msdn2.microsoft.com/en-us/library/ms730064.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 418

How do I use health monitoring feature with WCF?
To use the health monitoring feature in WCF, configure your WCF service by performing the
following steps:

1. Create a custom health monitoring event.
2. Configure your WCF service for health monitoring.
3. Instrument an application to raise a custom event.

The following example shows how to implement the above steps for health monitoring in a
WCF service:

1. Create a custom user management Web event, by creating a class library and then
creating a class that inherits from WebAuditEvent.
using System.Web.Management;

 public class MyEvent : WebAuditEvent
 {
 public MyEvent(string msg, object eventSource, int eventCode)
 : base(msg, eventSource, eventCode)
 {
 }

 public MyEvent(string msg, object eventSource, int eventCode,
int eventDetailCode)
 : base(msg, eventSource, eventCode, eventDetailCode)
 {
 }
 public override void FormatCustomEventDetails(WebEventFormatter
formatter)
 {
 base.FormatCustomEventDetails(formatter);

 // Display some custom event message
 formatter.AppendLine("Some Critical Event Fired");
 }
}

2. Configure your WCF service for health monitoring.

…
<system.web>
 <healthMonitoring>
 <eventMappings>
 <add name="Some Custom Event"
type="MyEventLibrary.MyEvent, MyEventLibrary"/>
 </eventMappings>
 <rules>
 <add name="Custom event" eventName="Some Custom
Event" provider="EventLogProvider" minInterval="00:00:01"/>
 </rules>
 </healthMonitoring>
</system.web>
…

3. Instrument the WCF service by raising the custom event in a service contract.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 419

[OperationContract]
string InvokeCriticalEvent();

public string InvokeCriticalEvent()
 {
 MyEvent obj = new MyEvent("Invoking Some Custom Event", this,
WebEventCodes.WebExtendedBase + 1);
 obj.Raise();
 return "Critical event invoked";
 }

4. Verify the service events in the Event Log after calling the service method from a test

client.

Additional Resources
• For more information on health monitoring, see “How To: Use Health Monitoring in

ASP.NET 2.0” at http://msdn2.microsoft.com/en-us/library/ms998306.aspx
• For additional information on health monitoring, see “ASP.NET Health Monitoring

Overview” at http://msdn.microsoft.com/en-us/library/bb398933.aspx
• For more information on auditing, see “Auditing Security Events” at

http://msdn2.microsoft.com/en-us/library/ms731669.aspx
• For additional information on auditing, see “How to: Audit Windows Communication

Foundation Security Events” at http://msdn2.microsoft.com/en-
us/library/ms734737.aspx

How do I protect my log files?
Protect your log files using Windows access control lists (ACLs) with restricted access. If you log
events to Microsoft SQL Server® or to some custom event sink, use appropriate access controls
to limit access to the event data. For example, grant write access to the account or accounts
used by your application, grant full control to administrators, and grant read-only access to
operators.

How to I pass user identity information in a message for auditing purpose?
You might want to pass user identity information in a message in cases where you are not
impersonating the caller. This could be useful when auditing business-critical operations such as
financial transactions.

To pass user identity information in a custom event for auditing:

1. Create a custom user management Web event, by creating a class library and then
creating a class that inherits from WebAuditEvent.
using System.Web.Management;

 public class MyEvent : WebAuditEvent
 {

 public MyEvent(string msg, object eventSource, int eventCode)
 : base(msg, eventSource, eventCode)

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 420

 {
 // Obtain the HTTP Context and store authentication
details

 userID = HttpContext.Current.User.Identity.Name;
 authType =
HttpContext.Current.User.Identity.AuthenticationType;
 isAuthenticated =
HttpContext.Current.User.Identity.IsAuthenticated;

 }

 public MyEvent(string msg, object eventSource, int eventCode,
int eventDetailCode)
 : base(msg, eventSource, eventCode, eventDetailCode)
 {

 // Obtain the HTTP Context and store authentication
details

 userID = HttpContext.Current.User.Identity.Name;
 authType =
HttpContext.Current.User.Identity.AuthenticationType;
 isAuthenticated =
HttpContext.Current.User.Identity.IsAuthenticated;

 }
 public override void FormatCustomEventDetails(WebEventFormatter
formatter)
 {
 base.FormatCustomEventDetails(formatter);

 // Display user identity information in the event message
 formatter.AppendLine("User ID: " + userID);
 formatter.AppendLine("Authentication Type: " + authType);
 formatter.AppendLine("User Authenticated: " +
isAuthenticated.ToString());
 }

2. Configure your WCF service for health monitoring.
…
<system.web>
 <healthMonitoring>
 <eventMappings>
 <add name="Some Custom Event"
type="MyEventLibrary.MyEvent, MyEventLibrary"/>
 </eventMappings>
 <rules>
 <add name="Custom event" eventName="Some Custom
Event" provider="EventLogProvider" minInterval="00:00:01"/>
 </rules>
 </healthMonitoring>
</system.web>
…

3. Instrument the WCF Service by raising the custom event in a service contract.

[OperationContract]
string InvokeEvent();

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 421

public string InvokeEvent()
 {
 MyEvent obj = new MyEvent("Invoking Custom Event – User Info",
this, WebEventCodes.WebExtendedBase + 1);
 obj.Raise();
 return "Event showing User information";
 }

4. Verify the service events in the Event Log after calling the service method from a test

client.
Event code: 100001
Event message: Invoking Custom Event – User Info
…
Application information:
 Application domain: /LM/w3svc/1/ROOT/HealthMonitoring-7-
127656015969887178
…
Custom event details:
User ID: DomainName\UserName
 Authentication Type: Negotiate
 User Authenticated: True

Additional Resources
• For more information on auditing, see “Auditing Security Events” at

http://msdn2.microsoft.com/en-us/library/ms731669.aspx
• For additional information on auditing, see “How to: Audit Windows Communication

Foundation Security Events” at http://msdn2.microsoft.com/en-
us/library/ms734737.aspx

Authentication
• How do I decide on an authentication strategy in WCF?
• When should I use the SQL Server membership provider?
• How do I authenticate against Active Directory?
• How do I authenticate against a SQL store?
• How do I authenticate against a custom store?
• How do I protect passwords in my user store?
• How do I use certificate authentication with X.509 certificates?
• What is the most common authentication scenario for intranet applications?
• What is the most common authentication scenario for Internet applications?
• How do I support authentication for multiple client types?
• What is federated security?
• How do I send credentials in the message when I am using transport security?
• How do I avoid cleartext passwords?

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 422

How do I decide on an authentication strategy in WCF?
Decide your authentication strategy based on your user credential store location and the
location of your clients on the Internet or intranet.
Internet

• Username authentication with SQL Membership Provider. If your users are not in
active directory, consider SQL Membership Provider. This will give you a store that can
be easily deployed and created. Configure message or mixed mode security to protect
your users’ credentials.

• Basic authentication with Windows. If your users are already in active directory, or
local machine accounts, consider using basic authentication. Use transport security to
secure the communication channel and protect your credentials.

• Username authentication with Custom Store. If your users are in a custom store,
consider using user name authentication with a custom validator in order to validate
user credentials against your custom store. Unlike the other scenarios, you will have to
write custom code to validate your user’s credentials. Use message or mixed mode
security to protect your users’ credentials.

• Certificate authentication with certificates. If your clients are partners or mobile clients
connecting over VPN in a peer-to-peer authentication scenario, consider using
certificate authentication. If your users have Windows accounts in your domain you can
map the certificates to Windows accounts and enable authorization checks based on
Windows roles. Certificate authentication requires that you manage certificates,
however, it allows seamless authentication for clients who are outside your firewall. Use
transport security to secure the communication channel and protect your credentials.

Intranet

• Username authentication with SQL Membership Provider. If your users are not in
active directory, consider SQL Membership Provider. This will give you a store that can
be easily deployed and created. Use transport security to secure the communication
channel and protect your credentials.

• Windows authentication with windows. If your users are already in active directory or
local machine accounts, consider using windows authentication to leverage this
infrastructure. Windows authentication will give you also the benefits of using Windows
roles for authorization checks. Use transport security to secure the communication
channel and protect your credentials. Consider that local machine accounts configure a
authentication with NTLM protocol, which is prone to brute force attacks. For more
secure peer to peer authentication, consider using certificate authentication.

• Username authentication with Custom Store. If your users are in a custom store,
consider using user name authentication with a custom validator in order to validate
user credentials against your custom store. Unlike the other scenarios, you will have to
write custom code to validate your user’s credentials. Use message or mixed mode
security to protect your users’ credentials.

• Certificate authentication with certificates. If your clients are partners or mobile clients
connecting over VPN in a peer-to-peer authentication scenario, consider using

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 423

certificate authentication. If your users have Windows accounts in your domain you can
map the certificates to Windows accounts and enable authorization checks based on
Windows roles. Certificate authentication requires that you manage certificates,
however, it allows seamless authentication for clients who are outside your firewall. Use
transport security to secure the communication channel and protect your credentials.

Additional Resources
For more information on authentication, see “Authentication” at
http://msdn2.microsoft.com/en-us/library/ms733082.aspx

When should I use the SQL Server Membership provider?
You should use SQL Server Membership provider when users are not in active directory and you
need a user store that can be easily created and deployed. As additional benefits, you can use
authentication schemes in WCF that can cross firewall boundaries. You will need to use
transport security to secure the communication channel to protect user credentials.

Additional Resources
For more information on authentication, see “Authentication” at
http://msdn2.microsoft.com/en-us/library/ms733082.aspx

How do I authenticate against Active Directory?
If your users are in Active Directory, consider using Windows, Username or Basic
authentication. All those authentication schemes can be mapped to users in Active Directory.

• Windows authentication – This authentication scheme will default to users in Active
Directory. It has the benefits of providing support for message security without
requiring to install certificates. It also provides support for transport security with
netTcpBinding withour requiring to install certificates. It cannot cross firewall
boundaries

• Basic authentication – Basic authentication maps to users in Active Directory. Transport
security will be required to protect user credentials. It has the benefits of crossing
firewall boundaries.

• Username authentication – Client username/password information is automatically
mapped to Windows user accounts. Message security will be required to protect
credentials. It has the benefits of crossing firewall boundaries. The following example
configures the binding for username authentication and message security:

Additional Resources
For more information on authentication, see “Authentication” at
http://msdn2.microsoft.com/en-us/library/ms733082.aspx

How do I authenticate against a SQL store?
To use username authentication with a SQL Server database, you can configure your application
to use the ASP.NET membership feature.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 424

To configure the membership provider, perform the following steps:

1. Configure your SQL Server database for membership. From a Microsoft Visual Studio®
2008 command prompt, run the following command:

 aspnet_regsql -S .\SQLExpress -E -A m -d <<YourDatabaseName>>

In this command:

• -S specifies the server, which is (.\SQLExpress) in this example.
• -E specifies to use Windows authentication to connect to SQL Server.
• -A m specifies to add only the membership feature. For simple authentication

against a SQL Server user store, only the membership feature is required.
• -d specifies the SQL Server database name. If this option is not used, a default

aspnetdb database will be created.
For a complete list of the commands, run Aspnet_regsql /?

2. Modify your Web.config file in your WCF service application by adding the following
sections:
<connectionStrings>
 <add name="MyLocalSQLServer"
 connectionString="Initial Catalog=<<YourDatabaseName>>;
 data source=.\sqlexpress;Integrated Security=SSPI;" />
</connectionStrings>

…
<system.web>
 ...
 <membership defaultProvider="MySqlMembershipProvider" >
 <providers>
 <clear/>
 <add name="MySqlMembershipProvider"
 connectionStringName="MyLocalSQLServer"
 applicationName="MyAppName"
 type="System.Web.Security.SqlMembershipProvider" />
 </providers>
 </membership>
</system.web>
…

3. Configure the service to use username authentication.
…
<bindings>
 <wsHttpBinding>
 <binding name="wsHttpEndpointBinding">
 <security>
 <message clientCredentialType="UserName" />
 </security>
 </binding>
 </wsHttpBinding>
</bindings>

4. Configure the service to use the membership provider.
<behaviors>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 425

 <serviceBehaviors>
 <behavior name="ServiceBehavior">

 <serviceCredentials>
 <userNameAuthentication
userNamePasswordValidationMode="MembershipProvider"
 membershipProviderName="MySqlMembershipProvider" />
 </serviceCredentials>

 </behavior>
 </serviceBehaviors>
</behaviors>
…

Additional Resources
For more information, see “How To – Use Username Authentication with the SQL Server
Membership Provider and Message Security in WCF from Windows Forms” at
http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=How%20To%20-
%20Use%20Username%20Authentication%20with%20the%20SQL%20Membership%20Provider
%20and%20Message%20Security%20in%20WCF%20from%20Windows%20Forms&referringTitl
e=How%20Tos

How do I authenticate against a custom store?
To use a custom user/identity store with username authentication, configure your application
to use the username authentication with a custom username and password validator. The
custom validator will be configured in a service behavior and implemented in a class library. The
username and password validator will be used by your service to authenticate your users based
on your custom user store.

The following configuration snippet shows how to configure a custom validator for your WCF
service:

<serviceCredentials>
<userNameAuthentication userNamePasswordValidationMode="Custom"
customUserNamePasswordValidatorType="MyUserNamePasswordValidator,
Host"/>
<serviceCertificate findValue="CN=FabrikamEnterprises"/>

</serviceCredentials>

The following code snippet shows how to implement a custom username and password
validator:

using System;
using System.Collections.Generic;
using System.IdentityModel.Selectors;
using System.IdentityModel.Tokens;
using System.Text;

namespace Validator
{
 public class MyUserNamePasswordValidator :
UserNamePasswordValidator
 {

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 426

 public override void Validate(string userName, string password)
 {
 Console.Write("\nValidating username, {0}, and password,
{1} ... ", userName, password);
 if ((string.Compare(userName, "don", true) != 0) ||
(string.Compare(password, "hall", false) != 0))
 {
 throw new SecurityTokenException("Unknown user.");
 }
 Console.Write("Done: Credentials accepted. \n");
 }
 }
}

How do I protect passwords in my user store?
Protect passwords in your user store by storing one-way password hashes with a salt. Generate
the hash from a combination of the password and a random salt value. Use an algorithm such
as SHA256. If your credential store is compromised, the salt value helps to slow an attacker who
is attempting to perform a dictionary attack.

How do I use certificate authentication with X.509 certificates?
Configure your service to use wsHttpBinding with message security and clientCredentialType set
to Certificate, as follows:
 <wsHttpBinding>
 <binding name="WSHttpBinding_ICalculator">
 <security mode="Message">
 <message clientCredentialType="Certificate" />
 </security>
 </binding>
 </wsHttpBinding>

You can map an X509 certificate to Windows account by setting the
mapClientCertificateToWindowsAccount property to true. By default, when using the
certificate client credential type on bindings, the certificate is not mapped to Windows
accounts. You can override this behavior by using the mapClientCertificateToWindowsAccount
property as follows:
<serviceBehaviors>
 <behavior name="MyServiceBehaviorForWebHttp">

 <serviceCredentials>
 <clientCertificate>
 <authentication mapClientCertificateToWindowsAccount="true" />
 </clientCertificate>
 </serviceCredentials>

 </behavior>
</serviceBehaviors>

Additional Resources
• For more information on using WCF with certificates, see “Working with Certificates” at

http://msdn.microsoft.com/en-us/library/ms731899.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 427

• For more information on mapping certificates to Windows accounts see, “Map
certificates to user accounts” at
http://technet2.microsoft.com/WindowsServer/f/?en/library/0539dcf5-82c5-48e6-
be8a-57bca16c7e171033.mspx

• For more information on mapping certificates to Active Directory, see “Mapping Client
Certificates with Directory Service Mapping” at
http://technet2.microsoft.com/windowsserver/en/library/7cce4299-28f2-45fa-8730-
4e0cbe3be8561033.mspx?mfr=true

• For more information on certificate-mapping strategies see, “Mapping Strategies” at
http://technet2.microsoft.com/windowsserver/en/library/aa61c564-1599-4414-a12d-
2f64786f6ec31033.mspx?mfr=true

What is the most common authentication scenario for intranet
applications?
One or more clients connect to a WCF service using Windows authentication with users in
Active Directory. The service uses transport security over the netTcpBinding and is hosted in a
Windows service. This combination gives the benefits of leveraging existing Windows users and
groups for authentication and authorization while choosing the security mode and binding that
are likely to yield the best performance.

What is the most common authentication scenario for Internet
applications?
One or more clients connect to a WCF service using username authentication with users
accessed via the SqlMembershipProvider. The service uses message security over the
wsHttpBinding and is hosted in IIS. This combination works well over the Internet since it can
cross firewalls and doesn’t assume your users are in Active Directory.

How do I support authentication for multiple client types?
You can supply multiple endpoints from within one service to support multiple client types. For
example, you can have one endpoint with basicHttpBinding for legacy Web service client
connections and one with wsHttpBinding for WCF clients located on the Internet.

What is federated security?
Federated security provides a layer of abstraction between your service and the
authentication/authorization mechanism you choose. This enables collaboration across multiple
systems, networks, and organizations in different trust realms. WCF provides support for
building and deploying distributed systems that employ federated security.

Using federated security provides you the flexibility of providing one set of credentials to a user
and converting it to another set of credentials; for instance, converting the certificate given by
the client to a Security Assertions Markup Language (SAML) token. Federated security also gives
you the flexibility to alter your internal security mechanisms; for example, the client can
provide a username/password pair to replace the certificate.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 428

For more information, see “Federation and Issued Tokens” at http://msdn.microsoft.com/en-
us/library/ms731161.aspx

How do I send credentials in the message when I am using transport
security?
In intermediary scenarios, you might want to send credentials in messages that are protected
by transport security, allowing your user to be authenticated by a downstream system.

To send credentials in the message, set the security mode to TransportWithMessageCredentials
and clientCredentialType to the type of credentials you want to include.
 <wsHttpBinding>
 <binding name="WindowsClientOverwsHttp">
 <security mode="TransportWithMessageCredentials">
 <transport clientCredentialType="Windows" />
 </security>
 </binding>
 </wsHttpBinding>

How do I avoid cleartext passwords?
Perform the following steps to avoid sending cleartext passwords over the network:

• If possible, remove the need for a password at all by specifying
ClientCredentialType=”Windows”, ClientCredentialType=”Certificate”, or a custom
token that does not require a password.

• If the user must enter a password, protect the password by specifying either <Security
mode=”Transport”> to secure the channel or <Security mode=”Message”> to secure the
messages. Do not specify <Security mode=”None”> in the configuration as this will
provide no communication security.

Authorization
• How do I decide on an authorization strategy in WCF?
• What’s the difference between resource-based, roles-based, and claims-based

authorization?
• How do I use Windows groups for role authorization in WCF?
• How do I use the SQL Server role provider for ASP.NET role authorization in WCF?
• How do I use the Windows Token role provider for ASP.NET role authorization in

WCF?
• How do I use the Authorization Store role provider for ASP.NET role authorization in

WCF?
• What’s the difference between declarative and imperative roles authorization?
• How do I restrict access to WCF operations to specific Windows users?
• How do I associate roles with a certificate?
• What is a service principal name (SPN)?
• How do I create a service principal name (SPN)?

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 429

How do I decide on an authorization strategy in WCF?
Know your authorization options and choose the most appropriate for your scenario. First
decide if you want to use resource-based or role-based authorization. Resource-based
authorization uses ACLs on the resource to authorize the original caller. Role-based allows you
to authorize access to service operations or resources based upon the group a user is in.
• If you choose to use role-based authorization then you can store your roles in Windows

groups or in ASPNET roles.
• If you are using Active Directory then consider using Windows groups based on ease of

maintenance and the fact you maintain both roles and credentials in the Active Directory
store. If you are not using Active Directory, consider using ASPNET roles and the ASP.NET
Role Provider.

Your authorization strategy may also be influenced by your choice of authentication type:
Resource-based authorization

o If you are using certificates authentication you will need to map certificates to
Windows groups.

o If you are using username authentication you will need to perform protocol
transition.

o Windows authentication will work with resource-based authorization by default.
o Basic authentication will work with resource-based authorization by default.
o Note: You need to impersonate for resource-based authorization.

Role-based authorization

o If you are using certificates authentication you will need to map certificates to
Windows groups.

o If you are using username authentication with Windows groups, you will need to
perform protocol transition.

o Username authentication will work with ASPNET roles by default.
o Windows authentication will work with Windows groups by default.
o Basic authentication will work with Windows groups by default.

Additional Resources
• For more information on authorization, see “Authorization” at

http://msdn2.microsoft.com/en-us/library/ms733071.aspx
• For more information on protocol transition, see

http://www.codeplex.com/WCFSecurity/Wiki/View.aspx?title=What%20is%20protocol
%20transition%3f&referringTitle=Questions%20and%20Answers

What’s the difference between resource-based, roles-based, and claims-
based authorization?
Roles-based authorization is used to group users into groups (roles) and then set permissions on
the role rather than on individual users. This eases management by allowing you to administer
a smaller set of roles rather than a larger set of users.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 430

Resource-based authorization sets permissions on the resource itself. For instance, you would set
an ACL on a Windows resource and then use the identity of the original caller to determine
access rights to the resource. If you use resource-based authorization in WCF, you will need to
impersonate the original caller through the application layer (e.g., ASP.NET application),
through the WCF service layer, and to the business logic code that is accessing the file resource.

Claims-based authorization provides additional layers of abstraction on your authorization
strategy in order to make it easier to separate your authorization rules from the mechanism
you use for authorization and authentication. For instance, you could authenticate a user with a
certificate or with username/password credentials and then pass that claim-set to the service
to determine access to resources. You create authorization policies that are used to generate a
claim-set based on the authentication evidence presented by the user (e.g., username and
password, certificate, Kerberos). The claim-set is then used by your service to determine what
resources the original caller has access to.

Additional Resources
For more information on authorization, see “Authorization” at http://msdn2.microsoft.com/en-
us/library/ms733071.aspx

How do I use Windows groups for role authorization in WCF?
Map Windows groups to WCF service methods using the WCF PrincipalPermission attribute.
Incoming client username credentials will be mapped to the associated Windows group. Service
method access will be granted to a user only if he or she is a member of the group associated
with the service method being called.

The following example demonstrates how the WCF service “Add” will only run for users
belonging to the “CalculatorClients” Windows group.

// Only members of the CalculatorClients group can call this method.
[PrincipalPermission(SecurityAction.Demand, Role =
"CalculatorClients")]
public double Add(double a, double b)
{
 return a + b;
}

Additional Resources
For more information on authorization, see “Authorization” at http://msdn2.microsoft.com/en-
us/library/ms733071.aspx

How do I use the SQL Server role provider for ASP.NET role authorization
in WCF?
The SQL Server role provider is configured in the WCF service web.config file. User and role
information are stored in the Aspnetdb database. Incoming client connections supply a
username and password for each method call. The SQL Server role provider matches the client

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 431

username/password combination to information in the Aspnetdb database and determines if
the associated role matches the PrincipalPermission attribute role required in the method
definition.

The following example configures the service to enable the SQL Server role provider:
 <!-- Configure the Sql Role Provider -->
 <roleManager enabled ="true"
 defaultProvider ="SqlRoleProvider" >
 <providers>
 <add name ="SqlRoleProvider"
 type="System.Web.Security.SqlRoleProvider"
 connectionStringName="SqlConn"
 applicationName="MembershipAndRoleProviderSample"/>
 </providers>
 </roleManager>
 <!-- Configure role based authorization to use the Role Provider -->
 <serviceAuthorization principalPermissionMode ="UseAspNetRoles"
 roleProviderName ="SqlRoleProvider" />

Service methods include a PrincipalPermission directive that specifies the required authorization
access role required.
 [PrincipalPermission(SecurityAction.Demand, Role = "Registered Users")]
 public double Multiply(double n1, double n2)
 {
 double result = n1 * n2;
 return result;
 }

The following code shows how to do the authorization check-in code:

if (Roles.IsUserInRole(@"accounting"))
{
//authorized
}
Else
{
//authorization failed

}

The following client connection supplies a username and password to call the method:
 // Set credentials to Alice
 client.ClientCredentials.UserName.UserName = "Alice";
 client.ClientCredentials.UserName.Password = "ecilA-123";

 // Call the Add service operation.
 double value1 = 100.00D;
 double value2 = 15.99D;
 double result = client.Multiply(value1, value2);

 Additional Resources
For more information on the ASP.NET role provider, see “How to: Use the ASP.NET Role
Provider with a Service” at http://msdn.microsoft.com/en-us/library/aa702542.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 432

How do I use the Windows Token role provider for ASP.NET role
authorization in WCF?
If you use ASP.NET roles, consider using the ASP.NET role provider with the
AspNetWindowsTokenRoleProvider name. This allows you to separate the design of the
authorization from the implementation inside your service. If you decide to change the role
provider, it will not affect the code needed to perform the authorization. When using
imperative checks, consider using the role syntax instead of performing authorization checks
with WindowsPrincipal.isInrole.

The following configuration example shows how to configure AspNetWindowsTokenRoleProvider:

<system.web>
…
<roleManager enabled="true"
 defaultProvider="AspNetWindowsTokenRoleProvider" />
…
</system.web>

 <system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior name="BehaviorConfiguration">
 <serviceAuthorization
principalPermissionMode="UseAspNetRoles"

roleProviderName="AspNetWindowsTokenRoleProvider" />
 <serviceMetadata />
 </behavior>
 </serviceBehaviors>
 </behaviors>

The following code shows how to do the authorization check-in code:

if (Roles.IsUserInRole(@"accounting"))
{
//authorized
}
Else
{
//authorization failed

}

Additional Resources
For more information on the ASP.NET role provider, see “How to: Use the ASP.NET Role
Provider with a Service” at http://msdn.microsoft.com/en-us/library/aa702542.aspx

How do I use the Authorization Store role provider for ASPNET role
authorization in WCF?
You can integrate Authorization Manager into your WCF service to provide authorization for
your users. Configure the Authorization Manager ASP.NET role provider for the application that

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 433

is hosting the WCF service. By configuring the ASP.NET role manager to use the
AuthorizationStoreRoleProvider, you can use the role management API against an AzMan policy
store.

Like other ASP.NET role providers, the Authorization Manager ASP.NET role provider is
configured using the <providers> element. The following configuration example shows how to
integrating Authorization Manager into a WCF service:

<system.web>
 <roleManager enabled="true" defaultProvider="AzManRoleProvider">
 <providers>
 <add name="AzManRoleProvider"
 type="System.Web.Security.AuthorizationStoreRoleProvider,
System.Web, Version=2.0.0.0, Culture=neutral,
publicKeyToken=b03f5f7f11d50a3a"
 connectionStringName="AzManPolicyStoreConnectionString"
 applicationName="MyWCFService"/>
 </providers>
 </roleManager>
</system.web>

 <system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior name="BehaviorConfiguration">
 <serviceAuthorization
principalPermissionMode="UseAspNetRoles"
 roleProviderName="AzManRoleProvider" />
 <serviceMetadata />
 </behavior>
 </serviceBehaviors>
 </behaviors>

Additional Resources
For more information on the ASP.NET role provider, “How to: Use the ASP.NET Role Provider
with a Service” at http://msdn.microsoft.com/en-us/library/aa702542.aspx

What is the difference between declarative and imperative roles
authorization?
Imperative authorization supports fine-grained authorization choices based on business logic.
Imperative roles-based authorization is written into your code and processed at run time.
Imperative security is useful when the resource to be accessed or action to be performed is not
known until run time or when finer-grained access control beyond the level of a code method is
required.

Declarative authorization can be added to application code at design time by specifying required
access for a particular method or class declared as an attribute on the operation. Declarative
roles-based authorization is best for authorizing access to WCF at the operation level.
Declarative authorization can be added to application code at design time by specifying

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 434

required access for a particular method or class declared as an attribute on the operation.
Because attribute metadata is discoverable using reflection, it is easier to track the security
principals that are allowed to access each method. Declarative authorization checks will work if
you are using the ASP.NET role provider or Windows groups.

The following code example shows how to use the PrinciplePermission attribute to perform
declarative authorization:

[PrincipalPermission(SecurityAction.Demand, Role = "accounting")]
public double Add(double a, double b)
{
 return a + b;
}

The following is an example of an Imperative check using the ASP.NET role provider:
if (Roles.IsUserInRole(@"accounting"))
{
//authorized
}
Else
{
//authorization failed

}

Additional Resources
• For more information on authorization, see “Authorization” at

http://msdn2.microsoft.com/en-us/library/ms733071.aspx
• For information on the Roles.IsUserInRole method, see “Roles.IsUserInRole Method

(String)” at http://msdn.microsoft.com/en-us/library/4z6b5d42.aspx

How do I restrict access to WCF operations to specific Windows users?
Perform the following steps to restrict access to specific Windows users:

1. Open the Computer Management Windows applet.
2. Create a Windows group that contains the specific Windows users to which you want to

give access. For example, a group can be called “CalculatorClients”.
3. Configure your service to require ClientCredentialType = “Windows”. This will require

clients to connect using Windows authentication.
4. Configure your service methods with the PrincipalPermission attribute to require

connecting users be members of the CalculatorClients group.
// Only members of the CalculatorClients group can call this method.
[PrincipalPermission(SecurityAction.Demand, Role =
"CalculatorClients")]
public double Add(double a, double b)
{
 return a + b;
}

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 435

Additional Resources
For more information on authorization, see “Authorization” at http://msdn2.microsoft.com/en-
us/library/ms733071.aspx

How do I associate roles with a certificate?
Perform the following steps to associate roles with a certificate:

1. Configure your service to require ClientCredentialType = “Certificate”. This will require clients to
connect using certificate authentication.

2. Configure clients to supply a certificate. The incoming client requests will contain a
certificate name and a unique thumbprint ID that can be matched against the service
method PrincipalPermission certificate name and thumbprint.

3. Configure your service methods with the PrincipalPermission attribute that specifies the
required certificate name and thumbprint. Only incoming requests that supply
credentials that match the certificate will be allowed to access the method.
// Only a client authenticated with a valid certificate that has the
// specified subject name and thumbprint can call this method.
[PrincipalPermission(SecurityAction.Demand,
 Name = "CN=MyCertificate;
123456712345677E8E230FDE624F841B1CE9D41E")]
public double Multiply(double a, double b)
{
 return a * b;
}

Additional Resources
For more information on authorization, see “Authorization” at http://msdn2.microsoft.com/en-
us/library/ms733071.aspx

What is a service principal name (SPN)?
A service principal name (SPN) is the name by which a client uniquely identifies an instance of a
service. The Kerberos authentication service can use an SPN to authenticate a service. When a
client wants to connect to a service, it locates an instance of the service, composes an SPN for
that instance, connects to the service, and presents the SPN for the service to authenticate.

Additional Resources
For more information on SPN, see “Setspn Overview” at
http://technet2.microsoft.com/windowsserver/en/library/b3a029a1-7ff0-4f6f-87d2-
f2e70294a5761033.mspx?mfr=true

How do I create a service principal name (SPN)?
You can use the SETSPN.EXE tool to associate an SPN with your service.
The following example creates an SPN that can be used to access the service. The service is
named “CalcService,” the computer is named “ComputerA,” the domain is named “DomainA,”
and the service account is the ASPNET account.
C:\ Setspn –A CalcService/ComputerA DomainA\ASPNET

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 436

Additional Resources
For more information on SPNs, see “Setspn Overview” at
http://technet2.microsoft.com/windowsserver/en/library/b3a029a1-7ff0-4f6f-87d2-
f2e70294a5761033.mspx?mfr=true

Bindings
• What is a binding?
• What bindings are available?
• Which bindings are best suited for the Internet?
• Which bindings are best suited for an intranet?
• How do I choose an appropriate binding?

What is a binding?
A WCF service endpoint comprises an address, a binding, and a contract. Bindings define how
clients can connect and communicate with your service. A binding includes definitions for the
WS-* protocols used, the message encoding, and the transport protocol. For instance, the
wsHttpBinding uses HTTP, XML 1.0 encoding, message security, reliable sessions, and
transactions by default. Bindings are exposed by a service endpoint that includes the binding
plus a Uniform Resource Identifier (URI) to which the client will send messages.

The following is an example of a wsHttpBinding that has been configured to use transport
security:

<bindings>
 <wsHttpBinding>
 <binding name="wsHttpEndpointBinding">
 <security mode="Transport">
 </security>
 </binding>
 </wsHttpBinding>
</bindings>

The following configuration snippet shows an endpoint that exposes this binding:
 <endpoint address="" binding="wsHttpBinding"
 bindingConfiguration="wsHttpEndpointBinding"
 name="wsHttpEndpoint" contract="IService">

Additional Resources
For more information on bindings, see “Windows Communication Foundation Bindings” at
http://msdn2.microsoft.com/en-us/library/ms733027.aspx

What bindings are available?
The following table summarizes common bindings:

Binding Description

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 437

customBinding Allows you to create a custom binding with full control over
the message stack.

basicHttpBinding It represents a bindings that configures and expose endpoints
that are able to communicate with ASMX-based Web services
and clients and other services that conform to the WS-I Basic
Profile 1.1. By defaults it has security disabled.

wsHttpBinding Defines a secure, reliable, interoperable binding suitable for
non-duplex service contracts. The binding implements the
following specifications: WS-Reliable Messaging for reliability,
and WS-Security for message security and authentication. The
transport is HTTP, and message encoding is Text/XML
encoding. By default it provides message security with
windows authentication.

ws2007HttpBinding Defines a secure, reliable, interoperable binding suitable for
non-duplex service contracts. The binding implements the
following specifications: WS-Reliable Messaging for reliability,
and WS-Security for message security and authentication. The
transport is HTTP, and message encoding is Text/XML
encoding. The ws2007HttpBinding provides binding similar to
wsHttpBinding but uses the standard for OASIS (Organization
for the Advancement of Structured Information Standards).
By default it provides message security with windows
authentication.

netTcpBinding Specifies a secure, reliable, optimized binding suitable for
cross-machine communication. By default, it generates a
runtime communication stack with transport security and
windows authentication as default security settings. It uses
TCP protocol for message delivery, and binary message
encoding.

netNamedPipeBinding Defines a binding that is secure, reliable, optimized for on-
machine cross process communication. By default, it
generates a runtime communication stack with WS-
ReliableMessaging for reliability, transport security for
transfer security, named pipes for message delivery, and
binary message encoding. It is not secured by default.

netMsmqBinding Defines a queued binding suitable for cross-machine
communication.

wsFederationHttpBinding Defines a binding that supports federated security. It helps
implementing Federation which is the ability to flow and
share identities across multiple enterprises or trust domains
for authentication and authorization. WCF implements
federation over message and mixed mode security but not
over transport security. Services configured with this binding

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 438

must use the HTTP protocol as transport
ws2007FederationHttpBinding ws2007FederationHttpBinding. Defines a binding that

derives from wsFederationHttpBinding and supports federated
security. It helps implementing Federation which is the ability
to flow and share identities across multiple enterprises or
trust domains for authentication and authorization. WCF
implements federation over message and mixed mode
security but not over transport security. Services configured
with this binding must use the HTTP protocol as transport.
The ws2007FederationHttpBinding provides binding similar
to ws2007FederationHttpBinding but uses the standard for
OASIS (Organization for the Advancement of Structured
Information Standards)

wsDualHttpBinding Defines a secure, reliable and interoperable binding that is
suitable for duplex service contracts or communication
through SOAP intermediaries.

customBinding Allows you to create a custom binding with full control over
the message stack.

Additional Resources
For more information on bindings, see “Windows Communication Foundation Bindings” at
http://msdn2.microsoft.com/en-us/library/ms733027.aspx

Which bindings are best suited for the Internet?
• If you are exposing your WCF service over the Internet to clients that expect a legacy

ASMX Web service, use basicHttpBinding. Keep in mind that this binding does not have
any security enabled by default, so all messages will be sent in plain text format.

• If you are exposing your WCF service over the Internet to Windows Forms clients, use
wsHttpBinding.

• If you are exposing your WCF service over an intranet to an ASP.NET application, which
in turn is exposed to the clients over the Internet, use netTcpBinding.

Additional Resources
For more information on bindings, see “Windows Communication Foundation Bindings” at
http://msdn2.microsoft.com/en-us/library/ms733027.aspx

Which bindings are best suited for the Intranet?
• If you are exposing your WCF service over your intranet to clients that expect a legacy

ASMX Web service, use basicHttpBinding. Keep in mind that this binding does not have
any security enabled by default, so all messages will be sent in plain text format.

• If you are exposing your WCF service over your intranet to Windows Forms or ASP.NET
clients, use netTcpBinding.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 439

Additional Resources
For more information on bindings, see “Windows Communication Foundation Bindings” at
http://msdn2.microsoft.com/en-us/library/ms733027.aspx

How do I choose an appropriate binding?
If your service needs to support legacy clients that expect an ASMX Web service, consider using
basicHttpBinding. Because basicHttpBinding does not implement any security by default, if you
require message or transport security, you should configure it explicitly on this binding. Use
basicHttpBinding to expose endpoints that are able to communicate with ASMX-based Web
services and clients and other services that conform to the WS-I Basic Profile 1.1. When
configuring transport security, basicHttpBinding defaults to no credentials just like a classic
ASMX web service. BasicHttpBinding allows you to host your service in IIS 5.0 or IIS 6.0.

If your service will be called by WCF clients over the Internet, consider using wsHttpBinding.
wsHttpBinding is a good choice for Internet scenarios in which you do not have to support legacy
clients that expect an ASMX Web service. If you do need to support legacy clients, consider
using basicHttpBinding instead. WsHttpBinding allows you to host your service in IIs 5.0 or IIS 6.0.

If you need to support clients within your intranet, consider using netTcpBinding. netTcpBinding
is a good choice for the intranet scenario if transport performance is important to you and it is
acceptable to host the service in a Windows service instead of in IIS. The netTcpBinding uses the
TCP protocol and provides full support for SOAP security, transactions, and reliability. Use this
binding when you want to provide a secure and reliable binding environment for .NET-to-.NET
cross-machine communication. NetTcpBinding does not allow you to host your service in IIS 5.0
or IIS 6.0; instead, host in a Windows service or in IIS 7.0.

If you need to support WCF clients on the same machine as your service, consider using
netNamedPipeBinding. This binding provides a secure and reliable binding environment for
cross-process, same-machine communication. Use this binding when you want to make use of
the NamedPipe protocol and provide full support for SOAP security, transactions, and reliability.
NetNamedPipeBinding does not allow you to host your service in IIS 5.0 or IIS 6.0; instead, host in
a Windows service or in IIS 7.0.

If you need to support disconnected queuing, use netMsmqBinding. Queuing is provided by
using Microsoft Message Queuing (MSMQ) as a transport, which enables support for
disconnected operations, failure isolation, and load leveling. You can use netMsmqBinding when
the client and the service do not have to be online at the same time. You can also manage any
number of incoming messages by using load leveling. MSMQ supports failure isolation, where
messages can fail without affecting the processing of other messages. NetMsmqBinding does not
allow you to host your service in IIS 5.0 or IIS 6.0; instead host in a Windows service or in IIS 7.0.

If you need to support a duplex service, use wsDualHttpBinding. A duplex service is a service that
uses duplex message patterns, thus providing the ability for a service to communicate back to

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 440

the client via a callback. You can also use this binding to support communication via SOAP
intermediaries. WsDualHttpBinding does not allow you to host your service in IIS 5.0 or IIS 6.0;
instead, host in a Windows service or in IIS 7.0.

Additional Resources
For more information on bindings, see “Windows Communication Foundation Bindings” at
http://msdn2.microsoft.com/en-us/library/ms733027.aspx

Configuration Management
• How do I encrypt sensitive data in the WCF configuration file?
• How do I run a WCF service with a particular identity?
• How do I create a service account for running my WCF service?
• When should I use a configuration file versus the WCF object model?
• What is a metadata exchange (MEX) binding?
• How do I keep clients from referencing my service?

How do I encrypt sensitive data in the WCF configuration file?
Use the aspnet_regiis.exe tool with the -pe (provider encryption) option to encrypt sections of
the configuration files.

For example, to encrypt the connectionStrings section, using the Windows Data Protection API
(DPAPI) provider with the machine key store (the default configuration), run the following
command from a command prompt:

aspnet_regiis -pe "connectionStrings" -app "/MachineDPAPI"
-prov "DataProtectionConfigurationProvider"

The configuration options for aspnet_regiis are:

• -pe specifies the configuration section to encrypt.
• -app specifies your Web application's virtual path. If your application is nested, you

need to specify the nested path from the root directory; for example,
"/test/aspnet/MachineDPAPI"

• -prov specifies the provider name.

The .NET Framework supports the RSAProtectedConfigurationProvider and
DPAPIProtectedConfigurationProvider protected configuration providers:

• RSAProtectedConfigurationProvider – This is the default provider and uses RSA public
key encryption to encrypt and decrypt data. Use this provider to encrypt configuration
files for use on multiple WCF services in a Web farm.

• DPAPIProtectedConfigurationProvider – This provider uses DPAPI to encrypt and
decrypt data. Use this provider to encrypt configuration files for use on a single
Microsoft Windows Server®.

You do not need to take any special steps for decryption beause the .NET run time takes care of
this for you.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 441

Additional Resources
• For more information on the aspnet_regiis tool, see “ASP.NET IIS Registration Tool

(Aspnet_regiis.exe)“ at http://msdn.microsoft.com/en-us/library/k6h9cz8h(VS.80).aspx
• For more information on encrypting configuration sections, see “How To: Encrypt

Configuration Sections in ASP.NET 2.0 Using DPAPI” at http://msdn2.microsoft.com/en-
us/library/ms998280.aspx and “How To: Encrypt Configuration Sections in ASP.NET 2.0
Using RSA” at http://msdn2.microsoft.com/en-us/library/ms998283.aspx

How do I run a WCF Service with a particular identity?
If your service is hosted in IIS 6.0, use IIS Manager to create an application pool running as a
specific identity and then use IIS Manager to assign your WCF service to that application pool.

If your service is hosted in a Windows service, configure the Windows service to run using a
particular identity. The WCF service will run under the security context of the Windows service.

Running a WCF service with a specific identity helps to isolate your service, allows you to
restrict service resources to your application's account, and allows you to use Windows auditing
to track the activity of the application separately from other applications or services.

How do I create a service account for running my WCF Service?
Perform the following steps to create a service account to run your WCF service:

1. Create a Windows account
2. Run the following aspnet_regiis.exe command to assign the relevant ASP.NET

permissions to the account:
aspnet_regiis.exe -ga machineName\userName

Note: This step is required when your application needs to run in ASP.NET compatibility
mode; otherwise, you can skip this step.

3. Use the Local Security Policy tool to grant the Windows account the Deny logon locally
user right. This reduces the privileges of the account and prevents anyone from logging
onto Windows locally with this account.

Additional Resources
For more information on the aspnet_regiis tool, see “ASP.NET IIS Registration Tool
(Aspnet_regiis.exe)“ at http://msdn.microsoft.com/en-us/library/k6h9cz8h(VS.80).aspx

When should I use a configuration file versus the WCF object model?
In general, you should configure your WCF service and clients using the web.config or
app.config files. Using configuration files allows you to change transport, security, and other
settings without having to rewrite and recompile your code. Object model code will override
configuration settings, so you can use a combination of both if necessary.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 442

What is a metadata exchange (MEX) binding?
A metadata exchange endpoint publishes the metadata for the service. The service metadata is
consumed by clients to create a proxy and then call the service. The endpoint supports a
standard for exchanging the metadata; WCF provides the implementation in the form of
IMetadataExchange.

As with any other endpoint, the metadata endpoint consists of address, contract, and binding.
The metadata bindings are the means for the clients to interact with the service and get the
metadata for generating the proxies.

Several out-of-box bindings such as MexHttpBinding, MexHttpsBinding, and MexTcpbinding are
available tosupport specific protocols.

Additional Resources
For more information on publishing metadata endpoints,see “Publishing Metadata Endpoints”
at http://msdn.microsoft.com/en-us/library/ms788760.aspx

How do I keep clients from referencing my service?
To stop your service from publishing metadata, remove all the Mex endpoints from your service
configuration and configure HttpGetEnabled and HttpsGetEnabled to False in the ServiceBehavior
section, as shown below:

 <serviceMetadata httpGetEnabled="False" httpsGetEnabled="False"/>

Additional Resources
For more information on publishing metadata endpoints, see “Publishing Metadata Endpoints”
at http://msdn.microsoft.com/en-us/library/ms788760.aspx

Deployment Considerations
• What are the additional considerations for using WCF in a Web farm?
• How do I configure Active Directory groups and accounts for role-based authorization

checks?
• How do I create an X.509 certificate?
• When should I use a service principal name (SPN)?
• How do I configure a least-privileged account for my service?

What are the additional considerations for using WCF in a Web farm?
When hosting your WCF service in a Web farm, use RSA instead of DPAPI to encrypt your
configuration files. RSA is a better choice because it is easier to export RSA key containers and
transport them between servers.
If your WCF services are hosted in an IIS Web farm in which multiple servers are addressed
using the same endpoint URL, you will need to configure the default identity in IIS to use an
explicit hostname.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 443

Additional Resources
For more information on WCF hosting best practices, see “Internet Information Services
Hosting Best Practices” at http://msdn2.microsoft.com/en-us/library/aa751802.aspx

How do I configure Active Directory groups and accounts for role-based
authorization checks?
You do not need to do anything special to configure Active Directory groups and accounts for
WCF role-based authorization checks. You can use them directly for either declarative or
programmatic authorization.

The following is an example of a declarative authorization check using an Active Directory group
in WCF:
[PrincipalPermission(SecurityAction.Demand, Role = "accounting")]
public double Add(double a, double b)
{
 return a + b;
}

The following is an example of a programmatic authorization check using an Active Directory
group in WCF:
WindowsPrincipal myPrincipal = new
WindowsPrincipal(ServiceSecurityContext.Current.WindowsIdentity);
if(myPrincipal.IsInRole(@"domain\Accounting"))
{
//authorized
}
else
{
//not authorized
}

Additional Resources
• For more information on authorization, see “Authorization” at

http://msdn2.microsoft.com/en-us/library/ms733071.aspx
• For Roles.IsUserInRole method information, see “Roles.IsUserInRole Method (String)” at

http://msdn.microsoft.com/en-us/library/4z6b5d42.aspx

How do I create an X.509 certificate?
In a production environment, use an X.509 certificate issued by a Certificate Authority (CA) such
as VeriSign. In a development environment, use the MakeCert utility to create a temporary
X.509 certificate.

For more information, see “How To - Create and Install Temporary Certificates in WCF for
Message Security During Development” and “How To - Create and Install Temporary
Certificates in WCF for Transport Security During Development.”

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 444

Note: Do not use temporary development certificates in a production environment as this will
open your communication channel to malicious spoofing, sniffing, and tampering.

Additional Resources
• For more information on working with certificates in WCF, see “Working with

Certificates” at http://msdn.microsoft.com/en-us/library/ms731899.aspx
• For more information on mapping certificates to Windows accounts, see “Map

certificates to user accounts” at
http://technet2.microsoft.com/WindowsServer/f/?en/library/0539dcf5-82c5-48e6-
be8a-57bca16c7e171033.mspx

• For more information on mapping certificates to Active Directory, see “Mapping Client
Certificates with Directory Service Mapping” at
http://technet2.microsoft.com/windowsserver/en/library/7cce4299-28f2-45fa-8730-
4e0cbe3be8561033.mspx?mfr=true

• For more information on certificate mapping strategies, see “Mapping Strategies” at
http://technet2.microsoft.com/windowsserver/en/library/aa61c564-1599-4414-a12d-
2f64786f6ec31033.mspx?mfr=true

When should I use a service principal name (SPN)?
You will need to use an SPN under the following conditions:

• If you are using a custom domain account in the identity pool for your WCF application,
create an SPN for Kerberos to authenticate the client.

• If you are using a custom service account and need to use trusted for delegation, create
an SPN.

• If you are hosting your service in a Windows service, using a custom domain identity,
and ASP.NET needs to use constrained trusted for delegation when calling the service,
create an SPN.

Additional Resources
For more information on SPN, see “Setspn Overview” at
http://technet2.microsoft.com/windowsserver/en/library/b3a029a1-7ff0-4f6f-87d2-
f2e70294a5761033.mspx?mfr=true

How do I configure a least-privileged account for my service?
Perform the following steps to create a least-privileged account for your service:

1. Create a Windows account.
2. Run the following aspnet_regiis.exe command to assign the relevant ASP.NET

permissions to the account:
aspnet_regiis.exe -ga machineName\userName

3. If your application needs to run in ASP.NET compatibility mode, use the Local Security
Policy tool to grant the Windows account the Deny logon locally user right. This reduces

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 445

the privileges of the account and prevents anyone logging onto Windows locally with
this account. Otherwise, skip this step.

4. Use the least-privileged account to run your WCF service:
o If your service is hosted in IIS 6.0, use IIS Manager to create an application pool

running as an account identity. Use IIS Manager to assign your WCF service to
that application pool.

o If your service is hosted in Windows service, configure the Windows service to
run using the account identity. The WCF service will run under the security
context of the Windows service.

Additional Resources
• For more information on the aspnet_regiis tool, see “ASP.NET IIS Registration Tool

(Aspnet_regiis.exe)“ at http://msdn.microsoft.com/en-us/library/k6h9cz8h(VS.80).aspx

Exception Management
• How do I implement a global exception handler?
• What is a fault contract?
• How do I define a fault contract?
• How do I avoid sending exception details to the client?

How do I implement a global exception handler?
To implement a global exception handler, subscribe to the Faulted event of a service host
object. When you receive the faulted event, you can determine the cause of a failure and
perform the necessary actions to abort or restart the service.

The following code snippet shows how to subscribe to the Faulted event:

// hosting a WCF service
ServiceHost customerServiceHost;
customerServiceHost = new ServiceHost(…);
…
// Subscribe to the Faulted event of the customerServiceHost object
customerServiceHost.Faulted += new EventHandler(faultHandler);
…
// FaultHandler method - invoked when customerServiceHost enters the
Faulted state
void faultHandler(object sender, EventArgs e)
{ // log the reasons for the fault ..

}

Additional Resources
For more information about exceptions, see “Exceptions Reference” at
http://msdn2.microsoft.com/en-us/library/ms733763.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 446

What is a fault contract?
A fault contract is a message contract that details the set of exceptions that may be reported to
the caller. You can specify the possible faults that can occur in you WCF service. This prevents
exposing exception details beyond the defined set to your clients. Because a fault contract lists
the types of errors that a WCF service can throw, it also allows your clients to distinguish
between contracted faults and other possible errors.

A fault contract can be set on an operation in your service like this:

[ServiceContract]
interface ICalculator
{
 [OperationContract]
 [FaultContract(typeof(DivideByZeroException))]
 double Divide(double number1,double number2);
}

Additional Resources
For more information on exceptions, see “Exceptions Reference” at
http://msdn2.microsoft.com/en-us/library/ms733763.aspx

How do I define a fault contract?
To define a fault contract, apply the FaultContract attribute directly on a contract operation,
specifying the error detailing type as shown below:
[ServiceContract]
interface ICalculator
{

 [OperationContract]
 [FaultContract(typeof(DivideByZeroException))]
 double Divide(double number1,double number2);

}

In this example, the FaultContract attribute is limited to the Divide method. This means only that
method can throw that fault and have it propagated to the client. Also, the service must throw
exactly the same detailing type listed in the fault contract to propagate the exception, as shown
below:
class MyService : ICalculator
{
 public double Divide(double number1,double number2)
 {

 throw new FaultException<DivideByZeroException>(new
DivideByZeroException());
 }
}

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 447

Additional Resources
For more information on exceptions, see “Exceptions Reference” at
http://msdn2.microsoft.com/en-us/library/ms733763.aspx

How do I avoid sending exception details to the client?
To avoid sending potentially sensitive exception details to the client, use the FaultContract
attribute in a service contract to specify the possible faults that can occur in your WCF service.

The following code snippet shows how to use the FaultContract attribute to return error
information:
1. Define the type to pass the details of SOAP faults as exceptions from a service back to a
client.

[DataContract]
public class DatabaseFault
{
 [DataMember]
 public string DbOperation;
 [DataMember]
 public string DbReason
 [DataMember]
 public string DbMessage;
}

2. Use the FaultContract attribute in the ListCustomers method to generate SOAP faults.

[ServiceContract]
public interface ICustomerService
{
 // Get the list of customers
 [FaultContract(typeof(DatabaseFault))]
 [OperationContract]
 List<string> ListCustomers();
 …

}

3. Create and populate the DatabaseFault object with the details of the exception in the Service
implementation class and then throw a FaultException object with the DatabaseFault object
details.

catch(Exception e)
{ DatabaseFault df = new DatabaseFault();
 df.DbOperation = "ExecuteReader";
 df.DbReason = "Exception in querying the Northwind database.";
 df.DbMessage = e.Message;
 throw new FaultException<DatabaseFault>(df);
}

Additional Resources
• For more information on exceptions, see “Exceptions Reference” at

http://msdn2.microsoft.com/en-us/library/ms733763.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 448

Hosting
• How do I configure a least-privileged account to host my service?
• When should I host my service in IIS?
• When should I host my service in a Windows service?
• When should I self-host my service?

How do I configure a least-privileged account to host my service?
Perform the following steps to create a least-privileged account for your service:

1. Create a Windows account.
2. Run the following aspnet_regiis.exe command to assign the relevant ASP.NET

permissions to the account:
aspnet_regiis.exe -ga machineName\userName

3. If your application needs to run in ASP.NET compatibility mode, use the Local Security
Policy tool to grant the Windows account the Deny logon locally user right. This reduces
the privileges of the account and prevents anyone from logging onto Windows locally
with this account. Otherwise, skip this step.

4. Use the least-privileged account to run your WCF service:
o If your service is hosted in IIS 6.0, use IIS Manager to create an application pool

running as an account identity. Use IIS Manager to assign your WCF service to
that application pool.

o If your service is hosted in a Windows service, configure the Windows service to
run using the account identity. The WCF service will run under the security
context of the Windows service.

Additional Resources
• For more information about hosting, see “Hosting” at http://msdn2.microsoft.com/en-

us/library/ms729846.aspx
• more information on the aspnet_regiis tool, see “ASP.NET IIS Registration Tool

(Aspnet_regiis.exe)“ at http://msdn.microsoft.com/en-us/library/k6h9cz8h(VS.80).aspx
• For more information on running IIS under a least-privileged service account, see “How

To: Create a Service Account for an ASP.NET 2.0 Application” at
http://msdn2.microsoft.com/en-us/library/ms998297.aspx

When should I host my service in IIS?
Use IIS to host your WCF service, unless you need to use a transport that IIS does not support.
IIS provides a large number of features for efficient service management and scalability. By
using IIS as your WCF service host, you can take full advantage of IIS features such as process
recycling, idle shutdown, process health monitoring, and message-based activation.

IIS 5.0 and 6.0 only support bindings over HTTP, so if you need to use TCP, MSMQ, or named
pipes, you should host in a Windows service instead.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 449

IIS 7.0 supports all the commonly used transport protocols such as HTTP, TCP, MSMQ, and
named pipes.

Additional Resources
• For more information, see “Hosting” at http://msdn2.microsoft.com/en-

us/library/ms729846.aspx

When should I host my service in a Windows service?
You should use a Windows service when you have to support transports such as TCP, MSMQ,
and named pipes and you don’t yet have IIS 7.0. Windows services offer advantages over self-
hosting in that they give the benefit of automatic startup; service lifetime is controlled by the
operating system; it is easier to run under a least-privileged account; and the Windows service
host will restart your service if it fails. Windows services can be managed in the Service Control
Manager in the Microsoft Management Console (MMC).

The drawback of using a Windows service compared to IIS is that Windows services have
limited features to support availability, manageability, and deployment, so you will have to
write custom code to support these features. For instance, you will need to add an installer to
your service so that it can be installed on the system.

Additional Resources
For more information, see “Hosting” at http://msdn2.microsoft.com/en-
us/library/ms729846.aspx

When should I self-host my service?
Self-hosting should only be used for development and demonstration purposes because it is not
suitable for a production scenario. Similar to using a Windows service, self-hosting can be used
with any transport and therefore provides binding flexibility beyond the capabilities of IIS 5.0 or
IIS 6.0. Self-hosting is also the easiest hosting mechanism to get up and running, furthering its
usefulness in a development environment. The drawback of self-hosting compared to a
Windows service is that service lifetime is controlled by the self-hosted application rather than
by the operating system, which makes it harder to run under a least-privileged account, and
there is no automatic recovery in the case of failure.

Additional Resources
For more information, see “Hosting” at http://msdn2.microsoft.com/en-
us/library/ms729846.aspx

Impersonation/Delegation
• What are my impersonation options?
• What is the difference between impersonation and delegation?
• How do I impersonate the original caller for an operation call?
• How do I temporarily impersonate the original caller in an operation call?

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 450

• How do I impersonate a specific (fixed) identity?
• What is constrained delegation?
• What is protocol transition?
• How do I flow the original caller from the ASP.NET client to a WCF service?
• What is the difference between declarative and programmatic impersonation?
• What is the trusted subsystem model?
• When should I flow the original caller to back-end code?
• How do I control access to a remote resource based on the original caller’s identity?

What are my impersonation options?
There are three options for impersonation:

1. Impersonating the original caller declaratively on specific operations. Use this option
when you want to impersonate the original caller for the entire duration of a specific
operation.

2. Impersonating the original caller declaratively on the entire service. Use this option
when you want to impersonate the original caller for the entire duration of all
operations in the service.

3. Impersonating the original caller programmatically within an operation. Use this
option when you want to impersonate the original caller for a short duration in a service
operation.

Additional Resources
For more information, see “Delegation and Impersonation with WCF” at
http://msdn2.microsoft.com/en-us/library/ms730088.aspx

What is the difference between impersonation and delegation?
Impersonation flows the original caller’s identity to back-end resources on the same computer.
Delegation flows the original caller’s identity to back-end resources on computers other than the
computer running the service.

For example, if a service is running within IIS without impersonation, the service will access
resources using the ASPNET account in IIS 5.0, or the NetworkService account in IIS 6.0. With
impersonation, if the client is connecting using the original caller’s account, the service will
access resources such as a SQL Server database on the same machine using the original caller’s
account instead of the system ASPNET account. Delegation is similar except that the SQL Server
database could be on a different machine that is remote to the service.

Additional Resources
For more information, see “Delegation and Impersonation with WCF” at
http://msdn2.microsoft.com/en-us/library/ms730088.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 451

How do I impersonate the original caller for an operation call?
Because impersonation is a costly operation and is usually used for higher-privileged original
callers, you should use impersonation only on operations that need it to reduce the potential
attack surface.

You can impersonate declaratively by applying the OperationBehaviorAttribute attribute on any
operation that requires client impersonation, as shown in the following code example:
[OperationBehavior(Impersonation = ImpersonationOption.Required)]
public string GetData(int value)
{
 return “test”;
}

Additional Resources
For more information, see “Delegation and Impersonation with WCF” at
http://msdn2.microsoft.com/en-us/library/ms730088.aspx

How do I temporarily impersonate the original caller in an operation call?
Because impersonation is a costly operation and is usually used for higher-privileged original
callers, you should use impersonation only when it is needed to reduce the potential attack
surface. Programmatic impersonation allows you to impersonate on specific lines of code
rather than the entire operation.

You can use programmatic impersonation to temporarily impersonate the original caller in an
operation call, as shown in the following example:
public string GetData(int value)
{
 using (ServiceSecurityContext.Current.WindowsIdentity.Impersonate())
 {
 // return the impersonated user (original users identity)
 return string.Format("Hi, {0}, you have entered: {1}",
 WindowsIdentity.GetCurrent().Name, value);
 }
}

In the above example, the using statement is employed to ensure that the impersonation is
reverted after execution of the using block. It is important to revert impersonation because
failure to do so can form the basis for denial of service (DoS) and elevation of privilege attacks.

Additional Resources
For more information, see “Delegation and Impersonation with WCF” at
http://msdn2.microsoft.com/en-us/library/ms730088.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 452

How do I impersonate a specific (fixed) identity?
Use the WindowsIdentity class to obtain a Windows token and logon session for a given domain
account by supplying a user principal name (UPN). With this approach, you do not need the
account's password.

using System.Security.Principal;
…
WindowsIdentity wi = new
WindowsIdentity(userName@fullyqualifieddomainName);
WindowsImpersonationContext ctx = null;

try
{
 ctx = wi.Impersonate();
 // Thread is now impersonating you can call the backend operations
here...

catch
{
 // Prevent exceptions propagating.
}
finally
{
 // Ensure impersonation is reverted
 ctx.Undo();
}

Note: The WindowsIdentity constructor relies on a Windows Server 2003 extension to the
Kerberos protocol called Service for User to Self (S4U2Self). You can use this approach if your
application runs on a Windows Server 2003 server in a Windows Server 2003 domain. The
advantage of this approach is that you do not have to store credentials as you do for
LogonUser.

Additional Resources
• For more information, see “Delegation and Impersonation with WCF” at

http://msdn2.microsoft.com/en-us/library/ms730088.aspx

What is constrained delegation?
Impersonation is a WCF service configuration in which the service will access resources on the
same computer using a client’s user identity. Delegation is similar to impersonation except that
the WCF service can access resources that are on the same machine or on other machines using
the client’s user identity. Delegation flows the original caller’s identity to back-end resources on
the computers other than the computer running the service.

The Microsoft Windows Server 2003 operating system provides a more secure form of
delegation called constrained delegation. With constrained delegation, you can configure the
Microsoft Active Directory service to restrict the services and servers that your WCF service

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 453

application can access with the impersonated identity. Constrained delegation in Windows
Server 2003 requires Kerberos authentication.

Additional Resources
• For more information, see “Delegation and Impersonation with WCF” at

http://msdn2.microsoft.com/en-us/library/ms730088.aspx

What is protocol transition?
Protocol transition is a Windows Server 2003 feature that allows you to switch from an
alternate, non-Windows authentication mode (such as forms-based or certificate
authentication) to Kerberos authentication. This is useful when your application cannot use
Kerberos authentication to authenticate its callers, and when your application needs to use
constrained delegation to access downstream network resources.

Additional Resources
• For more information, see “Delegation and Impersonation with WCF” at

http://msdn2.microsoft.com/en-us/library/ms730088.aspx

How do I flow the original caller from the ASP.NET client to a WCF service?
The following steps show how to impersonate the original caller from the ASP.NET client to a
WCF service:

1. Configure your WCF service to use Windows authentication.
…
<services>
 <service name="Service" behaviorConfiguration="ServiceBehavior">
 <endpoint address="" binding="wsHttpBinding" contract="IService">
 <identity>
 <dns value="localhost"/>
 </identity>
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
 contract="IMetadataExchange"/>
 </service>
</services>
…

2. Configure the SPN identity for the WCF service endpoint.
 <endpoint address="" binding="wsHttpBinding" contract="IService">
 <identity>
 <servicePrincipalName value="HOST/YourMachineName" />
 <dns value="" />
 </identity>
 </endpoint>

3. Implement impersonation in the WCF service.

using System.Security.Principal;
[OperationBehavior(Impersonation = ImpersonationOption.Required)]
 public string GetData(int value)
 {
 return string.Format("Hi, {0}, you have entered: {1}",

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 454

 WindowsIdentity.GetCurrent().Name, value);
 }

4. Create a Web application test client and add the WCF service reference.
5. Impersonate the original caller when calling the WCF service.

Using System.Security.Principal;
…
protected void Button1_Click(object sender, EventArgs e)
{
 // Obtain the authenticated user's Identity and impersonate the
original caller
 using
(((WindowsIdentity)HttpContext.Current.User.Identity).Impersonate())
 {
 WCFTestService.ServiceClient myService = new
WCFTestService.ServiceClient();
 Response.Write(myService.GetData(123) + "
");
 myService.Close();
 }
}
…

6. Configure the Web application for constrained delegation.
a. If your ASP.NET application runs using the Network Service machine account,

you must enable constrained delegation for your Web server computer.
b. If your ASP.NET application runs under a custom domain account, you must

enable protocol transition and constrained delegation for the custom domain
account.

7. Test the client and WCF service.

Additional Resources
• For more information on constrained delegation, see “How To: Use Protocol Transition

and Constrained Delegation in ASP.NET 2.0” at http://msdn2.microsoft.com/en-
us/library/ms998355.aspx

What is the difference between declarative and programmatic
impersonation?
Impersonation is used to restrict or authorize the original caller’s access to a WCF service’s
local resources, such as files. Use declarative impersonation to define impersonation at the
operation or service level.

Impersonate declaratively by applying the OperationBehaviorAttribute attribute on any
operation that requires client impersonation, as shown in the following code example:
[OperationBehavior(Impersonation = ImpersonationOption.Required)]
public string GetData(int value)
{
 return “test”;
}

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 455

Use programmatic impersonation to define finer-grained impersonation based on business
logic. Programmatic impersonation is specified in code and applied at run time.

Programmatic impersonation can be performed as shown in the following example:
public string GetData(int value)
{
 using (ServiceSecurityContext.Current.WindowsIdentity.Impersonate())
 {
 // return the impersonated user (original users identity)
 return string.Format("Hi, {0}, you have entered: {1}",
 WindowsIdentity.GetCurrent().Name, value);
 }
}

Additional Resources
• For more information, see “Delegation and Impersonation with WCF” at

http://msdn2.microsoft.com/en-us/library/ms730088.aspx

What is the trusted subsystem model?
A trusted subsystem describes an architecture in which an upstream tier is trusted to authenticate and
authorize the original caller for downstream components. For instance, a database server trusts the
web application to authenticate users and then all calls from the web application to the
database server are made with the web application’s identity instead of the original caller’s
identity. In this model, the web application identity is trusted to make calls on behalf of the
original caller.

The advantages of the trusted subsystem model include support for efficient connection
pooling, no direct data access because only the service account is granted access to the back-
end resources, and minimal back-end access control list (ACL) management.

Additional Resources
• For more information see “Trusted Subsystem” at http://msdn.microsoft.com/en-

us/library/ms730288.aspx

When should I flow the original caller to back-end code?
Flow the original caller to back-end code when you need to authorize access to resources based
on the original caller’s identity, or when the back-end code needs to perform roles-based
authorization.

Additional Resources
• For more information, see “Delegation and Impersonation with WCF” at

http://msdn2.microsoft.com/en-us/library/ms730088.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 456

How do I control access to a remote resource based on the original caller’s
identity?
Use delegation to flow the impersonated original user's security context (Windows identity) to
the remote back-end service. On the remote back-end service, the original user’s windows
identity can be used to authenticate or impersonate the original caller in order to restrict or
authorize the original caller’s access to local resources.

When using delegation on Windows Server 2003 or later, use constrained delegation. This
allows administrators to specify exactly which services on a downstream server or a domain
account can be accessed when using an impersonated user’s security context.

Additional Resources
• For more information, see “Delegation and Impersonation with WCF” at

http://msdn2.microsoft.com/en-us/library/ms730088.aspx

Input/Data Validation
• How do I implement input and data validation in WCF?
• What is schema validation?
• What is parameter validation?
• Should I validate before or after message serialization?
• How do I protect my service from denial of service (DoS) attacks?
• How do I protect my service from malicious input attacks?
• How do I protect my service from malformed messages?

How do I implement input and data validation in WCF?
If you need to validate operations that do not accept message or data contracts, use parameter
inspectors. Parameter inspectors provide a convenient mechanism to process service method
invocations when they are in a parameterized form. Parameter inspectors allow pre- and post-
processing of messages through the use of custom validators. Unlike using a schema for
validation, a custom validator requires you to write your own custom validation code.

If your service has operations that accept message or data contracts, use schemas to validate
your messages. Message validation provides a way to validate messages when operations
consume message contracts or data contracts that are not possible to validate using parameter
validation. Message validation allows the creation of validation logic inside the schemas,
thereby providing more flexibility and reducing development time. Schema validation occurs
before serializing or encrypting the message. In order to reduce development time, you can
start by using the service.xsd schema file that is generated when you add a service reference to
your client.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 457

What is schema validation?
Schema validation allows you to validate incoming messages against a set of configurable
Extensible Markup Language (XML) Schema documents.
Schema validation is implemented in WCF using message inspectors. Client message inspectors
implement the IClientMessageInspector interface, while service message inspectors implement
the IDispatchMessageInspector interface.

The following steps show you how to perform message validation using schemas:

1. Use the schema.xsd schema file that is created by svcutil.exe when you add a service
reference or create a schema that represents the operations of your service and the
types consumed by those operations.

2. Create a .NET class that implements a custom client message inspector and custom
dispatcher message inspector to validate the messages sent and received by the service.

3. Implement a custom endpoint behavior to enable message validation on both the client
and the service.

4. Implement a custom configuration element on the class that allows you to expose the
extended custom endpoint behavior in the configuration file of the service or the client.

Additional Resources
• For more information, see “Message Inspectors” at http://msdn.microsoft.com/en-

us/library/aa717047.aspx

What is parameter validation?
Parameter validation allows you to inspect and validate incoming or outgoing message
parameters.

You can inspect or modify the incoming or outgoing messages for a single operation on a WCF
client object or WCF service by implementing the
System.ServiceModel.Dispatcher.IParameterInspector interface and inserting it into the client
or service run time.

public class Validation
{
 public class ValidationParameterInspector : IParameterInspector
 {
 public void AfterCall(string operationName, object[] outputs,
object returnValue, object correlationState)
 { … }

 public object BeforeCall(string operationName, object[] inputs)
 { … }
 …

}

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 458

Additional Resources
For more information, see “How to: Inspect or Modify Parameters” at
http://msdn2.microsoft.com/en-us/library/ms733747.aspx

Should I validate before or after message serialization?
When performing schema validation, you will validate before deserialization because you are
validating on the message itself. When performing parameter validation, you will validate after
deserialization because you are validating data parameters within the message.

Additional Resources
• For more information, see “How to: Inspect or Modify Parameters” at

http://msdn2.microsoft.com/en-us/library/ms733747.aspx

How do I protect my service from denial of service (DoS) attacks?
Configure your service with the ServiceThrottlingBehavior class to limit concurrent client calls,
instances, and sessions.

The following example configures the service behavior for serviceThrottling. The three service
throttling behavior attributes are described below.
 <behaviors>
 <serviceBehaviors>
 <behavior name="Throttled">
 <serviceThrottling
 maxConcurrentCalls="1"
 maxConcurrentSessions="1"
 maxConcurrentInstances="1"
 />
 <serviceMetadata
 httpGetEnabled="true"
 httpGetUrl=""
 />
 </behavior>
 </serviceBehaviors>
 </behaviors>

• MaxConcurrentCalls – Gets or sets a value that specifies the maximum number of
messages actively processing across a ServiceHost object.

• MaxConcurrentInstances – Gets or sets a value that specifies the maximum number of
InstanceContext objects in the service that can execute at one time.

• MaxConcurrentSessions – Gets or sets a value that specifies the maximum number of
sessions a ServiceHost object can accept at one time.

How do I protect my service from malicious input attacks?
Check for known good data and constrain input by validating it for type, length, format, and
range. Do not trust any input. An attacker passing malicious input can attempt SQL injection,
cross-site scripting, and other injection attacks that aim to exploit your application’s

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 459

vulnerabilities. If your service has operations that accept message or data contracts, use
schemas to validate your messages. If you need to validate operations that do not accept
message or data contracts, use parameter inspectors.

How do I protect my service from malformed messages?
WCF catches malformed SOAP messages and you can log this event with WCF auditing. If the
envelope is valid but the message fields are malformed in the sense of length, range, format, or
type, you can use schema validation to perform message validation.

To log malformed messages using WCF auditing, set the logMalformedMessages attribute to true
in the <messagelogging> element. Malformed message logging allows you to see any messages
that were rejected by the WCF stack due to validation errors. This can help you determine if
someone is attacking your service with poorly formed SOAP messages.

The following steps briefly show you how to perform message validation using schemas:

1. Use the schema.xsd schema file that is created by svcutil.exe when you add a service
reference or create a schema that represents the operations of your service and the
types consumed by those operations.

2. Create a .NET class that implements a custom client message inspector and custom
dispatcher message inspector to validate the messages sent and received by the service.

3. Implement a custom endpoint behavior to enable message validation on both the client
and the service.

4. Implement a custom configuration element on the class that allows you to expose the
extended custom endpoint behavior in the configuration file of the service or the client.

Message Protection
• When should I use message security?
• When should I use transport security?
• How do I protect my message when there are intermediaries routing my message?
• How do I protect my message when there are multiple protocols used during message

transit?

When should I use message security?
Message security encrypts each individual message to protect sensitive data. Transport security
secures the end-to-end network connection to protect the network traffic.

Use the following criteria to decide whether to use message security:

• Intermediaries – Message security supports scenarios with intermediaries or protocol
transition.

• Encryption flexibility – Message security allows you to encrypt part of a message while
leaving other parts in cleartext format.

• Binding limitations – Message security does not work with netNamedPipeBinding.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 460

• Secure conversations – Secure conversations only works with message security.
• Authentication limitations – Message security does not work with Basic or Digest

authentication.

Additional Resources
• For more information on message protection, see “Message Security in WCF” at

http://msdn2.microsoft.com/en-us/library/ms733137.aspx
• For more information on choosing a transport, see “Choosing a Transport” at

http://msdn2.microsoft.com/en-us/library/ms733769.aspx

When should I use transport security?
Message security encrypts each individual message to protect sensitive data. Transport security
secures the end-to-end network connection to protect the network traffic.

Use the following security criteria to decide whether to use transport security:

• Point-to-point – Transport security supports point-to-point communication and does
not support intermediary scenarios or protocol transition.

• Streaming – Transport security can support streaming data scenarios.
• Binding limitations – Transport security does not work with wsDualHttpBinding.
• Authentication limitations – Transport security does not work with negotiation,

username, or Kerberos direct authentication.
• Performance – Transport security may provide better performance than message

security.

Additional Resources
• For more information on choosing a transport, see “Choosing a Transport” at

http://msdn2.microsoft.com/en-us/library/ms733769.aspx
• For more information on message security, see “Message Security in WCF” at

http://msdn.microsoft.com/en-us/library/ms733137.aspx

How do I protect my message when there are intermediaries routing my
message?
Use message security to protect your message when there are intermediaries routing your
message. Message security protects message contents even if the message must travel
between many points before reaching the intended recipient.

Additional Resources
• For more information on choosing a transport, see “Choosing a Transport” at

http://msdn2.microsoft.com/en-us/library/ms733769.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 461

How do I protect my message when there are multiple protocols used
during message transit?
Use message security to protect your message when there are multiple protocols used during
message transit. Because each individual message is encrypted, message protection is
transport-agnostic and can be used in protocol transition scenarios.

Additional Resources
• For more information on choosing a transport, see “Choosing a Transport” at

http://msdn2.microsoft.com/en-us/library/ms733769.aspx

Proxy Considerations
• When should I use a channel factory?
• When do I need to expose a metadata exchange endpoint for my service?
• How do I avoid proxy spoofing?

When should I use a channel factory?
Use a channel factory when you control both ends of the wire and would rather code directly
against the same common language runtime (CLR) interface instead of manually keeping the
Web Services Descriptive Language (WSDL) interface in sync. Instead of using WSDL as the
shared contract, you use a shared "interface assembly."

When do I need to expose a metadata exchange endpoint for my service?
Expose the metadata exchange (MEX) endpoint to share the service metadata so that client
programs can use the metadata to generate a proxy file to include in their code, in order to call
service objects.

Additional Resources
• For more information on publishing metadata endpoints, see “Publishing Metadata” at

http://msdn2.microsoft.com/en-us/library/aa751951.aspx
• For more information on metadata security considerations, see “Security Considerations

with Metadata” at http://msdn.microsoft.com/en-us/library/ms734741.aspx

How do I avoid proxy spoofing?
Publish your service metadata over HTTPS to protect clients from being spoofed when adding a
service reference. If you expose your service metadata over HTTP, clients cannot be certain that
they have added a reference to the right service – the service may have been spoofed through
DNS poisoning or a man-in-the-middle attack. To publish your service metadata over HTTPS,
use mexHttpsBinding and configure a server certificate for the service.

If you are running your service in a scenario in which mutual authentication has been turned
off, be aware that your service might be spoofed by a malicious attacker. Without mutual

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 462

authentication, calls to your service might be diverted to a malicious service through DNS
poisoning or a man-in-the-middle attack.

The follow scenarios will result in mutual authentication being turned off:

• If you turn off message and transport security on your binding
• If you use basicHttpBinding, which has message and transport security turned off by

default
• If you use NTLM authentication

Additional Resources
For more information on publishing metadata endpoints, see “Publishing Metadata Endpoints”
at http://msdn.microsoft.com/en-us/library/ms788760.aspx

Sensitive Data
• How do I protect sensitive data in configuration files?
• How do I protect sensitive data in memory?
• How do I protect my metadata?
• How do I protect sensitive data from being read on the wire?
• How do I protect sensitive data from being tampered with on the wire?

How do I protect sensitive data in configuration files?
Use the aspnet_regiis.exe tool with the -pe (provider encryption) option to encrypt sections of
the configuration files.
For example, to encrypt the connectionStrings section, using the Windows Data Protection API
(DPAPI) provider with the machine key store (the default configuration), run the following
command from a command prompt:

aspnet_regiis -pe "connectionStrings" -app "/MachineDPAPI"
-prov "DataProtectionConfigurationProvider"

The aspnet_regiis configuration options are:

• -pe specifies the configuration section to encrypt.
• -app specifies your Web application's virtual path. If your application is nested, you

need to specify the nested path from the root directory; for example,
"/test/aspnet/MachineDPAPI"

• -prov specifies the provider name.

The .NET Framework supports the RSAProtectedConfigurationProvider and
DPAPIProtectedConfigurationProvider protected configuration providers:

• RSAProtectedConfigurationProvider. This is the default provider and uses the RSA
public key encryption to encrypt and decrypt data. Use this provider to encrypt
configuration files for use on multiple WCF services in a Web farm.

• DPAPIProtectedConfigurationProvider. This provider uses DPAPI to encrypt and decrypt
data. Use this provider to encrypt configuration files for use on a single Windows Server.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 463

You do not need to take any special steps for decryption because the .NET run time takes care
of this for you.

Additional Resources
• For more information on encrypting a configuration section using DPAPI, see “How To:

Encrypt Configuration Sections in ASP.NET 2.0 Using DPAPI” at
http://msdn2.microsoft.com/en-us/library/ms998280.aspx

• For more information on encrypting a configuration section using RSA, see “How To:
Encrypt Configuration Sections in ASP.NET 2.0 Using RSA” at
http://msdn2.microsoft.com/en-us/library/ms998283.aspx

How do I protect sensitive data in memory?
To minimize exposure of secret data in memory, consider the following measures:

• Avoid creating multiple copies of the secret data because this increases your attack
surface. Pass references to secret data instead of making copies of the data. Also
understand that if you store secret data in immutable objects such as System.String, a
new copy is created after each object manipulation.

• Keep the secret data encrypted for as long as possible. Decrypt the data at the last
possible moment before you need to use the sensitive information it contains.

• Clean the clear text version of the secret data as soon as you are done using it.

You can use the SecureString method to implement the above measures. The value of a
SecureString object is automatically encrypted, can be modified until your application marks it as
read-only, and can be deleted from computer memory by either your application or the .NET
Framework garbage collector.

The following C# code creates an instance of the SecureString class and stores a data value in it.
using System;
using System.Collections.Generic;
using System.Text;

namespace TestSecureString
{
 class Program
 {

static void Main(string[] args)
{
System.Security.SecureString secstr = new
System.Security.SecureString();
secstr.AppendChar('W');
secstr.AppendChar('C');
secstr.AppendChar('F');
secstr.MakeReadOnly();
Console.WriteLine(secstr);
}

 }
}

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 464

An exception is thrown if you attempt to alter the data because the code locks the string value
with the MakeReadOnly method after the final character has been added. Therefore this string
value may not be altered.

How do I protect my metadata?
You can protect the metadata of a service by creating a secure HTTPS GET metadata endpoint
in its configuration. Set the httpsGetEnabled attribute of the <serviceMetadata> element to true
and the httpsGetUrl attribute of the <serviceMetadata> element to the address of your
metadata interface.

The following configuration code shows how to secure the metadata:
 <system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior name="myServiceBehavior">
 <serviceMetadata httpsGetEnabled="true"
httpsGetUrl="https://localhost:1234/calcMetadata" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <services>
 <service behaviorConfiguration="myServiceBehavior"
 name="MySamples.Calculator">
 <endpoint address="http://localhost:8037/Samples/calculator"
 binding="wsHttpBinding" bindingConfiguration=""
 contract="MySamples.ICalculator" />
 </service>
 </services>
 </system.serviceModel>

Additional Resources
• For more information on publishing metadata endpoints, see “Publishing Metadata

Endpoints” at http://msdn.microsoft.com/en-us/library/ms788760.aspx

How do I protect sensitive data from being read on the wire?
Use message or transport security to encrypt your message and keep sensitive information
from being sniffed off the network. Message security encrypts each individual message to
protect sensitive data. Transport security secures the end-to-end network connection to protect
the network traffic.

How do I protect sensitive data from being tampered with on the wire?
Use message or transport security to check the integrity of your message and keep the
messages from being tampered with on the network. Message security checks integrity of each
individual message. Transport security protects the end-to-end network connection to protect
against tampering.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 465

X.509 Certificates
• How do I create X.509 certificates?
• Do I need to create a certificate signed by the root CA certificate?
• How do I use X.509 certificate revocation?

How do I create X.509 certificates?
In a production environment, use an X.509 certificate issued by a certificate authority (CA) such
as VeriSign. In a development environment, use the MakeCert utility to create a temporary
X.509 certificate.

Note: Do not use temporary development certificates in a production environment as this will
open your communication channel to malicious spoofing, sniffing, and tampering.

Additional Resources
• For more information on working with certificates in WCF, see “Working with

Certificates” at http://msdn.microsoft.com/en-us/library/ms731899.aspx
• For more information on creating certificates for message security, see “How To –

Create and Install Temporary Certificates in WCF for Message Security During
Development”

• For more information on creating certificates for message security, see “How To –
Create and Install Temporary Certificates in WCF for Transport Security during
Development”

Do I need to create a certificate signed by the root CA certificate?
In a production environment, you can use an X.509 certificate issued by a CA such as VeriSign,
this will be created off of the certificate authority’s root certificate. In a development
environment, you can create a temporary root certificate and then generate another certificate
signed by the root for use by the service.

Note: Do not use temporary development certificates in a production environment as this will
open your communication channel to malicious spoofing, sniffing, and tampering.

Additional Resources
• For more information on working with certificates in WCF, see “Working with

Certificates” at http://msdn.microsoft.com/en-us/library/ms731899.aspx
• For more information on creating certificates for message security, see “How To –

Create and Install Temporary Certificates in WCF for Message Security During
Development”

• For more information on creating certificates for message security, see “How To –
Create and Install Temporary Certificates in WCF for Transport Security during
Development”

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 466

How do I use X.509 certificate revocation?
By default, WCF services are configured to check certificate revocation when using certificate
authentication. To revoke the certificate used by your service, contact the CA who issued the
certificate and ask them to perform a certificate revocation and issue you a new certificate.

Additional Resources
• For more information on working with certificates in WCF, see “Working with

Certificates” at http://msdn.microsoft.com/en-us/library/ms731899.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 467

How To – Audit and Log Security Events in WCF Calling from
Windows Forms

Applies to
• Microsoft® Windows Communication Foundation (WCF) 3.5
• Microsoft Visual Studio® 2008

Summary
This How To article walks you through the process of auditing and logging security
events. The article shows you how to configure a WCF service for Auditing, Message
Logging, and Tracing, and how to use the SvcTraceViewer tool to view the log files.

Contents
• Objectives
• Overview
• Summary of Steps
• Step 1 – Create a Sample WCF Service
• Step 2 – Enable Auditing for Your WCF Service
• Step 3 – Enable Logging and Tracing for Your WCF Service
• Step 4 – Create a Windows Forms Test Client Application
• Step 5 – Add a WCF Service Reference to the Client
• Step 6 – Test the Client and WCF Service
• Step 7 – Verify the Service Events in the Event Log
• Step 8 – Trace the Log File Using the SvcTraceViewer
• Additional Resources

Objectives
• Learn to configure Auditing.
• Learn to configure Message Logging and Tracing.
• Learn to log the service events in the Event Log.
• Learn to use the SvcTraceViewer tool.

Overview
WCF Auditing allows you to audit security events such as authentication and
authorization failures.WCF service auditing can allow you to detect an attack that has
occurred or is in progress. In addition, auditing can help you debug security‐related
problems.
WCF Message Logging allows you to log malformed Simple Object Access Protocol
(SOAP) messages or to trace incoming messages. It allows you to specify different
logging levels that you can use to diagnose and analyze your applications in case of any
problems.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 468

In this How To article, you will create a sample WCF service in Visual Studio 2008. You
will then configure the service to enable Auditing, Logging, and Tracing through the use
of the WCF Configuration Editor. Next, you will create a test client to verify the security
events in the Event Log. Finally, you will use the SvcTraceViewer tool to view and
examine the log and trace files.

Summary of Steps
• Step 1 – Create a Sample WCF Service
• Step 2 – Enable Auditing for Your WCF Service
• Step 3 – Enable Logging and Tracing for Your WCF Service
• Step 4 – Create a Windows Forms Test Client Application
• Step 5 – Add a WCF Service Reference to the Client
• Step 6 – Test the Client and WCF Service
• Step 7 – Verify the Service Events in the Event Log
• Step 8 – Trace the Log File Using the SvcTraceViewer

Step 1 – Create a Sample WCF Service
In this step, you create a WCF service in Visual Studio.

1. In Visual Studio, on the menu, click File ‐> New Web Site.
2. In the Templates section, select WCF Service. Make sure that the Location is set

to Http and specify the virtual directory to be created in the Path (e.g.,
http://localhost/WCFTestService).

3. In the New Web Site dialog box, click OK to create a virtual directory and a
sample WCF service.

4. Browse to your WCF service (i.e., http://localhost/WCFTestService/Service.svc).
You should see details of your WCF service.

Step 2 – Enable Auditing for Your WCF Service
In this step, you configure the WCF service to use Security Auditing.

1. In the Configuration Editor, expand the Advanced node and then expand the
Service Behaviors folder.

2. Select the default behavior "ServiceBehavior".
3. In the Behavior: ServiceBehavior section, click Add.
4. In the Adding Behavior Element Extension Sections dialog box, select

serviceSecurityAudit and then click Add.
5. In the Configuration section, under Service Behaviors, select the

serviceSecurityAudit option.
6. Set the AudtiLogLocation attribute to by Application by choosing this option

from the drop‐down list.
7. Set the MessageAuthenticationAuditLevel attribute to SuccessOrFailure by

choosing this option from the drop‐down list.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 469

8. Set the ServiceAuthorizationAuditLevel attribute to SuccessOrFailure by
choosing this option from the drop‐down list.

9. In the Configuration Editor, on the File menu, click Save.
10. In Visual Studio, verify your configuration. The configuration should look as

follows:

…
<behaviors>
 <serviceBehaviors>
 <behavior name="ServiceBehavior">
 <serviceMetadata httpGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="false" />
 <serviceSecurityAudit auditLogLocation="Application"
serviceAuthorizationAuditLevel="SuccessOrFailure"

 messageAuthenticationAuditLevel="SuccessOrFailure" />
 </behavior>
 </serviceBehaviors>
</behaviors>
…

Step 3 – Enable Logging and Tracing for Your WCF Service
In this step, you configure the WCF service to use Message Logging and Tracing.

Configure Logging

1. In the Configuration Editor, select the Diagnostics node.
2. In the right pane, click Enable MessageLogging.

This will create ServiceModelMessageLoggingListener and
System.ServiceModel.MessageLogging nodes under the Listeners and Sources
folders, respectively.

3. In the left pane, select MessageLogging under the Diagnostics node.
4. Set the LogMessagesAtServiceLevel attribute to True by choosing this option

from the drop‐down list.
5. In the left pane, select ServiceModelMessageLoggingListener under the

Listeners node.
Note the default value of the InitData attribute, which is set to
c:\inetpub\wwwroot\WCFService\web_messages.svclog, the location where the
message will be logged.

Configure Tracing

1. In the Configuration Editor, select the Diagnostics node.
2. In the right pane, click Enable Tracing.

This will create ServiceModelTraceListener and System.ServiceModel nodes
under the Listeners and Sources folders, respectively.

3. In the left pane, select ServiceModeTraceListener under the Listeners node.
Note the default value of the InitData attribute, which is set to

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 470

c:\inetpub\wwwroot\WCFService\web_tracelog.svclog, the location where the
trace message will be logged.

4. In the Configuration Editor, on the File menu, click Save.
5. In Visual Studio, verify your configuration. The configuration should look as

follows:
…
<configuration>
<system.diagnostics>
 <sources>
 <source name="System.ServiceModel.MessageLogging"
switchValue="Warning, ActivityTracing">
 <listeners>
 <add type="System.Diagnostics.DefaultTraceListener"
name="Default">
 <filter type="" />
 </add>
 <add name="ServiceModelMessageLoggingListener">
 <filter type="" />
 </add>
 </listeners>
 </source>
 <source name="System.ServiceModel" switchValue="Warning,
ActivityTracing"
 propagateActivity="true">
 <listeners>
 <add type="System.Diagnostics.DefaultTraceListener"
name="Default">
 <filter type="" />
 </add>
 <add name="ServiceModelTraceListener">
 <filter type="" />
 </add>
 </listeners>
 </source>
 </sources>
 <sharedListeners>
 <add
initializeData="c:\inetpub\wwwroot\WCFService\web_messages.svclog
"
 type="System.Diagnostics.XmlWriterTraceListener, System,
Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"
 name="ServiceModelMessageLoggingListener"
traceOutputOptions="Timestamp">
 <filter type="" />
 </add>
 <add
initializeData="c:\inetpub\wwwroot\WCFService\web_tracelog.svclog
"
 type="System.Diagnostics.XmlWriterTraceListener, System,
Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"
 name="ServiceModelTraceListener"
traceOutputOptions="Timestamp">
 <filter type="" />

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 471

 </add>
 </sharedListeners>
</system.diagnostics>
</configuration>
…
…
<system.serviceModel>
 <diagnostics>
 <messageLogging logEntireMessage="false"
logMalformedMessages="true"
 logMessagesAtServiceLevel="true"
logMessagesAtTransportLevel="true" />
 </diagnostics>
…

Note: Although enabling Logging and Tracing is not a mandatory step for auditing
security events, it will provide detailed information about every activity in an event.

Step 4 – Create a Windows Forms Test Client Application
In this step, you create a Windows Forms application to test the WCF service.

1. Right‐click your Solution, click Add, and then click New Project.
2. In the Add New Project dialog box, in the Templates section, select Windows

Forms Application.
3. In the Name field, type Test Client and then click OK.

Step 5 – Add a WCF Service Reference to the Client
In this step, you add a reference to your WCF service.

1. Right‐click your client project and then click Add Web Reference.
2. In the Add Web Reference dialog box, set the URL to your WCF service, (e.g.,

http://localhost/WCFTestService/Service.svc) and then click Go.
3. In the Web reference name field, change ServiceReference1 to WCFTestService.
4. Click Add Reference.

A reference to WCFTestService should now appear beneath Web References in
your client project.

Step 6 – Test the Client and WCF Service
In this step, you access the WCF service, pass the user credentials, and make sure that
the username authentication works.

1. In your client project, drag a Button control onto your form.
2. Double‐click the Button control to show the underlying code.
3. Create an instance of the proxy and call the GetData operation of your WCF

service. The code should look as follows:

private void button1_Click(object sender, EventArgs e)

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 472

{
 WCFTestService.ServiceClient myService = new
 WCFTestService.ServiceClient();
 MessageBox.Show(myService.GetData(123));
 myService.Close();
}

4. Right‐click the client project and then click Set as Startup Project.
5. Run the client application by pressing F5 or Ctrl+F5. When you click the button

on the form, the message “You entered: 123” should appear.

Step 7 – Verify the Service Events in the Event Log
In this step, you verify the WCF service events in the Application Event Log.

1. On your Service host machine, click Start and then click Run.
2. In the command line, type eventvwr and then click OK to open the Event Viewer

window.
3. In the left pane, select the Application node, which shows the list of application

events in the right pane.
4. In the list, search for Source ServiceModel Audit 3.0.0.0.

You will find four event entries for your service, one with a ServiceAuthorization
category and others with MessageAuthentication categories.

5. Open the event with the ServiceAuthorization category. You will see the
following message if your service authorizes a client:

Service authorization succeeded.
Service: <<service URI>>
Action: http://tempuri.org/<<your service method info>>
Client Identity: <<domain\user-id>>;
…

6. Similarly for the MessageAuthentication events, if your service authenticates a
client, you will see the following message for Security Negotiation and Message
Authentication events:

Message authentication succeeded.
Service: <<service URI>>
Action: http://tempuri.org/<<your service method info>>
Client Identity: <<domain\user-id>>;
…

7. If you enabled Logging and Tracing (followed step 3) for your service, you will see
another event with the MessageLogging category in the application log:

Message logging succeeded.
Service: <<service URI>>
Action: http://tempuri.org/<<your service method info>>
Client Identity: <<domain\user-id>>;

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 473

Step 8 – Trace the Log File Using the SvcTraceViewer
In this step, you verify the log file by using the trace viewer tool, SvcTraceViewe.exe,
which enables you to view both the message log files and the trace files.

1. On your Service host machine, go to C:\Program Files\Microsoft
SDKs\Windows\v6.0\Bin.

2. Open the SvcTraceViewe.exe tool.
3. On the tool’s menu, click File, click Open, and then browse to the location of the

message log file.
The right pane shows the various activities that takes place during a host’s life
cycle. You can step through the activity messages by pressing F10 and F11.

Additional Resources
• For more information on WCF security auditing, see “Auditing Security Events” at

http://msdn2.microsoft.com/en‐us/library/ms731669.aspx
• For more information on auditing security events in WCF, see “How To: Audit

Windows Communication Foundation Security Events” at
http://msdn2.microsoft.com/en‐us/library/ms734737.aspx

• For more information on auditing security concerns, see “Security Concerns for
Message Logging” at http://msdn.microsoft.com/en‐us/library/ms730318.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 474

How To: Create and Install Temporary Certificates in WCF
for Message Security During Development

Applies to
• Microsoft Windows Communication Foundation (WCF) 3.5
• Microsoft® Visual Studio® 2008

Summary
This How To article walks you through to the process of creating and installing
temporary certificates to be used during the development and testing of WCF services
that implement message security. The article explains the process of creating,
configuring, and installing these temporary certificates to work with WCF.

Contents
• Objectives
• Overview
• Summary of Steps
• Step 1 – Create a Certificate to Act as Your Root Certificate Authority
• Step 2 – Create a Certificate Revocation List File from the Root Certificate
• Step 3 – Install Your Root Certificate Authority on the Server and Client Machines
• Step 4 – Install the Certificate Revocation List File on the Server and Client

Machines
• Step 5 – Create and Install Your Temporary Service Certificate
• Step 6 – Give the WCF Process Identity Access to the Temporary Certificate’s

Private Key
• Deployment Considerations
• Additional Resources

Objectives
• Learn how to create a root certificate for the temporary certificate used for WCF

message security
• Learn how to created a root certification revocation list file for the root

certificate used to do the revocation validation
• Learn how to create a temporary certificate for WCF message security
• Learn how to install the temporary certificate
• Learn how to install the root certificate for the temporary certificate
• Learn how to install the root certification revocation list for the root certificate

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 475

Overview
When developing a WCF service that uses X.509 certificates to provide message
security, it is necessary to work with temporary certificates. This is because production
certificates are expensive and may not be readily available. There are two options for
specifying trust on a certificate:

• Peer trust – Validates the certificate directly.
• Chain trust – Validates the certificate against the issuer of a certificate known as

a root authority.

This How To article allows doing the chain trust option because it is the most commonly
used approach in Business‐to‐Business (B2B) scenarios, and it is the default validation
for WCF, when using message security.

Additionally there is a certificate revocation list validation performed during message
security. This validation checks that list of certificates that were revoked by the root
certificate. Three modes or revocation exist

• Online The CRL list is retrieved and the check happens on line requiring
connectivity to the URLs

• Offline The CRL list is retrieved and check happens online then is cached for
subsequent validation

• NoCheck No validation is performed

This How To article allows doing the CRL check, without configuration changes when
using message security

To use chain trust validation during development time, you create a self‐signed root
certificate authority (CA) and install it in the Trusted Root Certification Authority in the
Local Machine. The certificate used by WCF is then created and signed by the root self‐
signed certificate and installed in the Personal store of Local Machine. To allow CRL
check to succeed you create a self‐signed root CRL file and install it in the Trusted Root
Certification Authority store of the Local Machine.

You will use makecert.exe to create a private key file and a certificate to act as your root
certificate authority (CA). You will then create a certificate revocation list file from the
private key that will act as your revocation list file for the root certificate authority. Then
you install the root certificate and CRL file. Finally you will create and install the
temporary certificate from the root certificate, using the private key to sign and
generate the key.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 476

Summary of Steps
• Step 1 – Create a Certificate to Act as Your Root Certificate Authority
• Step 2 – Create a Certificate Revocation List File from the Root Certificate
• Step 3 – Install Your Root Certificate Authority on the Server and Client Machines
• Step 4 – Install the Certificate Revocation List File on the Server and Client

Machines
• Step 5 – Create and Install Your Temporary Service Certificate
• Step 6 – Give the WCF Process Identity Access to the Temporary Certificate’s

Private Key

Step 1 – Create a Certificate to Act as Your Root Certificate
Authority
In this step, you use the makecert tool to create a root CA that will be used to sign your
certificate. This certificate will be self signed and will only have the public key that will
be used to do the trust chain validation, when encrypting and signing messages. Self
signed certificate will act as a root certificate itself, instead of pointing to a Root
authority in a chain of trust.

1. Open a Visual Studio command prompt and browse to the location where you
want to save the certificate files.

2. Run the following command to create the root CA

makecert ‐n "CN=RootCATest" ‐r ‐sv RootCATest.pvk RootCATest.cer

In this command:

• ‐n – Specifies the subject name for the root CA. The convention is to
prefix the subject name with "CN = " for "Common Name".

• ‐r – Specifies that the certificate will be self‐signed. This means that
certificates created with this switch will act as a root certificate.

• ‐sv – Specifies the file that will contain the private key of the certificate.
The file is always created, if it does not exist. This will allow creating
certificates using the private key file for signing and key generation.

• RootCATest.cer – Specifies the name of the file containing the public key
of the certificate. The RootCATes.cer file will not have the private key.
This is the certificate that will be installed in the store for trust chain
validation on the client and server machines.

3. In the Create Private Key Password dialog box, enter a password, confirm the
password, and then click OK. Optionally, you can click None without entering the
password, but this is not recommended for security reasons.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 477

4. In the Enter Private Key Password dialog box, enter the password again and
then click OK.
This is the password needed to access the private key file RootCATest.pvk in
order to generate the file RootCATest.cer containing the public key.

This step creates a certificate named RootCATest.cer and a private key file named
RootCATest.pvk

Step 2 – Create a Certificate Revocation List File from the
Root Certificate
In this step you will create a certificate revocation list file that is going to be imported in
the correct certificate stores of the client and service machines, so you will create a
CRL(certificate revocation list) for the temporary root certificate. The CRL is necessary
because WCF clients check for the CRL when doing certificate validation.

1. Open a Visual Studio command prompt and browse to the location where you
want to save the CRL file for the root certificate.

2. Run the following command to create the CRL file.

makecert ‐crl ‐n "CN=RootCATest" ‐r ‐sv RootCATest.pvk RootCATest.crl

 In this command:

• ‐crl – Specifies that you want to generate the CRL file for the root certificate
• ‐n – Specifies the subject name for the CRL. The convention is to prefix the

subject name with "CN = " for "Common Name". You can name it with the same
name of the root certificate authority

• ‐r – Specifies that the CRL file will be self‐signed. This means certificates
revocation list files are created with this switch, will act as revocation list files
for the root certification authority.

• ‐sv – Specifies the file that will contain the private key for the CRL file generation.
The file is not created, it already exists. This will allow creating certification
revocation list files using the private key file for signing.

• RootCaTest.crl is the CRL file created with the command

Step 3 – Install Your Root Certificate Authority Certificate
on the Server and Client Machines
In this step, you will install the certificate in the Trusted Root Certification Authorities
location on both the server and client machines. All certificates that are signed with this
certificate will be trusted by the client machine.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 478

Important: Be sure to delete this certificate from the store after you have finished
developing and testing for your application.

Repeat the following steps on both client and the server machines:

1. Copy the RootCATest.cer file to the client and server machines.
2. Click Start and then click Run.
3. In the command line, type MMC and then click OK.
4. In the Microsoft Management Console, on the File menu, click Add/Remove

Snap‐in.
5. In the Add Remove Snap‐in dialog box, click Add.
6. In the Add Standalone Snap‐in dialog box, select Certificates and then click Add.
7. In the Certificates snap‐in dialog box, select the Computer account radio button

because the certificate needs to be made available to all users, and then click
Next.

8. In the Select Computer dialog box, leave the default Local computer: (the
computer this console is running on) selected and then click Finish.

9. In the Add Standalone Snap‐in dialog box, click Close.
10. In the Add/Remove Snap‐in dialog box, click OK.
11. In the left pane, expand the Certificates (Local Computer) node, and then

expand the Trusted Root Certification Authorities folder.
12. Under Trusted Root Certification Authorities, right‐click the Certificates

subfolder, select All Tasks, and then click Import.
13. On the Certificate Import Wizard welcome screen, click Next.
14. On the File to Import screen, click Browse.
15. Browse to the location of the signed Root Certificate Authority RootCATest.cer

file copied in step 1, select the file, and then click Open.
16. On the File to Import screen, click Next.
17. On the Certificate Store screen, accept the default choice and then click Next.
18. On the Completing the Certificate Import Wizard screen, click Finish.

The signed root CA certificate is now installed in the Trusted Root Certification
Authorities store. You can expand the Certificates subfolder under Trusted Root
Certification Authorities to see the RootCATest certificate installed properly.

Step 4 – Install the Certificate Revocation List File on the
Server and Client Machines
In this step, you will install the certificate revocation list (CRL) from the file in the
Trusted Root Certification Authorities location on both the server and client machines.
The certificate revocation list is checked during certificate validation process.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 479

Important: Be sure to delete the certificate from the store after you have finished
developing and testing for your application.

Repeat the following steps on both client and the server machines:

1. Copy the RootCATest.crl file to the client and server machines.
2. Click Start and then click Run.
3. In the command line, type MMC and then click OK.
4. In the Microsoft Management Console, on the File menu, click Add/Remove

Snap‐in.
5. In the Add Remove Snap‐in dialog box, click Add.
6. In the Add Standalone Snap‐in dialog box, select Certificates and then click Add.
7. In the Certificates snap‐in dialog box, select the Computer account radio button

because the certificate needs to be made available to all users, and then click
Next.

8. In the Select Computer dialog box, leave the default Local computer: (the
computer this console is running on) selected and then click Finish.

9. In the Add Standalone Snap‐in dialog box, click Close .
10. In the Add/Remove Snap‐in dialog box, click OK .
11. In the left pane, expand the Certificates (Local Computer) node, and then

expand the Trusted Root Certification Authorities folder.
12. Under Trusted Root Certification Authorities, right‐click the Certificates

subfolder, select All Tasks, and then click Import.
13. On the Certificate Import Wizard welcome screen, click Next.
14. On the File to Import screen, click Browse.
15. On the Files of Type select Certificate Revocation List
16. Browse to the location of the signed Root Certificate Authority RootCATest.crl

file copied in step 1, select the file, and then click Open.
17. On the File to Import screen, click Next.
18. On the Certificate Store screen, accept the default choice and then click Next.
19. On the Completing the Certificate Import Wizard screen, click Finish.

The certificate revocation list for the root CA certificate is now installed in the Trusted
Root Certification Authorities store. You can click on Trusted Root Certification
Authorities folder then press F5. A subfolder called Certificate Revocation List will be
displayed. You can expand this folder and you will see the RootCATest certificate
revocation list installed properly.

Step 5 – Create and Install Your Temporary Service
Certificate
In this step, you create and install the temporary certificate on the server machine from
the signed root CA created in the previous step.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 480

1. Open a Visual Studio command prompt and browse to the location where you

have the root CA certificate and private key file created.
2. Run following command for creating a certificate signed by the root CA

certificate:

makecert ‐sk MyKeyName ‐iv RootCATest.pvk ‐n "CN=tempCert" ‐ic
RootCATest.cer ‐sr localmachine ‐ss my ‐sky exchange ‐pe

In this command:

• ‐sk – Specifies the key container name for the certificate. This needs to be
unique for each certificate you create.

• ‐iv – Specifies the private key file from which the temporary certificate
will be created. You need to specify the root certificate private key file
name that was created in previous step and make sure that it is available
in the current directory. This will be used for signing the certificate and
key generation.

• ‐n – Specifies the key subject name for the temporary certificate. The
convention is to prefix the subject name with "CN = " for "Common
Name".

• ‐ic – Specifies the file containing the root CA certificate file generated in
previous step.

• ‐sr – Specifies the store location where the certificate will be installed.
The default location is Currentuser, but since the certificate needs to be
available to all users, you should use the localmachine option.

• ‐ss – Specifies the store name for the certificate. My is the personal store
location of the certificate.

• ‐sky – Specifies the key type, which could be either signature or
exchange. Using exchange makes certificate capable of signing and
encrypting the message.

• ‐pe – Specifies that the private key is generated in the certificate and
install with it in the certificate store. When you double click the
certificate in the general tab you should see at the bottom a message
“You have a private key that corresponds to this certificate”. For
message security this is a requirement. If the certificate does not have
the corresponding private key, it cannot be used for message security.

3. In the Enter Private Key Password dialog box, enter the password for the root
CA privatekeyfile specified in STEP 2, and then click OK.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 481

Step 6 – Give the WCF Process Identity Access to the
Temporary Certificate’s Private Key
In this step, you give the process identity of the WCF service access permissions to the
certificate private key. If your service is hosted in Internet Information Services (IIS), the
identity typically is "NT AUTHORITY\NETWORK SERVICE"; in a production scenario, or if
your service is hosted in w
Windows service it could be a custom domain service account.

1. Open a Visual Studio command prompt.
2. Run the following command:

FindPrivateKey.exe My LocalMachine ‐n "CN=tempCert"

In this command:

• My – the store name where you have installed your temporary
certificate.

• LocalMachine – the store location for your certificate.
• –n "CN=tempCert" – the common name for your temporary certificate.

Note: If FindPrivateKey is not on your machine, download the WCF samples,
including the FindPrivateKey tool, at
http://www.microsoft.com/downloads/details.aspx?FamilyId=2611A6FF‐FD2D‐
4F5B‐A672‐C002F1C09CCD&displaylang=en

FindPrivateKey returns the location of the private key for the certificate, similar
to "C:\Documents and Settings\All Users\Application
Data\Microsoft\Crypto\RSA\Machinekeys\4d657b73466481beba7b0e1b5781d
b81_c225a308‐d2ad‐4e58‐91a8‐6e87f354b030".

3. Run the following command to assign access permissions to the process identity
of the WCF service.
Note: You should give read‐only permissions to the private key

cacls.exe "C:\Documents and Settings\All Users\Application
Data\Microsoft\Crypto\RSA\Machinekeys\4d657b73466481beba7b0e1b5781db81_c225a308‐
d2ad‐4e58‐91a8‐6e87f354b030" /E /G "NT AUTHORITY\NETWORK SERVICE":R

In this command:

• /E – Edits the access control list (ACL) of the private key instead or
replacing it. You should never replace the ACL but should only add the
necessary permission to the process identity.

• /G – Grants the permission to the process identity.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 482

• :R – Gives read‐only permissions to "NT AUTHORITY\NETWORK SERVICE".

4. Run the following command to verify the permissions on the private key. This
will display all the identities and the permissions that have access to the private
key

cacls.exe "C:\Documents and Settings\All Users\Application
Data\Microsoft\Crypto\RSA\Machinekeys\4d657b73466481beba7b0e1b5781db81_c225a308‐
d2ad‐4e58‐91a8‐6e87f354b030"

You should see the following in the output from this command:

NT AUTHORITY\NETWORK SERVICE:R

Note: If you are running Microsoft Windows® XP, give the certificate permissions for the
ASPNET identity instead of the NT Authority\Network Service identity, because the IIS
process runs under the ASPNET account in Windows XP.

Deployment Considerations
Temporary certificates should only be used for development and testing purposes. For
real‐world production environments, use a certificate provided by a CA such as
Microsoft Windows Server® 2003 Certificate Services or a third party.

Additional Resources
• For more information on how to work with temporary certificates, see “How to:

Create Temporary Certificates for Use During Development” at
http://msdn2.microsoft.com/en‐us/library/ms733813.aspx

• For more information on how to view certificates using the MMC snap in, see
“How to: View Certificates with the MMC Snap‐in” at
http://msdn2.microsoft.com/en‐us/library/ms788967.aspx

• For more information on differences in certificate validation between Microsoft
Internet Explorer and WCF, see “Differences Between Service Certificate
Validation Done by Internet Explorer and WCF” at
http://msdn2.microsoft.com/en‐us/library/aa702599.aspx

• For more information on differences in certificate validation between protocols,
see “Certificate Validation Differences Between HTTPS, SSL over TCP, and SOAP
Security” at http://msdn2.microsoft.com/en‐us/library/aa702579.aspx

• For more information on how to obtain a certificate, see “How to: Obtain a
Certificate (WCF)” at http://msdn2.microsoft.com/en‐us/library/aa702761.aspx

• For more information on WCF command‐line tools, see “Windows
Communication Foundation Tools” at http://msdn2.microsoft.com/en‐
us/library/ms732015.aspx

• To download the WCF samples, including the FindPrivateKey tool, see “Windows
Communication Foundation (WCF), Windows Workflow Foundation (WF) and

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 483

Windows CardSpace Samples” at
http://www.microsoft.com/downloads/details.aspx?FamilyId=2611A6FF‐FD2D‐
4F5B‐A672‐C002F1C09CCD&displaylang=en

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 484

How To: Create and Install Temporary Certificates in WCF for
Transport Security During Development

Applies to
• Microsoft® Windows Communication Foundation (WCF) 3.5
• Microsoft .NET Framework 3.5
• Microsoft Visual Studio® 2008

Summary
This How To article walks you through to the process of creating and installing temporary certificates to
be used during the development and testing of WCF services that implement transport security. The
article explains the process of creating, configuring, and installing these temporary certificates to work
with WCF.

Contents
• Objectives
• Overview
• Step 1 – Create a Certificate to Act as Your Root Certificate Authority
• Step 2 – Install Your Root Certificate Authority on the Server and Client Machines
• Step 3 – Create and Install Your Temporary Service Certificate
• Step 4 – Configure Your Temporary Service Certificate in IIS to Support SSL
• Deployment Considerations
• Additional Resources

Objectives
• Learn how to create a temporary root certificate authority to be used to sign your temporary service

certificate.
• Learn how to create temporary certificates for transport security using makecert.exe utility.
• Learn where to store temporary certificates to be used by WCF when utilizing transport security.

Overview
When developing a WCF service that uses X.509 certificates to provide transport security, it is necessary
to work with temporary certificates. This is because production certificates are expensive and may not
be readily available. There are two options for specifying trust on a certificate:

• Peer trust – Validates the certificate directly.
• Chain trust – Validates the certificate against the issuer of a certificate known as a root

authority.

This How To article discusses the chain trust option because it is the most commonly used approach in
Business‐to‐Business (B2B) scenarios.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 485

To use chain trust validation during development time, you create a self‐signed root certificate authority
(CA) and place it in the Trusted Root Certification Authority store. The certificate used by WCF is then
created and signed by the root self‐signed certificate and installed in the LocalMachine store.

You will use makecert.exe to create a certificate to act as your root certificate authority (CA). You will
then use your root CA certificate to sign additional certificates for your WCF services. Finally, you will
configure IIS to use your temporary certificate.

Summary of Steps
• Step 1 – Create a Certificate to Act as Your Root Certificate Authority
• Step 2 – Install Your Root Certificate Authority on the Server and Client Machines
• Step 3 – Create and Install Your Temporary Service Certificate
• Step 4 – Configure Your Temporary Service Certificate in IIS to Support SSL

Step 1 – Create a Certificate to Act as Your Root Certificate
Authority
In this step, you use the makecert tool in the service host machine to create a root CA that will be used
to sign your temporary certificate.

1. Open a Visual Studio command prompt and browse to the location where you want to save the
certificate files.

2. Run the following command to create the root CA

makecert -n "CN=RootCATest" -r -sv RootCATest.pvk RootCATest.cer

In this command:

• ‐n – Specifies the subject name for the root CA. The convention is to prefix the subject
name with "CN = " for "Common Name".

• ‐r – Specifies that the certificate will be self‐signed.
• ‐sv – Specifies the file that contains the private key of the certificate.
• RootCATest.cer – Specifies the name of the file containing the public key of the

certificate.

3. In the Create Private Key Password dialog box, enter a password, confirm the password, and
then click OK. Optionally, you can click None without entering the password, but this is not
recommended for security reasons.

4. In the Enter Private Key Password dialog box, enter the password again and then click OK.
This is the password needed to access the private key file RootCATest.pvk in order to generate
the file RootCATest.cer containing the public key.

This step creates a certificate named RootCATest.cer and a private key file named RootCATest.pvk.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 486

Step 2 – Install Your Root Certificate Authority on the Server
and Client Machines
In this step, you install the certificate in the Trusted Root Certification Authorities location on both the
client and server machines. All certificates that are signed with this certificate will be trusted by the
client and by the server.

Important: Be sure to delete this certificate from the store after you have finished developing and
testing for your application.

Repeat the following steps on both the client and the server machines:

1. Copy the RootCATest.cer file to the client and server machines.
2. Click Start and then click Run.
3. In the command line, type MMC and then click OK.
4. In the Microsoft Management Console (MMC), on the File menu, click Add/Remove Snap‐in.
5. In the Add Remove Snap‐in dialog box, click Add.
6. In the Add Standalone Snap‐in dialog box, select Certificates and then click Add.
7. In the Certificates snap‐in dialog box, select the Computer account radio button because the

certificate needs to be made available to all users, and then click Next.
8. In the Select Computer dialog box, leave the default Local computer: (the computer this

console is running on) selected and then click Finish.
9. In the Add Standalone Snap‐in dialog box, click Close.
10. In the Add/Remove Snap‐in dialog box, click OK.
11. In the left pane, expand the Certificates (Local Computer) node, and then expand the Trusted

Root Certification Authorities folder.
12. Under Trusted Root Certification Authorities, right‐click the Certificates subfolder, select All

Tasks, and then click Import.
13. On the Certificate Import Wizard welcome screen, click Next.
14. On the File to Import screen, click Browse.
15. Browse to the location of the signed Root Certificate Authority RootCATest.cer file copied in

step 1, select the file, and then click Open.
16. On the File to Import screen, click Next.
17. On the Certificate Store screen, accept the default choice and then click Next.
18. On the Completing the Certificate Import Wizard screen, click Finish.

The signed root CA certificate is now installed in the Trusted Root Certification Authorities store. You can
expand the Certificates subfolder under Trusted Root Certification Authorities to see the RootCATest
certificate installed properly.

Important: If you do not install the self‐signed root CA on the client machine, the proxy generation
either from the UI or from the command prompt using svcutil will fail with the following error message:

“There was an error downloading
'https://MachineName/servicefolder/Service.svc'.
 The underlying connection was closed: Could not establish trust relationship
 for the SSL/TLS secure channel.
The remote certificate is invalid according to the validation procedure.”

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 487

Note: Unless the root certificate is present in the certificate authority store, the Http layer raises an
exception when a client communicates over Https: “the remote server returned an error (403)
forbidden”.

Step 3 – Create and Install Your Temporary Service Certificate
In this step, you create and install the temporary certificate on the server machine from the
signed root CA created in the previous step.

1. Open a Visual Studio command prompt and browse to the location where you have the
root CA certificate and private key file installed. The files will be named RootCATest.cer
and RootCATest.pvk.

2. Run the following command for creating a certificate signed by the root CA certificate:

makecert -sk <<UniqueKeyName>> -iv RootCATest.pvk -n
"CN=<<MachineName>>" -ic RootCATest.cer -sr localmachine -ss my -sky
exchange -pe

In this command:

• ‐sk – Specifies the key container name for the certificate. This name needs to be unique
for each certificate you create.

• ‐iv – Specifies the private key file from which the temporary certificate will be created.
You need to specify the root certificate private key file name and make sure that it is
available in the current directory.

• ‐n – Specifies the key subject name for the temporary certificate. If the name of the
certificate does not match the DNS or netbios name, later proxy generation will fail.

• ‐ic – Specifies the file containing the root CA certificate file generated in the previous
step.

• ‐sr – Specifies the store location where the certificate will be installed. The default
location is Currentuser, but since the certificate needs to be available to all users, you
should use the localmachine option.

• ‐ss – Specifies the store name for the certificate. Specify My as the personal store
location of the certificate.

• ‐sky – Specifies the key type, which could be either signature or exchange. Using
exchange makes the private key exportable, which is required for message security.

• ‐pe – Specifies that the private key is exportable. This is useful if you want to export the
key and use it in another machine for development or testing purposes.

3. In the Enter Private Key Password dialog box, enter the password for the root CA private key file
specified in STEP 2, and then click OK.

Important: The subject name and key file name have to match the name of the machine you are
installing this certificate on. If the name does not match you will see a certificate security error when
accessing the service.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 488

Step 4 – Configure Your Temporary Service Certificate in IIS to
Support SSL
In this step, you configure the Web site in IIS to use the temporary certificate for Secure Sockets Layer
(SSL) communication. This will enable SSL for the transport communication. These instructions pertain
to IIS version 6. IIS 7 requires different steps.

1. Click Start and then click Run.
2. In the Run dialog box, type inetmgr and then click OK.
3. In the Internet Information Services (IIS) Manager dialog box, expand the (local computer)

node, and then expand the Web Sites node.
4. Right‐click Default Web Site and then click Properties.
5. In the Default Web Site Properties dialog box, click the Directory Security tab, and then in the

Secure Communications section, click Server Certificate.
6. On the Welcome screen of the Web Server Certificate Wizard, click Next to continue.
7. On the Server Certificate screen, select the Assign an existing certificate radio button option,

and then click Next. If you have a preexisting certificate that you can remove, first remove the
certificate using the “Remove the current certificate” option, then proceed with step 5.

8. On the Available Certificates screen, select the certificate you created and installed in previous
step, and then click Next.

9. Verify the information on the certificate summary screen, and then click Next.
10. Click Finish to complete the certificate installation.
11. In the Default Web Site Properties dialog box, click OK.

Deployment Considerations
Temporary certificates should only be used for development and testing purposes. For real‐
world production environments, use a certificate provided by a CA such as Microsoft Windows
Server® 2003 Certificate Services or a third party.

Additional Resources
• For more information on how to work with temporary certificates, see “How to: Create

Temporary Certificates for Use During Development” at
http://msdn2.microsoft.com/en‐us/library/ms733813.aspx

• For more information on how to view certificates by using the MMC snap in, see “How
to: View Certificates with the MMC Snap‐in” at http://msdn2.microsoft.com/en‐
us/library/ms788967.aspx

• For more information on differences in certificate validation between Microsoft Internet
Explorer and WCF, see “Differences Between Service Certificate Validation Done by
Internet Explorer and WCF” at http://msdn2.microsoft.com/en‐
us/library/aa702599.aspx

• For more information on differences in certificate validation between protocols, see
“Certificate Validation Differences Between HTTPS, SSL over TCP, and SOAP Security” at
http://msdn2.microsoft.com/en‐us/library/aa702579.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 489

• For more information on how to obtain a certificate, see “How to: Obtain a Certificate
(WCF)” at http://msdn2.microsoft.com/en‐us/library/aa702761.aspx

• For more information on Windows Foundation command‐line tools, see “Windows
Communication Foundation Tools” at http://msdn2.microsoft.com/en‐
us/library/ms732015.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 490

How To – Create and Install Temporary Client Certificates in
WCF During Development

Applies to
• Microsoft® Windows Communication Foundation (WCF) 3.5
• Microsoft .NET Framework 3.5
• Microsoft Visual Studio® 2008

Summary
This How To article walks you through the process of creating and installing temporary
certificates to be used during the development and testing of WCF services that implement
certificate client authentication. The article explains the process of creating, configuring, and
installing these temporary certificates to work with WCF.

Contents
• Objectives
• Overview
• Step 1 – Create a Certificate to Act as Your Client Root Certificate Authority
• Step 2 – Create a Certificate Revocation List File from the Root Certificate
• Step 3 – Install Your Client Root Certificate Authority on the Server and Client Machines
• Step 4 – Install the Certificate Revocation List File on the Server and Client Machines
• Step 5 – Create and Install Your Temporary Client Certificate
• Deployment Considerations
• Additional Resources

Objectives
• Learn how to create a root certificate for the temporary certificate used for certificate

authentication in WCF.
• Learn how to create a root certification revocation list file for the root certificate used to

validate the revocation.
• Learn how to create a temporary certificate for certificate authentication in WCF.
• Learn how to install the temporary certificate.
• Learn how to install the root certificate for the temporary certificate.
• Learn how to install the root certification revocation list for the root certificate.

Overview
When developing a WCF service that uses X.509 certificates to do certificate authentication, it is
necessary to work with temporary certificates. This is because production certificates are
expensive and may not be readily available. There are two options for specifying trust on a
certificate:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 491

• Peer trust – Validates the certificate directly.
• Chain trust – Validates the certificate against the issuer of a certificate known as a root

authority.

This How To article describes the chain trust option because it is the most commonly used
approach in Business‐to‐Business (B2B) scenarios, and it is the default validation for WCF, when
using certificate authentication.

Additionally, a certificate revocation list (CRL) validation is performed during the certificate
authentication process. This validation checks the list of certificates that were revoked by the
root certificate. Three modes of revocation exist:

• Online – The CRL list is retrieved and checked online,this requires a network connection
to retrieve the CRL and check each address listed.

• Offline – The CRL list is retrieved and checked online and is then cached for subsequent
offline validation.

• NoCheck – No validation is performed.

For the purposes of this How To article, the CRL is checked without configuration changes when
using certificate authentication.

To use chain trust validation during development time, you first create a self‐signed root
certificate authority (CA) and install it in the Trusted Root Certification Authority in the Local
Machine. The certificate used by WCF is then created and signed by the root self‐signed
certificate and installed in the Personal store of the Local Machine. To allow CRL validation to
succeed, you create a self‐signed root CRL file and install it in the Trusted Root Certification
Authority store of the Local Machine.

You will use makecert.exe to create a private key file and a certificate to act as your root CA.
You will then create a CRL file from the private key that will act as your revocation list file for
the root CA. You will have to install the root certificate and CRL file. Finally, you will create and
install the temporary certificate from the root certificate, using the private key to sign and
generate the key.

Summary of Steps
• Step 1 – Create a Certificate to Act as Your Client Root Certificate Authority
• Step 2 – Create a Certificate Revocation List File from the Root Certificate
• Step 3 – Install Your Client Root Certificate Authority on the Client and Server

Machines
• Step 4 – Install the Certificate Revocation List File on the Server and Client Machines
• Step 5 – Create and Install Your Temporary Client Certificate

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 492

Step 1 – Create a Certificate to Act as Your Client Root Certificate
Authority
In this step, you use the makecert tool to create a root CA that will be used to sign your
certificate. This certificate will be self‐signed and will only have the public key that will be used
to perform trust chain validation, when authenticating clients with the certificate. The self‐
signed certificate will act as a root CA itself, instead of pointing to a Root authority in a chain of
trust.

1. Open a Visual Studio command prompt and browse to the location where you want to
save the certificate files.

2. Run the following command to create the root CA:

makecert -n "CN=RootCaClientTest" -r -sv RootCaClientTest.pvk
RootCaClientTest.cer

In this command:

• ‐n – Specifies the subject name for the root CA. The convention is to prefix the
subject name with "CN = " for "Common Name".

• ‐r – Specifies that the certificate will be self‐signed. This means that certificates
created with this switch will act as a root certificate.

• ‐sv – Specifies the file that will contain the private key of the certificate. The file
is always created, if it does not already exist. This will allow creating certificates
using the private key file for signing and key generation.

• RootCaClientTest.cer – Specifies the name of the file containing the public key of
the certificate. The RootCATes.cer file will not have the private key. This is the
certificate that will be installed in the store for trust chain validation on the client
and server machines.

3. In the Create Private Key Password dialog box, enter a password, confirm the password,
and then click OK.
Optionally, you can click None without entering the password, but this is not
recommended for security reasons.

4. In the Enter Private Key Password dialog box, enter the password again and then click
OK.
This is the password needed to access the private key file RootCaClientTest.pvk in order
to generate the file RootCaClientTest.cer containing the public key.

This step creates a certificate named RootCaClientTest.cer and a private key file named
RootCaClientTest.pvk.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 493

Step 2 – Create a Certificate Revocation List File from the Root
Certificate
In this step, you create a CRL file that will be imported into the correct certificate stores of the
client and service machines. You create a CRL for the temporary root certificate; the CRL is
necessary because WCF clients check for the CRL when validating certificates.

1. Open a Visual Studio command prompt and browse to the location where you want to
save the CRL file for the root certificate.

2. Run the following command to create the CRL file:

makecert -crl -n "CN=RootCaClientTest" -r -sv RootCaClientTest.pvk
RootCaClientTest.crl

 In this command:

• ‐crl – Specifies that you want to generate the CRL file for the root certificate.
• ‐n – Specifies the subject name for the CRL. The convention is to prefix the subject name

with "CN = " for "Common Name". You can give it the same name as the root CA.
• ‐r – Specifies that the CRL file will be self‐signed. This means that CRL files created with

this switch will act as revocation list files for the root CA.
• ‐sv – Specifies the file that will contain the private key for CRL file generation. The file is

not created since it already exists. This allows creation of CRL files using the private key
file for signing.

• RootCaClientTest.crl – Is the CRL file created with the command.

Step 3 – Install Your Client Root Certificate Authority on the
Client and Server Machines
In this step, you install the client root CA in the Trusted Root Certification Authorities location
on both the server and client machines. All certificates that are signed with this certificate will
be trusted by the client machine.

Important: Be sure to delete this certificate from the store after you have finished developing
and testing your application.

Repeat the following steps on both the client and server machines:

1. Copy the RootCaClientTest.cer file to the client and server machines.
2. Click Start and then click Run.
3. In the command line, type MMC and then click OK.
4. In the Microsoft Management Console, on the File menu, click Add/Remove Snap‐in.
5. In the Add Remove Snap‐in dialog box, click Add.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 494

6. In the Add Standalone Snap‐in dialog box, select Certificates and then click Add.
7. In the Certificates snap‐in dialog box, select the Computer account radio button

(because the certificate needs to be made available to all users), and then click Next.
8. In the Select Computer dialog box, leave the default Local computer: (the computer

this console is running on) selected and then click Finish.
9. In the Add Standalone Snap‐in dialog box, click Close.
10. In the Add/Remove Snap‐in dialog box, click OK.
11. In the left pane, expand the Certificates (Local Computer) node, and then expand the

Trusted Root Certification Authorities folder.
12. Under Trusted Root Certification Authorities, right‐click the Certificates subfolder, click

All Tasks, and then click Import.
13. On the Certificate Import Wizard welcome screen, click Next.
14. On the File to Import screen, click Browse.
15. Browse to the location of the signed root CA RootCaClientTest.cer file copied in Step 1,

select the file, and then click Open.
16. On the File to Import screen, click Next.
17. On the Certificate Store screen, accept the default choice and then click Next.
18. On the Completing the Certificate Import Wizard screen, click Finish.

The signed root CA certificate is now installed in the Trusted Root Certification Authorities
store. You can expand the Certificates subfolder under Trusted Root Certification Authorities
to see the RootCaClientTest certificate installed properly.

Step 4 – Install the Certificate Revocation List File on the Server
and Client Machines
In this step, you install the CRL from the file in the Trusted Root Certification Authorities
location on both the server and client machines. The CRL is checked during the certificate
validation process.

Important: Be sure to delete the certificate from the store after you have finished developing
and testing your application.

Repeat the following steps on both the client and server machines:

1. Copy the RootCaClientTest.crl file to the client and server machines.
2. Click Start and then click Run.
3. In the command line, type MMC and then click OK.
4. In the Microsoft Management Console, on the File menu, click Add/Remove Snap‐in.
5. In the Add Remove Snap‐in dialog box, click Add.
6. In the Add Standalone Snap‐in dialog box, select Certificates and then click Add.
7. In the Certificates snap‐in dialog box, select the Computer account radio button

(because the certificate needs to be made available to all users), and then click Next.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 495

8. In the Select Computer dialog box, leave the default Local computer: (the computer
this console is running on) selected and then click Finish.

9. In the Add Standalone Snap‐in dialog box, click Close.
10. In the Add/Remove Snap‐in dialog box, click OK.
11. In the left pane, expand the Certificates (Local Computer) node, and then expand the

Trusted Root Certification Authorities folder.
12. Under Trusted Root Certification Authorities, right‐click the Certificates subfolder,

select All Tasks, and then click Import.
13. On the Certificate Import Wizard welcome screen, click Next.
14. On the File to Import screen, click Browse.
15. On the Files of Type screen, select Certificate Revocation List.
16. Browse to the location of the signed root CA RootCaClientTest.crl file copied in Step 1,

select the file, and then click Open.
17. On the File to Import screen, click Next.
18. On the Certificate Store screen, accept the default choice and then click Next.
19. On the Completing the Certificate Import Wizard screen, click Finish.

The CRL for the root CA certificate is now installed in the Trusted Root Certification Authorities
store. You can click the Trusted Root Certification Authorities folder and then press F5 to
display subfolder named Certificate Revocation List. You can expand this folder to see the
RootCaClientTest certificate revocation list installed properly.

Step 5 – Create and Install Your Temporary Client Certificate
In this step, you create the temporary certificate from the signed root CA created in the
previous step and install it on the server machine.

1. Open a Visual Studio command prompt and browse to the location where the root CA
certificate and private key file you created are stored.

2. Run the following command for creating a certificate signed by the root CA certificate:

makecert -sk MyKeyName -iv RootCaClientTest.pvk -n "CN=tempClientcert"
-ic RootCaClientTest.cer -sr currentuser -ss my -sky signature -pe

In this command:

• ‐sk – Specifies the key container name for the certificate. This needs to be
unique for each certificate you create.

• ‐iv – Specifies the private key file from which the temporary certificate will be
created. You need to specify the root certificate private key file name that was
created in the previous step and make sure that it is available in the current
directory. This will be used for signing the certificate and key generation.

• ‐n – Specifies the key subject name for the temporary certificate. The convention
is to prefix the subject name with "CN = " for "Common Name".

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 496

• ‐ic – Specifies the file containing the root CA certificate file generated in the
previous step.

• ‐sr – Specifies the store location where the certificate will be installed. The
default location is currentuser. For certificate authentication, this is the default
location that Microsoft Internet Explorer uses for when browsing Web sites that
require a client certificate.

• ‐ss – Specifies the store name for the certificate. My is the personal store
location of the certificate.

• ‐sky – Specifies the key type, which could be either signature or exchange.
Using signature makes the certificate capable of signing and enables certificate
authentication.

• ‐pe – Specifies that the private key is generated in the certificate and installed
with it in the certificate store. When you double‐click the certificate on the
General tab, you should see the message “You have a private key that
corresponds to this certificate” displayed at the bottom. This is a requirement for
certificate authentication. If the certificate does not have the corresponding
private key, it cannot be used for certificate authentication.

3. In the Enter Private Key Password dialog box, enter the password for the root CA
privatekeyfile specified in Step 2, and then click OK.

Deployment Considerations
Temporary certificates should only be used for development and testing purposes. In real‐world
production environments, use a certificate provided by a CA such as Microsoft Windows
Server® 2003 Certificate Server or a third party.

Additional Resources
• For more information on working with temporary certificates, see “How to: Create

Temporary Certificates for Use During Development” at
http://msdn2.microsoft.com/en‐us/library/ms733813.aspx

• For more information on viewing certificates by using the Microsoft Management
Console (MMC) snap in, see “How to: View Certificates with the MMC Snap‐in” at
http://msdn2.microsoft.com/en‐us/library/ms788967.aspx

• For more information on differences in certificate validation between Microsoft Internet
Explorer and WCF, see “Differences Between Service Certificate Validation Done by
Internet Explorer and WCF” at http://msdn2.microsoft.com/en‐
us/library/aa702599.aspx

• For more information on differences in certificate validation between protocols, see
“Certificate Validation Differences Between HTTPS, SSL over TCP, and SOAP Security” at
http://msdn2.microsoft.com/en‐us/library/aa702579.aspx

• For more information on obtaining a certificate, see “How to: Obtain a Certificate
(WCF)” at http://msdn2.microsoft.com/en‐us/library/aa702761.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 497

• For more information on Windows Communication Foundation command‐line tools, see
“Windows Communication Foundation Tools” at http://msdn2.microsoft.com/en‐
us/library/ms732015.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 498

How To – Host WCF in a Windows Service Using TCP
Applies To

• Microsoft® Windows Communication Foundation (WCF) 3.5
• Microsoft Visual Studio® 2008

Summary
This How To article walks you through the process of hosting a WCF service within a Microsoft
Windows® service.

Contents
• Objectives
• Summary of Steps
• Step 1 ‐ Create a WCF Service
• Step 2 ‐ Configure the WCF Endpoints to Use TCP and Set the Base Address
• Step 3 ‐ Create a Windows Service
• Step 4 ‐ Add the Service Installers to the Windows Service
• Step 5 ‐ Modify the Windows Service to Host the WCF Service
• Step 6 – Install the Windows Service
• Step 7 – Create a Windows Forms Test Client Application
• Step 8 ‐ Add a WCF Service Reference to the Client
• Step 9 – Test the Client and WCF Service
• Additional Resources
• Contributors and Reviewers

Objectives
• Create a simple WCF service.
• Host your WCF service in a Windows service using Transmission Control Protocol (TCP).
• Create a simple client to consume your service.

Overview
WCF services can be self‐hosted in an application (such as a console or a Windows Forms
application), in a Windows service, in Internet Information Services (IIS) 6.0, or in IIS 7.0 with
Windows Activation Services (WAS).

The advantages of hosting in a Windows service are:

• Start on boot. The service will automatically be started when the hosting computer is
rebooted.

• Recovery. The service will be restarted by the Windows Service Control Manager if
there is a failure.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 499

• Administration. Administrators already know how to manage Windows services.
• Security Identity. Windows Service Control Manager allows you to choose an identity

under which the process will run.
• Binding flexibility. Hosting in a Windows service allows you to choose any binding

protocol. IIS 6.0 only allows HTTP bindings.

The disadvantages of hosting in a Windows service are:

• Installation. You must use a custom installer action or the .NET utility Installutil.exe.
• Lack of enterprise features. Windows services do not have the security, manageability,

scalability, and administrative features that are included in IIS.

To host WCF in a Windows service, you need to create the WCF service, create a Windows
service to host the WCF service, and then install and run the Windows service. For the purposes
of this How To article, you will use installutil.exe on the command line to install the service. In a
production environment, you can use a setup program to install the service.

Summary of Steps
• Step 1 ‐ Create a WCF Service
• Step 2 ‐ Configure the WCF Endpoints to Use TCP and Set the Base Address
• Step 3 ‐ Create a Windows Service
• Step 4 ‐ Add the Service Installers to the Windows Service
• Step 5 ‐ Modify the Windows Service to Host the WCF Service
• Step 6 – Install the Windows Service
• Step 7 – Create a Windows Forms Test Client Application
• Step 8 ‐ Add a WCF Service Reference to the Client
• Step 9 – Test the Client and WCF Service

Step 1 – Create a WCF service
In this step, you create a WCF service to test hosting in a Windows service.

1. In Visual Studio, click File, click New, and then click Project.
2. In the Add New Project dialog box, in the Templates section, select WCF Service

Library.
3. In the Add New Project dialog box, click OK to create the WCF Service Library project

WcfServiceLibrary1.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 500

Step 2 – Configure the WCF Endpoints to Use TCP and Set the
Base Address
In this step, you modify the WCF configuration so that the endpoints use TCP instead of the
default Hypertext Transfer Protocol (HTTP). You then set the base address for your service.
Finally, you set HttpGetEnabled to false, since you will be running under TCP.

1. Right‐click the App.config file of the WCF Service Library project and then click Edit WCF
Configuration.
If you do not see the Edit WCF Configuration option, on the Tools menu, click WCF
Service Configuration Editor. Close the WCF Service Configuration Editor tool that
appears. The option should now appear on the App.config context menu.

2. In the Configuration Editor, in the configuration section, expand Services and then
expand Endpoints.

3. Select the first endpoint. Under Endpoint Properties, change the Binding from
wsHttpBinding to netTcpBinding.

4. Select the second endpoint. Under Endpoint Properties, change the Binding from
mexHttpBinding to mexTcpBinding.

5. Under Service, select the Host node, select the default address under the BaseAddress
list, and then click Edit.

6. Set the base address to the following and then click OK:

net.tcp://localhost:8523/Service1

7. Under Advanced, expand the tree under Service Behaviors. Select serviceMetadata and

change HttpGetEnabled from True to False.
8. Click File and then click Save to save your configuration changes.
9. In Visual Studio, verify your configuration, which should look as follows:

 <system.serviceModel>
 <services>
 <service behaviorConfiguration="WcfServiceLibrary1.Service1Behavior"
 name="WcfServiceLibrary1.Service1">
 <endpoint address="" binding="netTcpBinding" bindingConfiguration=""
 contract="WcfServiceLibrary1.IService1">
 <identity>
 <dns value="localhost" />
 </identity>
 </endpoint>
 <endpoint address="mex" binding="mexTcpBinding"
bindingConfiguration=""
 contract="IMetadataExchange" />
 <host>
 <baseAddresses>
 <add baseAddress="net.tcp://localhost:8523/Service1" />
 </baseAddresses>
 </host>
 </service>
 </services>
 <behaviors>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 501

 <serviceBehaviors>
 <behavior name="WcfServiceLibrary1.Service1Behavior">
 <serviceMetadata httpGetEnabled="false" />
 <serviceDebug includeExceptionDetailInFaults="false" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>

Note:

• The port 8523 and Service1 are arbitrary for this example. If you run into a conflict
where the port is in use, change it.

• If you do not set HttpGetEnabled to False, you will get an exception in the Event Log
when the service tries to start.

Step 3 – Create a Windows Service
In this step, you add a Windows Service project to your solution.

1. Right‐click your solution, cllick Add, and then click New Project.
2. In the Add New Project dialog box, select Windows, and then select Windows Service.
3. In the Name field, leave the default name WindowsService1 and then click OK to create

a Windows service application.
4. Copy App.config from your WCF Service Library project to your Windows service

project. In the WCF Service Library project, right‐click the App.config file, click Copy,
and then right‐click your Windows service project and click Paste.

Step 4 – Add the Service Installers to the Windows Service
In this step, you add service installers to your Windows service.

1. Right‐click Service1.cs and then click View Designer.
2. Right‐click the designer view and then click Add Installer.

This adds the ProjectInstaller.cs file with two objects, serviceProcessInstaller1 and
serviceInstaller1.

3. In the Design view of ProjectInstaller.cs, right‐click serviceProcessInstaller1 and then
click Properties.

4. In the Properties pane, set the Account attribute to NetworkService.
5. Right‐click serviceInstaller1 and then click Properties.
6. In the Properties pane, set the StartType attribute to Automatic.

Step 5 – Modify the Windows Service to Host the WCF Service
In this step, you override the OnStart() and OnStop() methods to start and stop the WCF
service inside the Windows service process.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 502

1. Add a reference to System.ServiceModel to your Windows Service project. To do so, in
your Windows service project, right‐click the References node and then click Add
References. In the Add Reference dialog box, select System.ServiceModel and then
click OK.

2. Add a reference to your WCF Service Library project from your Windows service. To do
so, in your Windows service project, right‐click the References node and then click Add
References. In the Add Reference dialog box, select the Projects tab. Select the WCF
Service Library project, WcfServiceLibrary1, and then click OK.

3. Add the following using statements to the Service1.cs file in your Windows service
project.

using System.ServiceModel;
using WcfServiceLibrary1;

4. Select Service1.cs and switch to code view.
5. Declare an internal static member of ServiceHost type, as follows:

internal static ServiceHost myServiceHost = null;

6. Override the OnStart method of the Windows service, to open the service host as

follows:

protected override void OnStart(string[] args)
{
 if (myServiceHost != null)
 {
 myServiceHost.Close();
 }
 myServiceHost = new ServiceHost(typeof(Service1));
 myServiceHost.Open();
}

7. Override the OnStop method of the Windows service, to close the service host as

follows:

protected override void OnStop()
{
 if (myServiceHost != null)
 {
 myServiceHost.Close();
 myServiceHost = null;
 }
}
8. Verify that your Service1.cs resembles the following:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 503

using System.Linq;
using System.ServiceProcess;
using System.Text;
using System.ServiceModel;
using WcfServiceLibrary1;

namespace WindowsService1
{
 public partial class Service1: ServiceBase
 {
 internal static ServiceHost myServiceHost = null;

 public WCFServiceHost1()
 {
 InitializeComponent();
 }
 protected override void OnStart(string[] args)
 {
 if (myServiceHost != null)
 {
 myServiceHost.Close();
 }
 myServiceHost = new ServiceHost(typeof(Service1));
 myServiceHost.Open();
 }
 protected override void OnStop()
 {
 if (myServiceHost != null)
 {
 myServiceHost.Close();
 myServiceHost = null;
 }
 }
 }
}

9. In the Solution Explorer, copy the App.config file from the WCF service project to the

Windows service project so that the config file will be in both service binary folders after
compiling.

10. Build your solution and verify that your project produces WindowsService1.exe in your
project \bin\debug directory of your WindowsService1 project.

Step 6 – Install the Windows Service
In this step, you install the Windows service and run it from the Services console.

1. Rebuild the solution and open a Visual Studio command prompt.
2. Browse to the bin directory of the project where WindowsService1.exe is located.
3. Run the following command to install the service:

Installutil WindowsService1.exe

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 504

4. Start your service. To do so, click Start, click Run, type services.msc and then click OK.
Right‐click your service and then click Start.

Note: If you have modified the service that is already installed, you can uninstall it by using
following command:

Installutil /u WindowsService1.exe

Step 7 – Create a Windows Forms Test Client Application
In this step, you create a Windows Forms application named Test Client that you will use to test
the WCF service.

1. Right‐click your solution, click Add, and then click New Project.
2. In the Add New Project dialog box, in the Templates section, select Windows

Application.
3. In the Name field, type Test Client and then click OK to create a Windows Forms

application.

Step 8 – Add a WCF Service Reference to the Client
In this step, you add a reference from your test client to your WCF service

1. Right‐click your Test client project and select Add Service Reference.
2. In the Add Service Reference dialog box, set the Address to the following and then click

OK

net.tcp://localhost:8523/Service1

Note: net.tcp://localhost:8523/Service1 is the base address that you set in Step 3 above.

Step 9 – Test the Client and WCF Service
In this step, you use the test client to ensure that the WCF service is running properly.

1. In your Client project, drag a button control onto your form.
2. Double‐click the button control to show the underlying code.
3. In the code behind the button click, create an instance of the proxy, and call GetData of

your WCF service. When you call the service, your current user security context will
automatically be passed to your WCF Service. The code should look as follows:

 private void button1_Click(object sender, EventArgs e)
 {
 ServiceReference1.Service1Client myService = new
ServiceReference1.Service1Client();
 MessageBox.Show(myService.GetData(123), “My Service”);
 myService.Close();
 }

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 505

4. Right‐click your client project and then click Set as Startup Project.
5. Run the client application by pressing F5 or Ctrl+F5.

When you click the button on the form, the message “You entered: 123” should appear.

Additional Resources
• For more information on hosting WCF in a Windows service, see “Hosting in a Windows

Service Application” at http://msdn.microsoft.com/en‐us/library/ms734781.aspx
• For more information on hosting WCF in a Windows service, see “How to: Host a WCF

Service in a Managed Windows Service” at http://msdn.microsoft.com/en‐
us/library/ms733069.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 506

How To: Impersonate the Original Caller in WCF Calling
from a Web Application

Applies To
• Microsoft Windows Communication Foundation (WCF) 3.5
• Microsoft® Visual Studio® 2008

Summary
This How To article shows you how to impersonate the original caller in a WCF service
that has been called from a Web application. The article shows you how to configure the
WCF service, implement impersonation, and test the service with a sample Web client.

Contents
• Objectives
• Overview
• Summary of Steps
• Before You Begin
• Step 1 – Create a Sample WCF Service
• Step 2 – Configure the WCF Service to Use Windows Authentication
• Step 3 – Configure the SPN Identity for the WCF Service Endpoint
• Step 4 – Implement Impersonation in the WCF Service
• Step 5 – Create a Web Application Test Client
• Step 6 – Add a WCF Service Reference to the Client
• Step 7 – Impersonate the Original Caller When Calling the WCF Service
• Step 8 – Configure the Web Application for Constrained Delegation
• Step 9 – Test the Client and WCF Service
• Additional Resources

Objectives
• Learn how to impersonate the original caller declaratively.
• Learn how to impersonate the original caller programmatically.
• Learn how to impersonate for specific WCF operations.
• Learn how to impersonate for all WCF operations.

Overview
WCF service code can make calls by using the security identity of the service (usually the
host process identity or the identity of a service account), or by using the security
identity of the original caller. The original caller may be an ASP.NET service account, or it
may be the end user of the client application. You impersonate the original caller

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 507

whenever downstream code needs to authorize based on the original caller’s identity.
For instance, you may have authorization checks in business logic called by WCF, or you
may want to access resources that have access control lists (ACLs) allowing specific user
access.

You can impersonate the original caller either declaratively or programmatically,
depending on the following circumstances:

• Impersonate the original caller declaratively when you want to access Microsoft
Windows® resources that are protected with ACLs configured for your
application’s domain user accounts.

• Impersonate the original caller programmatically when you want to access
resources predominantly by using the application’s process identity, but specific
sections of the operation need to use the original caller’s identity.

Configure WCF to run using the identity of a lower‐privilege account, such as the
Network Service account, when it is not impersonating. Use the OperationBehavior
attribute to impersonate declaratively on specific operations. Use the Impersonate()
method in your code to impersonate programmatically.

In order to reduce attack surface, it is more secure to impersonate only on those
operations in which it is necessary to do so. If you do want to impersonate on all
operations, set the ImpersonateCallerForAllOperations attribute of
ServiceAuthorizationBehavior to True in your application’s configuration file.

Summary of Steps
• Step 1 – Create a Sample WCF Service
• Step 2 – Configure the WCF Service to Use Windows Authentication
• Step 3 – Configure the SPN Identity for the WCF Service Endpoint
• Step 4 – Implement Impersonation in the WCF Service
• Step 5 – Create a Web Application Test Client
• Step 6 – Add a WCF Service Reference to the Client
• Step 7 – Impersonate the Original Caller When Calling the WCF Service
• Step 8 – Configure the Web Application for Constrained Delegation
• Step 9 – Test the Client and WCF Service

Before You Begin
Before you can configure WCF to impersonate the original caller from a Web
application, you must ensure that you have the following prerequisites in place:

• You must have Visual Studio 2008 installed.
• You must have Internet Information Services (IIS) installed and running.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 508

• You must be in a Microsoft Active Directory® environment.
• You must have access to your Active Directory domain controller.

Step 1 – Create a Sample WCF Service
In this step, you create a WCF service in Visual Studio, hosted in an IIS virtual directory.

1. In Visual Studio, select File > New Web Site.
2. In the Templates section, select WCF Service. Make sure that the Location is set

to Http and specify the virtual directory to be created in the Path (e.g.,
http://localhost/WCFServiceImpersonation).

3. In the New Web Site dialog box, click OKto create a virtual directory, a solution
file, and a sample WCF service for the solution.

4. In Microsoft Internet Explorer, browse to your WCF Service at
http://localhost/WCFServiceImpersonation/Service.svc. You should see details of
your WCF service in the browser.

Step 2 – Configure the WCF Service to Use Windows
Authentication
By default, Visual Studio configures your WCF service to use wsHttpBinding with
Windows Authentication and Message Security.

In Visual Studio, verify your configuration settings in Web.config. The configuration
should look as follows:
...
<services>
 <service name="Service" behaviorConfiguration="ServiceBehavior">
 <endpoint address="" binding="wsHttpBinding" contract="IService">
 <identity>
 <dns value="localhost"/>
 </identity>
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
 contract="IMetadataExchange"/>
 </service>
</services>
...

Step 3 – Configure the SPN Identity for the WCF Service
Endpoint
In this step, you configure the service principle name (SPN) identity under which the
WCF service will run. This identity is usually the lower‐privilege Network Service
account. Use of this account will reduce the attack surface when your application is not
impersonating.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 509

1. Right‐click the Web.config file and then and select the Edit WCF Configuration
option.

2. If you do not see the Edit WCF Configuration option, click the Tools menu and
select WCF Service Configuration Editor. Close the WCF Service Configuration
Editor tool that appears. The option should now appear on the web.config
context menu.

3. Expand the Services node, expand the Service node, and then expand the
Endpoints node.

4. Select the first endpoint and verify it is configured to use wsHttpBinding.
5. Select the Identity tab and delete the Dns attribute value, which by default is set

to “localhost”.
6. Set the ServicePrincipalName attribute to “HOST/YourMachineName”. This

value depends on the identity which is used for running the WCF service. By
default, the WCF service runs under the Network Service identity and is
identified by the machine account in the network, hence you can use your
machine name.

Note: If WCF was running under a domain account, which will be true in a real‐
world production scenario, you will have to create a SPN for that identity and set
the ServicePrincipalName attribute to the SPN appropriately.

7. In the configuration editor dialog box, on the File menu, click Save.
8. In Visual Studio, verify your configuration settings in Web.config. The

configuration should look as follows:

...
<services>
 <service name="Service"
behaviorConfiguration="ServiceBehavior">
 <!-- Service Endpoints -->
 <endpoint address="" binding="wsHttpBinding"
contract="IService">
 <identity>
 <servicePrincipalName value="HOST/YourMachineName" />
 <dns value="" />
 </identity>
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
contract="IMetadataExchange"/>
 </service>
</services>
...

Step 4 – Implement Impersonation in the WCF Service
Perform the following steps to declaratively impersonate specific operations:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 510

1. In the Solution Explorer, expand the App_Code folder under your WCF Service
project, and then open the Service.cs file.

2. Add a using statement for the System.Security.Principal namespace.
3. Set the impersonation required on the operation implementation of the specific

operation as follows:

[OperationBehavior(Impersonation = ImpersonationOption.Required)]
 public string GetData(int value)
 {
 return string.Format("Hi, {0}, you have entered: {1}",
 WindowsIdentity.GetCurrent().Name,

value);
 }

Step 5 – Create a Web Application Test Client
In this step, you create a Web application that you will use to test the WCF service. In
order to more closely emulate a production scenario, you should create the Web
application on a separate physical machine.

1. In Visual Studio, select File > New Web Site.
2. In the Templates section, select ASP.NET Web Site. Make sure that the Location

is set to Http and specify the virtual directory to be created in the Path (e.g.,
http://localhost/TestClientWebSite).

3. In the New Web Site dialog box, click OK to create a virtual directory and a
sample ASP.NET Web site.

4. Open Internet Information Services (IIS) Manager by running the inetmgr
command from the command line.

5. Expand the Default Website node, right‐click the new TestClientWebSite virtual
directory, and then select Properties.

6. In the Properties dialog box, click the Directory Security tab.
7. In the Anonymous access and authentication control section, click Edit.
8. In the Authentication Methods dialog box, clear the Anonymous access check

box, and then select the Integrated Windows authentication check box.
9. In the Authentication Methods dialog box, click OK.
10. In the Properties dialog box, click Apply and then click OK.
11. Run the iisreset command from the command line.

Step 6 – Add a WCF Service reference to the client
In this step, you add a reference to your WCF service.

1. Right‐click your client project and then click Add Service Reference.
2. In the Add Service Reference dialog box, set the URL to your WCF service (for

example, http://localhost/WCFServiceImpersonation/Service.svc) and then click
Go.

3. In the Namespace field, change “ServiceReference1” to “WCFTestService”.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 511

4. Click OK.
A reference to WCFTestService should appear beneath Service References in
your client project.

Step 7 – Impersonate the Original Caller When Calling the
WCF Service
In this step, you impersonate the original caller from the Web application and then call
the WCF service.

1. View the designer for Default.aspx in your Web application.
2. Drag a Button control into the designer.
3. Double‐click the Button control to show the underlying code.
4. Add a using statement for the System.Security.Principle namespace.
5. Use the Impersonate() method to impersonate the original caller.
6. Create an instance of the proxy and then call the GetData method of your WCF

service. The code should look as follows:

Using System.Security.Principal;
…
protected void Button1_Click(object sender, EventArgs e)
{
 // Obtain the authenticated user's Identity and impersonate
the original caller
 using
(((WindowsIdentity)HttpContext.Current.User.Identity).Impersonate
())
 {
 WCFTestService.ServiceClient myService = new
WCFTestService.ServiceClient();
 Response.Write(myService.GetData(123) + "
");
 myService.Close();
 }
}
…

Step 8 – Configure the Web Application for Constrained
Delegation
In this step, you configure Active Directory to allow your Web application to use
constrained delegation to access a remote WCF service. Constrained delegation allows
the Web application to pass the identity of the original user to the WCF service.

If your ASP.NET application runs using the Network Service machine account, you must
enable constrained delegation for your Web server computer. However, if your ASP.NET
application runs under a custom domain account, you must enable protocol transition
and constrained delegation for the custom domain account.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 512

This How To article assumes that you are running your Web application under the
Network Service machine account.

1. Start the Microsoft Management Console (MMC) Active Directory Users and
Computers snap‐in.

2. In the left pane of the MMC snap‐in, click the Computers node.
3. In the right pane, double‐click your Web server computer to display the

Properties dialog box.
4. On the Delegation tab of the Properties window for the Web server computer,

Do not trust the computer for delegation is selected by default. To use
constrained delegation, select Trust this computer for delegation to specified
services only.
You specify precisely which service or services can be accessed in the bottom
pane.

5. Beneath Trust this computer for delegation to specified services only, select
Use Kerberos only.

6. Click Add. The Add Services dialog box appears.
7. Click Users or computers.
8. In the Select Users or Computers dialog box, type the name of your WCF service

computer if you are running using Network Service. Alternatively, if you are
running WCF by using a custom domain account, enter that account name
instead. Click OK.
You will see all the SPNs configured for the selected user or computer account.

9. To restrict access to the WCF service, select the HOST service, and then click OK.

For more information on constrained delegation, see “How To: Use Protocol Transition
and Constrained Delegation in ASP.NET 2.0” at http://msdn2.microsoft.com/en‐
us/library/ms998355.aspx

Step 9 – Test the Client and WCF Service
In this step, you access the WCF service via the ASP.NET Web site and ensure that it
impersonates as expected.

1. Rebuild both your WCF Service and Web Application projects.
2. From the client machine, access the Web application and click the button.
3. The browser should display the message “Hi, <<logged in user id>>, you have

entered: 123”.

Notice that if you remove impersonation from your service and run the client again, the
user ID changes from your identity to the ASP.NET identity.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 513

Additional Information
There are two options for impersonation:

• Impersonating the original caller declaratively
• Impersonating the original caller programmatically

This How To article showed how to impersonate specific operations declaratively
because this is the most common and secure mechanism for impersonation. The
following sections detail the complete set of options available for impersonation.

Impersonating the original caller declaratively
You can impersonate declaratively by applying the OperationBehaviorAttribute
attribute on any operation that requires client impersonation. You can impersonate for
all operations in the service, or limit the scope to specific operations. Impersonating all
operations may increase the attack surface and negatively impact the security of your
application.

Impersonating for specific operations
Perform the following steps to impersonate specific operations:

1. In the Solution Explorer, expand the App_Code folder under your WCF Service
project, and then open the Service.cs file.

2. Add a using statement for the System.Security.Principal namespace.
3. Set the impersonation required on the operation implementation of the specific

operation as follows:

[OperationBehavior(Impersonation = ImpersonationOption.Required)]
 public string GetData(int value)
 {
 return string.Format("Hi, {0}, you have entered: {1}",
 WindowsIdentity.GetCurrent().Name,

value);
 }

Impersonating all operations
Perform the following steps to impersonate all operations:

1. Right‐click the Web.config file and then select the Edit WCF Configuration
option.

2. Expand the Advanced node and then expand the Service Behaviors node.
3. Select the ServiceBehavior service behavior, and then click the Add button.
4. In the Adding Behavior Extension Element Sections dialog box, choose

serviceAuthorization and then click Add.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 514

5. Select the serviceAuthorization node and then set the
ImpersonateCallerForAllOperations attribute to True.

6. In the configuration editor dialog box, on the File menu, click Save.
7. In Visual Studio, verify your configuration settings in Web.config. The

configuration should look as follows:

...
<behaviors>
 <serviceBehaviors>
 <behavior name="ServiceBehavior">
 <serviceMetadata httpGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="false" />
 <serviceAuthorization
impersonateCallerForAllOperations="true" />
 </behavior>
 </serviceBehaviors>
</behaviors>
...

Note: When impersonating for all operations, the Impersonation property of the
OperationBehaviorAttribute applied to each method must also be set to either
Allowed or Required.

Impersonating the original caller programmatically
Perform the following steps to impersonate the original caller programmatically:

1. In the Solution Explorer, expand the App_Code folder under your WCF Service
project, and then open the Service.cs file.

2. Add a using statement for the System.Security.Principal namespace.
3. Use the Impersonate() call to impersonate the original caller, and then use

GetCurrent() to revert back to the previous state, as follows:

public string GetData(int value)
{
 using
(ServiceSecurityContext.Current.WindowsIdentity.Impersonate())
 {
 // return the impersonated user (original users identity)
 return string.Format("Hi, {0}, you have entered: {1}",
 WindowsIdentity.GetCurrent().Name, value);
 }
}

Additional Resources
• For more information on impersonation, see “Delegation and Impersonation

with WCF” at http://msdn2.microsoft.com/en‐us/library/ms731090.aspx.
• For further information on impersonation, see “How to: Impersonate a Client on

a Service” at http://msdn2.microsoft.com/en‐us/library/ms730088.aspx.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 515

• For more information on constrained delegation, see “How To: Use Protocol
Transition and Constrained Delegation in ASP.NET 2.0” at
http://msdn2.microsoft.com/en‐us/library/ms998355.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 516

How To: Impersonate the Original Caller in WCF Calling
from Windows Forms

Applies To
• Microsoft Windows Communication Foundation (WCF) 3.5
• Microsoft® Visual Studio® 2008

Summary
This How To article shows you how to impersonate the original caller in a WCF service
that has been called from a Windows Forms application. The article shows you how to
configure the WCF service, implement impersonation, and test the service with a
sample Windows Forms client.

Contents
• Objectives
• Overview
• Summary of Steps
• Step 1 – Create a Sample WCF Service
• Step 2 – Configure the WCF Service to Use Windows Authentication
• Step 3 – Implement Impersonation in the WCF Service
• Step 4 – Create a Test Client Application
• Step 5 – Add a WCF Service Reference to the Client
• Step 6 – Test the Client and WCF Service
• Additional Information
• Additional Resources

Objectives
• Learn how to impersonate the original caller declaratively.
• Learn how to impersonate the original caller programmatically.
• Learn how to impersonate for specific WCF operations.
• Learn how to impersonate for all WCF operations.

Overview
WCF service code can make calls by using the security identity of the service (usually the
process identity or the identity of a service account), or by using the security identity of
the original caller. The original caller may be an ASP.NET service account, or it may be
the end user of the client application. You impersonate the original caller whenever
downstream code needs to authorize based on the original caller’s identity. For
instance, you may have authorization checks in business logic called by WCF, or you may

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 517

want to access resources that have access control lists (ACLs) allowing specific user
access.

You can impersonate the original caller either declaratively or programmatically,
depending on the following circumstances:

• Impersonate the original caller declaratively when you want to access Microsoft
Windows® resources that are protected with ACLs configured for your
application’s domain user accounts.

• Impersonate the original caller programmatically when you want to access
resources predominantly by using the application’s process identity, but specific
sections of the operation need to use the original caller’s identity.

Use the OperationBehavior attribute to impersonate declaratively on specific
operations. Use the Impersonate() method in your code to impersonate
programmatically.

In order to reduce attack surface, it is more secure to impersonate only on those
operations in which it is necessary to do so. If you do want to impersonate on all
operations, set the ImpersonateCallerForAllOperations attribute to True in your
application’s configuration file.

Summary of Steps
• Step 1 – Create a Sample WCF Service
• Step 2 – Configure the WCF Service to Use Windows Authentication
• Step 3 – Implement Impersonation in the WCF Service
• Step 4 – Create a Test Client Application
• Step 5 – Add a WCF Service Reference to the Client
• Step 6 – Test the Client and WCF Service

Step 1 – Create a Sample WCF Service
In this step, you create a WCF service in Visual Studio, hosted in an Internet Information
Services (IIS) virtual directory.

1. In Visual Studio, select File > New Web Site.
2. In the Templates section, select WCF Service. Make sure that the Location is set

to Http and specify the virtual directory to be created in the Path (e.g.,
http://localhost/WCFServiceImpersonation).

3. In the New Web Site dialog box, click OK to create a virtual directory, a solution
file, and a sample WCF service for the solution.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 518

4. In Microsoft Internet Explorer, browse to your WCF Service at
http://localhost/WCFServiceImpersonation/Service.svc. You should see details of
your WCF service in the browser.

Step 2 – Configure the WCF Service to Use Windows
Authentication
By default, Visual Studio configures your WCF service to use wsHttpBinding with
Windows Authentication and Message Security.

In Visual Studio, verify your configuration settings in Web.config. The configuration
should look as follows:

...
<services>
 <service name="Service" behaviorConfiguration="ServiceBehavior">
 <endpoint address="" binding="wsHttpBinding" contract="IService">
 <identity>
 <dns value="localhost"/>
 </identity>
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
 contract="IMetadataExchange"/>
 </service>
</services>
...

Step 3 – Implement Impersonation in the WCF Service
Perform the following steps to declaratively impersonate specific operations:

1. In the Solution Explorer, expand the App_Code folder under your WCF Service
project, and then open the Service.cs file.

2. Add a using statement for the System.Security.Principal namespace.
3. Set the impersonation required on the operation implementation of the specific

operation as follows:

[OperationBehavior(Impersonation = ImpersonationOption.Required)]
 public string GetData(int value)
 {
 return string.Format("Hi, {0}, you have entered: {1}",
 WindowsIdentity.GetCurrent().Name,

value);
 }

Step 4 – Create a Test Client Application
In this step, you create a Windows Forms application that you will use to test the WCF
service.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 519

1. Right‐click your solution, click Add, and then click New Project.
2. In the Add New Project dialog box, in the Templates section, select Windows

Forms Application.
3. In the Name field, type Test Client and then click OK to create a Windows Forms

application for testing.

Step 5 – Add a WCF Service Reference to the Client
In this step, you add a reference to your WCF Service.

1. Right‐click your client project and select Add Service Reference.
2. In the Add Service Reference dialog box, set the URL to your WCF service:

http://localhost/WCFServiceImpersonation/Service.svc
3. In the Namespace field, change ServiceReference1 to WCFTestService.
4. Click OK.

A reference to WCFTestService should appear beneath Service References in
your client project.

Step 6 – Test the Client and WCF Service
In this step, you access the WCF service and make sure that it impersonates as
expected.

1. In your client project, drag a Button control onto your form.
2. Double‐click the Button control to show the underlying code.
3. Create an instance of the proxy and call the GetData method of your WCF

service. The code should look as follows:

private void button1_Click(object sender, EventArgs e)
{
 WCFTestService.ServiceClient myService = new
 WCFTestService.ServiceClient();
 MessageBox.Show(myService.GetData(123));
 myService.Close();
}

4. Right‐click the client project and select Set as Startup Project.
5. Run the client application by pressing F5 or Ctrl+F5. When you click the button

on the form, it should display the message “Hi, <<logged in user id>>, you have
entered: 123”.

Note that if you remove impersonation from your service and run the client again, the
user ID changes from your identity to the ASP.NET identity.

Additional Information
There are two options for impersonation:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 520

• Impersonating the original caller declaratively
• Impersonating the original caller programmatically

This How To article showed how to impersonate specific operations declaratively
because this is the most common and secure mechanism for impersonation. The
following sections detail the complete set of options available for impersonation.

Impersonating the original caller declaratively
You can impersonate declaratively by applying the OperationBehaviorAttribute
attribute on any operation that requires client impersonation. You can impersonate for
all operations in the service, or limit the scope to specific operations. Impersonating all
operations may increase the attack surface and negatively impact the security of your
application.

Impersonating for specific operations
Perform the following steps to impersonate specific operations:

1. In the Solution Explorer, expand the App_Code folder under your WCF Service
project, and then open the Service.cs file.

2. Add a using statement for the System.Security.Principal namespace.
3. Set the impersonation required on the operation implementation of the specific

operation as follows:

[OperationBehavior(Impersonation = ImpersonationOption.Required)]
 public string GetData(int value)
 {
 return string.Format("Hi, {0}, you have entered: {1}",
 WindowsIdentity.GetCurrent().Name,

value);
 }

Impersonating all operations
Perform the following steps to impersonate all operations:

1. Right‐click the Web.config file and then select the Edit WCF Configuration
option.

2. Expand the Advanced node and then expand the Service Behaviors node.
3. Select the ServiceBehavior service behavior, and then click Add.
4. In the Adding Behavior Extension Element Sections dialog box, choose

serviceAuthorization and then click the Add.
5. Select the serviceAuthorization node and then set the

ImpersonateCallerForAllOperations attribute to True.
6. In the configuration editor dialog box, on the File menu, click Save.
7. In Visual Studio, verify your configuration settings in Web.config. The

configuration should look as follows:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 521

...
<behaviors>
 <serviceBehaviors>
 <behavior name="ServiceBehavior">
 <serviceMetadata httpGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="false" />
 <serviceAuthorization
impersonateCallerForAllOperations="true" />
 </behavior>
 </serviceBehaviors>
</behaviors>
...

Note: When impersonating for all operations, the Impersonation property of the
OperationBehaviorAttribute applied to each method must also be set to either
Allowed or Required.

Impersonating the original caller programmatically
Perform the following steps to impersonate the original caller programmatically:

1. In the Solution Explorer, expand the App_Code folder under your WCF Service
project, and then open the Service.cs file.

2. Add a using statement for the System.Security.Principal namespace.
3. Use the Impersonate() call to impersonate the original caller, and then use

GetCurrent() to revert back to the previous state, as follows:

public string GetData(int value)
{
 using
(ServiceSecurityContext.Current.WindowsIdentity.Impersonate())
 {
 // return the impersonated user (original users identity)
 return string.Format("Hi, {0}, you have entered: {1}",
 WindowsIdentity.GetCurrent().Name, value);
 }
}

Note: It is important to revert to impersonation. Failure to do so can form the basis for
denial of service and elevation of privilege attacks. In the example above the using
statement ensures that the impersonation is reverted after execution of the using block.

Additional Resources
• For more information on impersonation, see “Delegation and Impersonation

with WCF” at http://msdn2.microsoft.com/en‐us/library/ms730088.aspx.
• For further information on impersonation, see “How to: Impersonate a Client on

a Service” athttp://msdn2.microsoft.com/en‐us/library/ms731090.aspx.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 522

How To – Perform Input Validation in WCF

Applies To
• Microsoft® Windows Communication Foundation (WCF) 3.5
• Microsoft .NET Framework 3.5
• Microsoft Visual Studio® 2008

Summary
This How To article shows you how to perform input and data validation on parameters in WCF
operations. The article shows you how to create a custom parameter inspector that can be used to
validate input on both the server and on the client.

Contents
• Objectives
• Overview
• Summary of Steps
• Step 1 – Create a Sample WCF Service
• Step 2 – Create a Windows Class Library for Parameter Validation
• Step 3 – Create a Class That Implements the Validation Logic
• Step 4 – Create a Class That Implements a Custom Endpoint Behavior
• Step 5 – Create a Class That Implements a Custom Configuration Element
• Step 6 – Add the Custom Behavior to the Configuration File
• Step 7 – Create an Endpoint Behavior and Map It to Use the Custom Behavior
• Step 8 – Configure the Service Endpoint to Use the Endpoint Behavior
• Step 9 – Test the Parameter Validator
• Deployment Considerations
• Additional Resources

Objectives
• Learn how to create a custom parameter inspector to validate parameters in the operations

of the service.
• Learn how to create a custom endpoint behavior that will consume the parameter

inspector.
• Learn how to create a custom configuration element that will allow exposing of the

custom endpoint behavior in the configuration file.

Overview
Input and data validation represents one important line of defense in the protection of your WCF
application. You should validate all parameters exposed in WCF service operations to protect the
service from attack by a malicious client. Conversely, you should also validate all return values
received by the client to protect the client from attack by a malicious service.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 523

WCF provides different extensibility points that allow you to customize the WCF runtime
behavior by creating custom extensions. Message Inspectors and Parameter Inspectors are two
extensibility mechanisms to gain higher control over the data passing between a client and a
service. You should use parameter inspectors for input validation and message inspectors should
be used only when you need to inspect the entire message flowing in and out of a service.

To perform input validation, you will build a .NET class and implement a custom parameter
inspector in order to validate parameters on operations in your service. You will then implement
a custom endpoint behavior to enable validation on both the client and the service. Finally, you
will implement a custom configuration element on the class that allows you to expose the
extended custom endpoint behavior in the configuration file of the service or the client.

For the purpose of this How-To we will create a WCF Service with wsHttpBinding and host it in
IIS.

Summary of Steps
• Step 1 – Create a Sample WCF Service
• Step 2 – Configure the WCF Service to Use wsHttpBinding with Windows

Authentication and Message Security
• Step 3 – Create a Windows Class Library Project That Will Contain the Three Classes

Necessary for Parameter Validation
• Step 4 – Create a Class That Implements the Validation Logic
• Step 5 – Create a Class That Implements a Custom Endpoint Behavior
• Step 6 – Create a Class That Implements a Custom Configuration Element
• Step 7 – Add the Custom Behavior to the Configuration File
• Step 8 – Create an Endpoint Behavior and Map It to Use the Custom Behavior
• Step 9 – Configure the Service Endpoint to Use the Endpoint Behavior
• Step 10 – Test the Parameter Validator

Step 1 – Create a Sample WCF Service
In this step, you create a WCF service in Visual Studio, hosted in an Internet Information
Services (IIS) virtual directory.

1. In Visual Studio, on the File menu, click New Web Site.
2. In the New Web Site dialog box, in the Templates section, select WCF Service. Make

sure that the Location is set to Http.
3. In the New Web Site dialog box, set the new Web site address to

http://localhost/WCFTestParameterValidation and then click OK.
4. By default, your WCF service will be configured to use wsHttpBinding binding with

message security and Windows Authentication. Verify that your web.config
configuration file looks as follows:

…
<services>
 <service name="Service" behaviorConfiguration="ServiceBehavior">
 <!-- Service Endpoints -->

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 524

 <endpoint address="" binding="wsHttpBinding" contract="IService">
 <identity>
 <dns value="localhost"/>
 </identity>
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
contract="IMetadataExchange"/>
 </service>
</services>
…

Step 2 – Create a Windows Class Library for Parameter Validation
In this step, you create a Microsoft Windows® class library project that will include three classes
for the custom parameter validation:

• One class to implement the parameter validation logic
• A second class to implement the endpoint behavior that will use the custom parameter

class
• A third class to implement a behavior extension so that the validator will be visible in the

service and client configuration files

Perform the following steps:

1. Open a new instance of Visual Studio, leaving your WCF service solution open.
2. In the new instance of Visual Studio, on the click File menu, click New and then click

Project.
3. Expand Visual C#, click Windows, and then select Class Library.
4. In the Name field, type MyParamaterValidator and then click OK.
5. In the Solution Explorer, right click References, click Add Reference, click the .NET

tab, select System.ServiceModel, and then click OK.
6. In the Solution Explorer, right-click References, click Add Reference, click the .NET

tab, select System.Configuration, and then click OK.
7. Open the Class1.cs file and rename the class name from Class1 to Validation.
8. Add the following using statements to the top of the Class1.cs file.

using System.Configuration;
using System.ServiceModel;
using System.ServiceModel.Configuration;
using System.ServiceModel.Description;
using System.ServiceModel.Dispatcher;

Step 3 – Create a Class That Implements the Validation Logic
In this step, you create a new class, derived from IParameterInspector, to implement the
validation logic.

The newly created class has the following characteristics:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 525

• It implements AfterCall() and BeforeCall() methods.
• When used as part of the service, BeforeCall() will be invoked before the parameters are

dispatched to the service operation. AfterCall() will be invoked after the service has
processed the call and is returning a the response to the client. Use BeforeCall() to
validate your input parameters and AfterCall() to validate your output parameters.

• When used as part of the client, BeforeCall() will be invoked before calling the service,
and AfterCall() before the service’s response is dispatched to the client code. Use
AfterCall() to validate the response from the service, and BeforeCall() to validate the
return from the service.

This example uses simple validation logic to check if the parameter passed to the operation is
within the values 1 and 5. If the validation fails, an exception is thrown with the Validation Input
Error message.

Perform the following steps:

1. Open the Class1.cs file and rename the class name from Class1 to Validation. Click Yes
on the dialog box which pops up.

2. Add the following using statements to the top of the Validation.cs file.

using System.ServiceModel;
using System.ServiceModel.Dispatcher;

3. Add the following code to implement the AfterCall method in the
ValidationParameterInspector class .

 public class ValidationParameterInspector : IParameterInspector
 {
 public void AfterCall(string operationName, object[] outputs,
 object returnValue, object correlationState)
 {

 if (operationName == "GetData")
 {
 for (int index = 0; index < outputs.Length; index++)
 {
 if (index == 0)
 {

 // execute the method level validators
 if (((int)outputs[index] < 0) ||
 ((int)outputs[index] > 5))
 throw new FaultException("Your Error Message");
 }

 }

 }
 }
 }

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 526

4. Add the following code to implement the BeforeCall method in the

ValidationParameterInspector class.

 public class ValidationParameterInspector : IParameterInspector
 {
 public void AfterCall(string operationName, object[] outputs,
 object returnValue, object correlationState)
 {

…

}

 public object BeforeCall(string operationName, object[] inputs)
 {

 if (operationName == "GetData")
 {

 for (int index = 0; index < inputs.Length ; index++)
 {
 if(index==0)
 {
 // execute the method level validators
 if (((int)inputs[index]<0)||((int)inputs[index] > 5))
 throw new FaultException("Validation Input Error");
 }

 }

 }

 return null;
 }

 }

Step 4 – Create a Class That Implements a Custom Endpoint
Behavior
In this step, you create a new class, derived from IEndpointBehavior, that implements a custom
endpoint behavior.

The newly created class has the following characteristics:

• It implements ApplyClientBehavior() to add the ValidationParamaterInspector to the
client operation and enable client-side validation.

• It implements ApplyDispatchBehavior() toadd the ValidationParameterInspector to
the dispatch operation and enable service-side validation.

• It verifies that it is enabled in the configuration before adding the
ValidationParameterInspector to the client or dispatch run time.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 527

Perform the following step:

• Copy the below code snippet and paste it into the Class1.cs file, inside the Validation
class that already exists:

 class ValidationBehavior : IEndpointBehavior
 {
 private bool enabled;
 #region IEndpointBehavior Members

 internal ValidationBehavior(bool enabled)
 {
 this.enabled = enabled;
 }

 public bool Enabled
 {
 get { return enabled; }
 set { enabled = value; }
 }

 public void AddBindingParameters(ServiceEndpoint serviceEndpoint,
System.ServiceModel.Channels.BindingParameterCollection bindingParameters)
 { }

 public void ApplyClientBehavior(
 ServiceEndpoint endpoint,
 ClientRuntime clientRuntime)
 {
 //If enable is not true in the config we do not apply the
Parameter Inspector
 if (false == this.enabled)
 {
 return;
 }

 foreach (ClientOperation clientOperation in
clientRuntime.Operations)
 {
 clientOperation.ParameterInspectors.Add(
 new ValidationParameterInspector());
 }

 }

 public void ApplyDispatchBehavior(
 ServiceEndpoint endpoint,
 EndpointDispatcher endpointDispatcher)
 {
 //If enable is not true in the config we do not apply the
Parameter Inspector

 if (false == this.enabled)
 {

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 528

 return;
 }

 foreach (DispatchOperation dispatchOperation in
endpointDispatcher.DispatchRuntime.Operations)
 {

 dispatchOperation.ParameterInspectors.Add(
 new ValidationParameterInspector());
 }

 }

 public void Validate(ServiceEndpoint serviceEndpoint)
 {

 }

 #endregion
 }

Step 5 – Create a Class That Implements a Custom Configuration
Element
In this step, you create a new class, derived from BehaviorExtensionElement, that implements
a custom configuration element.

The newly created class has the following characteristics:

• It implements CreateBehavior() to create an instance of the ValidationBehavior class.
• It implements BehaviorType() to return the ValidationBehavior type. This will allow

the custom behavior to be exposed in the service or client configuration sections.
• It implements ConfigurationProperty to allow the behavior to be enabled or disabled in

the WCF configuration files.

Perform the following step:

• Copy the below code snippet and paste it into the Class1.cs file, inside the Validation
class that already exists:

 public class CustomBehaviorSection : BehaviorExtensionElement
 {

 private const string EnabledAttributeName = "enabled";

 [ConfigurationProperty(EnabledAttributeName, DefaultValue = true,
IsRequired = false)]
 public bool Enabled
 {
 get { return (bool)base[EnabledAttributeName]; }
 set { base[EnabledAttributeName] = value; }
 }

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 529

 protected override object CreateBehavior()
 {
 return new ValidationBehavior(this.Enabled);

 }

 public override Type BehaviorType
 {

 get { return typeof(ValidationBehavior); }

 }
 }

Step 6 – Add the Custom Behavior to the Configuration File
In this step, you add the custom behavior to the behavior element extension in the WCF
configuration file so that it can be used by the WCF endpoint.

1. Compile your validation class library solution to create MyClassValidation.dll.
2. Return to the original instance of Visual Studio that contains your WCF service solution.
3. Right-click the WCF Web site project and then click Add Reference. Navigate to the

folder containing MyClassValidation.dll and then click Add.
4. Right-click web.config and then click Edit WCF configuration.

If you do not see the Edit WCF Configuration option, on the Tools menu, click WCF
Service Configuration Editor. Close the WCF Service Configuration Editor tool that
appears. The option should now appear on the web.config context menu.

5. Expand the Advanced node and the Extensions node, and then click behavior element
extensions.

6. Click New.
7. In the Name field, type Validator
8. Select the Type field, click the button that appears to the right, navigate to the folder

containing MyClassValidation.dll, and then double-click the dll file.
9. Double-click the type name MyParamaterValidator. CustomBehaviorSection and then

click OK.
10. In the WCF Configuration Editor, on the File menu, click Save.

Verify that your configuration file contains the following:

<system.serviceModel>
 ...
 <extensions>
 <behaviorExtensions>
 <add name="Validator" type="MyParamaterValidator.
CustomBehaviorSection, MyParamaterValidator, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=null" />
 </behaviorExtensions>
 </extensions>
 ...
 <system.serviceModel>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 530

Step 7 – Create an Endpoint Behavior and Map It to Use the
Custom Behavior
In this step, you create an endpoint behavior and map it to the custom behavior created in Step 7.

1. In the WCF Configuration Editor, expand the Advanced node, right-click Endpoint
Behavior, and then click New Endpoint Behavior Configuration.

2. Select the new behavior and then in the Name field, type MyEndPointBehavior
3. Click Add, select the Validator custom behavior, and then click Add.
4. In the WCF Configuration Editor, on the File menu, click Save.

Verify that your configuration file contains the following:

<behaviors>
 ...
 <endpointBehaviors>
 <behavior name="MyEndPointBehavior">
 <Validator />
 </behavior>
 </endpointBehaviors>
 ...
 </behaviors>

Step 8 – Configure the Service Endpoint to Use the Endpoint
Behavior
In this step, you configure the service to use the endpoint behavior in order to consume the
custom validator.

1. In the WCF Configuration Editor, expand the Services node, then expand the Service
node and then expand Endpoints.

2. Select the first [Empty Name] node.
3. In the BehaviorConfiguration field, select MyEndPointBehavior.
4. In the WCF Configuration Editor, on the file File menu, click Save.

Verify that your configuration file contains the following:

<endpoint address="" behaviorConfiguration="MyEndPointBehavior"
 binding="wsHttpBinding" contract="IService">
 <identity>
 <dns value="localhost" />
 </identity>
</endpoint>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 531

Step 9 - Test the Parameter Validator
In this step, you create a sample WCF client to test your validator.

1. Right-click your WCF service solution, click Add, and then click New Project.
2. In the Add New Project dialog box, in the Templates section, select Windows Forms

Application.
3. In the Name field, type Test Client and then click OK.
4. Right-click your client project and then click Add Service Reference.
5. In the Add Service Reference dialog box, set the Address field to

http://localhost/WCFTestParameterValidation/Service.svc and then click Go.
6. Set the Namespace field to WCFTestService and then click OK.
7. Open the designer for your new Windows form.
8. Drag a button control into the designer.
9. Drag a textbox control into the designer.
10. Double-click the button to show the underlying code.
11. In the code behind the button, create an instance of the WCF service proxy, and

then call the DoWork() method on your WCF service based on the value that is in the
textbox control.
When you call the service, your current user security context will automatically be passed
to your WCF Service.

private void button1_Click(object sender, EventArgs e)
{
 WCFTestService.ServiceClient myService = new
 WCFTestService.ServiceClient();
 MessageBox.Show(myService.GetData(int.Parse(textBox1.Text)));
 myService.Close();
}

12. Right click the client project and then click Set as Startup Project.
13. Run the client application by pressing F5 or Ctrl+F5, and then click the button. In the text

box, enter a value and then click the button.
The application will display the message “You entered: value” for the correct value
(input between 1 and 5) or a validation error for the incorrect value.

Deployment Considerations
Do not divulge exception errors to clients in production. Instead, develop a fault contract and
return it to your client inside the BeforeCall() and AfterCall() methods of the
ValidationParameterInspector class. For client-side validation, follow the same steps detailed in
this How To article, but instead use the app.config of the client consuming the service.

Additional Resources
• For additional information on configuring and extending the runtime with behaviors, see

“Configuring and Extending the Runtime with Behaviors” at
http://msdn2.microsoft.com/en-us/library/ms730137.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 532

• For additional information about the IEndPoint interface , see “IEndpointBehavior
Interface” at
 http://msdn2.microsoft.com/en-
us/library/system.servicemodel.description.iendpointbehavior.aspx

• For additional information about IParameterInspector interface, see
“IParameterInspector Interface” at http://msdn2.microsoft.com/en-
us/library/system.servicemodel.dispatcher.iparameterinspector.aspx

• For additional information about the BehaviorExtensionElement class, see
“BehaviorExtensionElement Class” at http://msdn2.microsoft.com/en-
us/library/system.servicemodel.configuration.behaviorextensionelement.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 533

How To – Perform Message Validation with Schema Validation
in WCF

Applies To
• Microsoft® Windows Communication Foundation (WCF) 3.5
• Microsoft .NET Framework 3.5
• Microsoft Visual Studio® 2008

Summary
This How To article shows you how to perform message validation using a schema in WCF. You
will learn how to create a custom client message inspector and dispatcher message inspector
that can be used to validate messages on both the server and the client.

Contents
• Objectives
• Overview
• Summary of Steps
• Step 1 – Create a Sample WCF Service
• Step 2 – Configure the WCF Service to Use wsHttpBinding with Windows Authentication

and Message Security
• Step 3 – Create the Schema to Validate the Message
• Step 4 – Create a Windows Class Library Project That Will Contain the Three Classes

Necessary for Schema Validation
• Step 5 – Create a Class That Implements the Schema Validation Logic
• Step 6 – Create a Class That Implements a Custom Endpoint Behavior
• Step 7 – Create a Class That Implements a Custom Configuration Element
• Step 8 – Add the Custom Behavior to the Configuration File
• Step 9 – Create an Endpoint Behavior and Map It to Use the Custom Behavior
• Step 10 – Configure the Service Endpoint to Use the Endpoint Behavior
• Step 11 – Test the Schema Validator
• Deployment Considerations
• Additional Resources

Objectives
• Learn how to create a custom configuration element that will allow exposing the custom

endpoint behavior in the configuration file.
• Learn how to create a custom endpoint behavior that will consume the client and

dispatcher message inspectors.
• Learn how to create custom client and dispatcher message inspectors to validate

messages using schemas.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 534

Overview
Message validation represents one line of defense in the protection of your WCF application.
With this approach, you validate messages using schemas to protect WCF service operations
from attack by a malicious client. Validate all messages received by the client to protect the
client from attack by a malicious service. Message validation makes it possible to validate
messages when operations consume message contracts or data contracts, which cannot be
done using parameter validation. Message validation allows you to create validation logic inside
schemas, thereby providing more flexibility and reducing development time. Schemas can be
reused across different applications inside the organization, creating standards for data
representation. Additionally, message validation allows you to protect operations when they
consume more complex data types involving contracts representing business logic.

To perform message validation, you first build a schema that represents the operations of your
service and the data types consumed by those operations. You then create a .NET class that
implements a custom client message inspector and custom dispatcher message inspector to
validate the messages sent/received to/from the service. Next, you implement a custom
endpoint behavior to enable message validation on both the client and the service. Finally, you
implement a custom configuration element on the class that allows you to expose the extended
custom endpoint behavior in the configuration file of the service or the client.

Summary of Steps
• Step 1 – Create a Sample WCF Service
• Step 2 – Configure the WCF Service to Use wsHttpBinding with Windows Authentication

and Message Security
• Step 3 – Create the Schema to Validate the Message
• Step 4 – Create a Windows Class Library Project That Will Contain the Three Classes

Necessary for Schema Validation
• Step 5 – Create a Class That Implements the Schema Validation Logic
• Step 6 – Create a Class That Implements a Custom Endpoint Behavior
• Step 7 – Create a Class That Implements a Custom Configuration Element
• Step 8 – Add the Custom Behavior to the Configuration File
• Step 9 – Create an Endpoint Behavior and Map It to Use the Custom Behavior
• Step 10 – Configure the Service Endpoint to Use the Endpoint Behavior
• Step 11 – Test the Schema Validator

Step 1 – Create a Sample WCF Service
In this step, you create a WCF service in Visual Studio, hosted in an Internet Information
Services (IIS) virtual directory.

1. In Visual Studio, on the menu, click File ‐> New Web Site.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 535

2. In the New Web Site dialog box, in the Templates section, select WCF Service. Make
sure that the Location is set to Http.

3. In the New Web Site dialog box, set the new Web site address to
http://localhost/WCFTestSchemaValidation and then click OK.

4. Create a data contract with the class CustomerData. This data contract will be
consumed by the operation of your service. To do this, in Visual Studio, double‐click the
IService.cs file, copy the following code snippet, and paste it into the bottom of the
IService.cs file:

[DataContract(Namespace =
"http://Microsoft.PatternPractices.WCFGuide")]
public class CustomerData
{
 [DataMember]
 string text;
 [DataMember]
 int CustomerID;

 public string Text
 {
 get { return text; }
 set { text = value; }
 }

 public int customerid
 {
 get { return CustomerID; }
 set { CustomerID = value; }
 }
}

5. Change the definition of the GetData operation contract to use the CustomerData type.
To do this, double‐click IService.cs, go to the top of the file, and replace the previous
definition with the new one as follows.

Previous operation contract:

[OperationContract]
string GetData(int value);

New operation contract:

[OperationContract]
CustomerData GetData(CustomerData CustomerInfo);

6. Change the implementation of the GetData operation contract to use the
CustomerData type. Double‐click IService.cs, go to the top of the file, and replace the
previous definition with the new one as follows.

Previous operation contract implementation:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 536

public string GetData(int value)
{
 return string.Format("You entered: {0}", value);
}

New operation contract implementation:

public CustomerData GetData(CustomerData CustomerInfo)
{
 CustomerData CustomerInfoResponse = new CustomerData();
 CustomerInfoResponse.Text = CustomerInfo.Text;
 CustomerInfoResponse.customerid = CustomerInfo.customerid+1;
 return CustomerInfoResponse;
}

7. Add the namespace definition to conform to the schema you are going to create.
Double‐click IService.cs and add the string (Namespace =
"http://Microsoft.PatternPractices.WCFGuide") after the ServiceContract entry in that
file. Your service contract entry will look like the following code fragment.

[ServiceContract(Namespace =
"http://Microsoft.PatternPractices.WCFGuide")]

Step 2 – Configure the WCF Service to Use wsHttpBinding with
Windows Authentication and Message Security
By default, your WCF service will be configured to use wsHttpBinding with message security
and Windows authentication. Verify that your web.config configuration file looks as follows:

…
<services>
 <service name="Service" behaviorConfiguration="ServiceBehavior">
 <!-- Service Endpoints -->
 <endpoint address="" binding="wsHttpBinding" contract="IService">
 <identity>
 <dns value="localhost"/>
 </identity>
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
contract="IMetadataExchange"/>
 </service>
</services>
…

Step 3 – Create the Schema to Validate the Message
In this step, you create the schema to validate the message.

1. Right‐click the http://localhost/WCFTestSchemaValidation project and then click Add
New Item.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 537

2. Select Xml Schema from the Visual Studio installed templates and enter the name
SchemaValidation in the Name text box. Select Visual C# as the language and then click
Add.

3. In the Visual Studio editor, delete the entire contents of this file. Copy the following
schema definition and paste it into the file:

<?xml version="1.0" encoding="utf-8"?>
<xs:schema elementFormDefault="qualified"
targetNamespace="http://Microsoft.PatternPractices.WCFGuide"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://Microsoft.PatternPractices.WCFGuide">
 <xs:element name="GetData">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" name="CustomerInfo" nillable="false"
type="tns:CustomerData" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="CustomerData">
 <xs:sequence>
 <xs:element name="CustomerID" type="tns:CustIDLimiter">
 </xs:element>
 <xs:element name="text" type="tns:CustomerN">
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="CustomerN">
 <xs:restriction base="xs:string">
 <xs:minLength value="1" />
 <xs:maxLength value="5" />
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="CustIDLimiter">
 <xs:restriction base="xs:int">
 <xs:minInclusive value="1" />
 <xs:maxInclusive value="5" />
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="GetDataResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" name="GetDataResult" nillable="false"
type="tns:CustomerData" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

The schema first defines the GetData operation contract that takes the CustomerData
type as a parameter being instantiated by CustomerInfo being passed to the operation
call. CustomerData must exist and cannot be null.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 538

<?xml version="1.0" encoding="utf-8"?>
<xs:schema elementFormDefault="qualified"
targetNamespace="http://Microsoft.PatternPractices.WCFGuide"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://Microsoft.PatternPractices.WCFGuide">
 <xs:element name="GetData">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" name="CustomerInfo" nillable="false"
type="tns:CustomerData"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

CustomerData is a complex type that has CustomerID and text as data members.
CustomerID and text are of type CustIDLimiter and CustomerN.

 <xs:complexType name="CustomerData">
 <xs:sequence>
 <xs:element name="CustomerID" type="tns:CustIDLimiter">
 </xs:element>
 <xs:element name="text" type="tns:CustomerN">
 </xs:element>
 </xs:sequence>
 </xs:complexType>

CustomerN and CustIDLimiter are just schema facets: they are simple types – string and
integer – that serve to limit the length and value of the string and integer. In the
fragment below, string is limited to 1 and 5 characters in length and integer is limited to
range values of 1 and 5.

 <xs:simpleType name="CustomerN">
 <xs:restriction base="xs:string">
 <xs:minLength value="1" />
 <xs:maxLength value="5" />
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="CustIDLimiter">
 <xs:restriction base="xs:int">
 <xs:minInclusive value="1" />
 <xs:maxInclusive value="5" />
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

The GetDataResponse element is a response from GetData. It returns a
CustomerInfoResponse with type CustomerData, so the response will be also tested.

 <xs:element name="GetDataResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" name="GetDataResult" nillable="false"
type="tns:CustomerData" />

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 539

 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Step 4 – Create a Windows Class Library Project That Will
Contain the Three Classes Necessary for Schema Validation
In this step, you create a Microsoft Windows® class library project that will include three classes
for the schema validation:

• One class to implement the schema validation logic
• A second class to implement the endpoint behavior that will use the schema validation

class
• A third class to implement a behavior extension so that the validator will be visible in

the service and client configuration files

Perform the following steps to create a Windows class library project with these three classes:

1. Open a new instance of Visual Studio, leaving your WCF service solution open.
2. In the new instance of Visual Studio, click File, click New, and then click Project.
3. Expand Visual C#, click Windows, and then select Class Library.
4. In the Name field, type MySchemaValidationClass and then click OK.
5. In the Solution Explorer, right‐click References and then click Add Reference., Click the

.NET tab, click System.ServiceModel, and then click OK.
6. In the Solution Explorer, right‐click References and then click Add Reference. Click the

.NET tab, click System.Configuration, and then click OK.
7. Open the Class1.cs file and rename the class name from Class1 to Validation.
8. Add the following using statements to the top of the Class1.cs file:

using System.Configuration;
using System.ServiceModel;
using System.ServiceModel.Configuration;
using System.ServiceModel.Description;
using System.ServiceModel.Dispatcher;

Step 5 – Create a Class That Implements the Schema Validation
Logic

In this step, you create a new class, derived from interfaces IClientMessageInspector and
IDispatchMessageInspector, to implement the schema validation logic for both the client and
the dispatcher.

The newly created class implements the AfterReceiveRequest(), BeforeSendReply(),
BeforeSendRequest(), and AfterReceiveReply() methods and has the following
characteristics:.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 540

• On the dispatcher: AfterReceiveRequest will happen when inbound messages are
received by the dispatcher, before the operation is invoked and deserialization of
messages has occurred. If the message is encrypted, decryption will take place first.
BeforeSendReply will happen when outbound messages are to be sent back to the
client. It will happen after the operation is invoked, and after serialization has occurred.
If the message is encrypted, encryption will not take place.

• On the client: BeforeSendRequest will happen when outbound messages are sent by
the client, after serialization has occurred. If the message is encrypted, encryption will
not take place.
AfterReceiveReply will happen when inbound messages are received by the client
before deserialization of the message has occurred. If the message is encrypted,
decryption will take place first.

• ValidateMessage. ValidateMessage will validate the message with regard to the
schema definition. If validation succeeds, a new message is constructed and returned to
the caller. On the dispatcher side, either a new message is returned before the
operation is invoked or before a response is sent to the client. On the client side,
ValidateMessage is called before sending the message to the service or before returning
to the application.

In the following example, a simple schema validation logic is implemented by simply traversing
the XmlReader. If validation fails, a fault exception or a message is returned to the client.

Copy and paste the following code snippet to the class1.cs file:

 public class SchemaValidation
 {
 public class SchemaValidationMessageInspector :
IClientMessageInspector,IDispatchMessageInspector
 {
 XmlSchemaSet schemas;
 public SchemaValidationMessageInspector(XmlSchemaSet schemas)
 {
 this.schemas = schemas;
 }
 void validateMessage(ref System.ServiceModel.Channels.Message
message)
 {
 XmlDocument bodyDoc = new XmlDocument();
 bodyDoc.Load(message.GetReaderAtBodyContents());
 XmlReaderSettings settings = new XmlReaderSettings();
 settings.Schemas.Add(schemas);
 settings.ValidationType = ValidationType.Schema;
 XmlReader r = XmlReader.Create(new XmlNodeReader(bodyDoc),
settings);
 while (r.Read()) ; // do nothing, just validate
 // Create new message
 Message newMsg = Message.CreateMessage(message.Version, null,
 new XmlNodeReader(bodyDoc.DocumentElement));
 newMsg.Headers.CopyHeadersFrom(message);

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 541

 foreach (string propertyKey in message.Properties.Keys)
 newMsg.Properties.Add(propertyKey,
message.Properties[propertyKey]);
 // Close the original message and return new message
 message.Close();
 message = newMsg;
 }

 object IDispatchMessageInspector.AfterReceiveRequest(ref
System.ServiceModel.Channels.Message request,
System.ServiceModel.IClientChannel channel,
System.ServiceModel.InstanceContext instanceContext)
 {
 try{

 }

 validateMessage(ref request);

 catch (FaultException e)
 {
 throw new FaultException<string>(e.Message);
 }
 return null;

 }

 void IDispatchMessageInspector.BeforeSendReply(ref
System.ServiceModel.Channels.Message reply, object correlationState)
 {
 try
 {
 validateMessage(ref reply);
 }
 catch (FaultException fault)
 {
 // if a validation error occurred, the message is
replaced
 // with the validation fault.
 reply = Message.CreateMessage(reply.Version, new
FaultException("validation error in reply message").CreateMessageFault() ,
reply.Headers.Action);
 }

 }

 void IClientMessageInspector.AfterReceiveReply(ref
System.ServiceModel.Channels.Message reply, object correlationState)
 {
 validateMessage(ref reply);
 }

 object IClientMessageInspector.BeforeSendRequest(ref
System.ServiceModel.Channels.Message request,
System.ServiceModel.IClientChannel channel)
 {
 validateMessage(ref request);
 return null;
 }
 }

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 542

 }

Step 6 – Create a Class That Implements a Custom Endpoint
Behavior

In this step, you create a new class, derived from IEndpointBehavior, that implements a custom
endpoint behavior.

The newly created class has the following characteristics:

1. It implements ApplyClientBehavior() to add the SchemaValidationMessageInspector to
the client operation and enable client‐side validation.

2. It implements ApplyDispatchBehavior() to add the SchemaValidationMessageInspector
to the dispatch operation and enable service‐side validation.

3. It verifies that it is enabled in the configuration before adding the
SchemaValidationMessageInspector to the client or dispatch run time.

Copy and paste the following code snippet to the Class1.cs file, inside the Validation class that
already exists:

 class SchemaValidationBehavior : IEndpointBehavior
 {
 private bool enabled;
 private XmlSchemaSet schemaSet;

 internal SchemaValidationBehavior(bool enabled,XmlSchemaSet
schemaSet)
 {
 this.enabled = enabled;
 this.schemaSet = schemaSet;
 }

 public bool Enabled
 {
 get { return enabled; }
 set { enabled = value; }
 }

 public void AddBindingParameters(ServiceEndpoint serviceEndpoint,
System.ServiceModel.Channels.BindingParameterCollection bindingParameters)
 { }

 public void ApplyClientBehavior(
 ServiceEndpoint endpoint,
 ClientRuntime clientRuntime)
 {
 //If enable is not true in the config we do not apply the
Parameter Inspector
 if (false == this.enabled)
 {
 return;

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 543

 }
 SchemaValidationMessageInspector inspector = new
SchemaValidationMessageInspector(schemaSet);
 clientRuntime.MessageInspectors.Add(inspector);
 }

 public void ApplyDispatchBehavior(
 ServiceEndpoint endpoint,
 EndpointDispatcher endpointDispatcher)
 {
 //If enable is not true in the config we do not apply the
Parameter Inspector
 if (false == this.enabled)
 {
 return;
 }
 SchemaValidationMessageInspector inspector = new
SchemaValidationMessageInspector(schemaSet);

endpointDispatcher.DispatchRuntime.MessageInspectors.Add(inspector);
 }

 public void Validate(ServiceEndpoint serviceEndpoint)
 {

 }

 }

Step 7 – Create a Class That Implements a Custom Configuration
Element

In this step, you create a new class, derived from BehaviorExtensionElement, that implements
a custom configuration element.

The newly created class has the following characteristics:

1. It implements CreateBehavior() to create an instance of the SchemaValidationBehavior
class. Inside the method, a schema set is initialized with the schema that reads the base
directory of the application loading the SchemaValidation.xsd file created previously.
The schema set is passed to the Schemavalidation behavior that will pass it to the
schema inspector.

2. It implements BehaviorType() to return the SchemaValidationBehavior type. This will
allow the custom behavior to be exposed in the service or client configuration sections.

3. It implements ConfigurationProperty to allow the behavior to be enabled or disabled in
the WCF configuration files.

Copy and paste the following code snippet to the Class1.cs file, inside the Validation class that
already exists:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 544

 public class CustomBehaviorSection : BehaviorExtensionElement
 {

 private const string EnabledAttributeName = "enabled";

 [ConfigurationProperty(EnabledAttributeName, DefaultValue = true,
IsRequired = false)]
 public bool Enabled
 {
 get { return (bool)base[EnabledAttributeName]; }
 set { base[EnabledAttributeName] = value; }
 }

 protected override object CreateBehavior()
 {
 XmlSchemaSet schemaSet = new XmlSchemaSet();
 Uri baseSchema = new
Uri(AppDomain.CurrentDomain.BaseDirectory);
 string mySchema = new
Uri(baseSchema,"SchemaValidation.xsd").ToString();
 XmlSchema schema = XmlSchema.Read(new XmlTextReader(mySchema),
null);
 schemaSet.Add(schema);
 return new SchemaValidationBehavior(this.Enabled,schemaSet);

 }

 public override Type BehaviorType
 {

 get { return typeof(SchemaValidationBehavior); }

 }
 }

Step 8 – Add the Custom Behavior to the Configuration File
In this step, you add the custom behavior to the behavior element extension in the WCF
configuration file so that it can be used by the WCF endpoint.

1. Compile your schema validation class library solution to create
MySchemaClassValidation.dll.

2. Return to the original instance of Visual Studio that contains your WCF service solution.
3. Right‐click the WCF Web site project and then click Add Reference. Navigate to the

folder containing the MySchemaClassValidation.dll and click Add.
4. Right‐click web.config and then click Edit WCF configuration.

If you do not see the Edit WCF Configuration option, on the Tools menu, click WCF
Service Configuration Editor. Close the WCF Service Configuration Editor tool that
appears. The option should now appear on the web.config context menu.

5. Expand the Services node and the Extensions node and then click Behavior Element
Extensions.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 545

6. Click New.
7. In the Name field, type SchemaValidator
8. Select the Type field, click the button that appears to the right, navigate to the folder

containing MySchemaClassValidation.dll,and then double‐click the .dll file.
9. Double‐click the type name

MySchemaValidationClass.SchemaValidation+CustomBehaviorSection and then click
OK.

10. In the WCF Configuration Editor, click File and then click Save.

Verify that your configuration file contains the following:

<system.serviceModel>
 ...
<extensions>
 <behaviorExtensions>
 <add name="SchemaValidator"
type="MySchemaValidationClass.SchemaValidation+CustomBehaviorSection,
MySchemaValidationClass, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=null" />
 </behaviorExtensions>
 </extensions>
 ...
 <system.serviceModel>

Step 9 – Create an Endpoint Behavior and Map It to Use the
Custom Behavior
In this step, you create an endpoint behavior and map it to the custom behavior created in Step
7.

1. In the WCF Configuration Editor, expand the Advanced node, right‐click Endpoint
Behavior, and then click New Endpoint Behavior Configuration.

2. Select the new behavior and then in the Name field, type MyEndPointBehavior
3. Click Add, select the SchemaValidator custom behavior, and then click Add again.
4. In the WCF Configuration Editor, click File and then click Save.

Verify that your configuration file contains the following:

<behaviors>
 ...
<endpointBehaviors>
 <behavior name="MyEndPointBehavior">
 <SchemaValidator />
 </behavior>
 </endpointBehaviors>
 ...
 </behaviors>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 546

Step 10 – Configure the Service Endpoint to Use the Endpoint
Behavior
In this step, you configure the service to use the endpoint behavior to consume the custom
validator.

1. In the WCF Configuration Editor, expand the Service node and then expand Endpoints.
2. Select the first [Empty Name] node.
3. In the BehaviorConfiguration field, select MyEndPointBehavior.
4. In the WCF Configuration Editor, click File and then click Save.

Verify that your configuration file contains the following:

<endpoint address="" behaviorConfiguration="MyEndPointBehavior"
 binding="wsHttpBinding" contract="IService">
 <identity>
 <dns value="localhost" />
 </identity>
</endpoint>

Step 11 Test the Schema Validator
In this step, you create a sample WCF client to test your validator.

1. Right‐click your WCF service solution, click Add, and then click New Project.
2. In the Add New Project dialog box, in the Templates section. select Windows Forms

Application .
3. In the Name field, type Test Client and then click OK.
4. Right‐click your client project and then click Add Service Reference.
5. In the Add Service Reference dialog box, set the Address field to

http://localhost/WCFTestSchemaValidation and then click Go.
6. Set the Namespace field to WCFTestService and then click OK.
7. Open the designer for your new Windows form.
8. Drag three text box controls into the designer.
9. Drag a button control into the designer.
10. Double‐click the button to show the underlying code.
11. In the code behind the button, create an instance of the WCF service proxy, and then

call the GetData() method on your WCF service as follows:

 try

 {
 WCFTestService.CustomerData CustomerInfo = new
WindowsFormsApplication1. WCFTestService.CustomerData();
 CustomerInfo.text = textBox1.Text;
 CustomerInfo.CustomerID = int.Parse(textBox2.Text);

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 547

 WCFTestService.ServiceClient proxy = new
WindowsFormsApplication1. WCFTestService.ServiceClient();
 WCFTestService.CustomerData CustomerInfoResponse =
proxy.GetData(CustomerInfo);
 textBox3.Text = CustomerInfoResponse.text;
 proxy.Close();
 }

 catch (FaultException ex)
 {
 textBox3.Text = ex.Message;
 }

12. Right‐click the client project and then click Set as Startup Project.
13. Run the client application by pressing F5 or Ctrl+F5 and then click the button.
14. In textbox1 enter a string with a maximum size of 5 characters.
15. In textbox2 enter an integer value between 1 and 4.
16. Next try entering values outside of these validation ranges and you’ll see the application

displays a validation error.

Deployment Considerations
Consider the following key points before deployment:

• Do not divulge exception errors to clients in production. Instead, develop a fault
contract and return it to your client inside AfterReceiveRequest()

• Do not divulge exception errors after BeforeSendReply(). Instead, develop a fault
contract and build an error message with the fault contract and return it to the client.

• For client‐side validation, follow the same steps detailed in this How To article, but
instead use the app.config file of the client consuming the service.

• Consider caching the schema for performance benefits.
• Consider the more advanced schema validation logic provided in the download sample

at http://msdn2.microsoft.com/en‐us/library/aa717047.aspx

Additional Resources
• For additional information on configuring and extending the run time with behaviors,

see “Configuring and Extending the Runtime with Behaviors”
at http://msdn2.microsoft.com/en‐us/library/ms730137.aspx

• For additional information about the IEndPointBehavior interface, see
“IEndpointBehavior Interface” at

• For additional information about the IDispatchMessageInspector interface, see
“IDispatchMessageInspector Interface” at http://msdn2.microsoft.com/en‐
us/library/system.servicemodel.dispatcher.idispatchmessageinspector.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 548

• For additional information about the IClientMessageInspector interface, see
“IClientMessageInspector Interface” at http://msdn2.microsoft.com/en‐
us/library/system.servicemodel.dispatcher.iclientmessageinspector.aspx

• For additional information about the BehaviorExtensionElement class, see
“BehaviorExtensionElement Class” at http://msdn2.microsoft.com/en‐
us/library/system.servicemodel.configuration.behaviorextensionelement.aspx

• For more information on message inspectors, see “Message Inspectors”
at http://msdn2.microsoft.com/en‐us/library/aa717047.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 549

How To: Use basicHttpBinding with Windows Authentication and
TransportCredentialOnly in WCF from Windows Forms

Applies To
• Microsoft® Windows Communication Foundation (WCF) 3.5
• Microsoft Visual Studio® 2008

Summary
This How To article walks you through the process of using Windows Authentication over basicHttpBinding
binding using TransportCredentialsOnly security mode. This article shows you how to configure WCF,
configure Internet Information Services (IIS) for Windows Authentication, and test the service with a
sample WCF client.

Contents
• Objectives
• Overview
• Summary of Steps
• Step 1 – Create a Sample WCF Service
• Step 2 – Configure the WCF Service to Use basicHttpBinding
• Step 3 – Configure basicHttpBinding to use Windows Authentication with TransportCredentialOnly
• Step 4 – Enable Windows Authentication on IIS
• Step 5 – Create a Windows Forms Test Client Application
• Step 6 – Add a WCF Service Reference to the Client
• Step 7 – Test the Client and WCF Service
• Additional Resources

Objectives
• Create a WCF service hosted in IIS.
• Expose the WCF service as a legacy Web service through basicHttpBinding.
• Call the service from a test client.

Overview
Windows Authentication is suited for scenarios in which your users have domain credentials. In the
scenario described in this How To article, users are authenticated by using Windows Authentication. The
basicHttpBinding binding is used in order to provide support for older clients that expect a legacy ASMX
Web service. The TransportCredentialOnly security mode option passes the user credentials without
encrypting or signing the messages. Use this mode with caution as it will not protect the credentials being

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 550

transmitted and they will have to be protected by some other means, such as Internet Protocol Security
(IPSec).

In this How To article, you will create a sample WCF service in Visual Studio 2008. You will then configure
the service to use basicHttpBinding with TransportCredentialOnly security through the use of the WCF
Configuration Editor. You will enable Windows Authentication in IIS to allow your users to authenticate to
the service. Finally, you will create a test client to verify that the service is working properly.

Summary of Steps
• Step 1 – Create a Sample WCF Service
• Step 2 – Configure the WCF Service to Use basicHttpBinding
• Step 3 – Configure the basicHttpBinding to use Windows Authentication with

TransportCredentialOnly
• Step 4 – Enable Windows Authentication on IIS
• Step 5 – Create a Windows Forms Test Client Application
• Step 6 – Add a WCF Service Reference to the Client
• Step 7 – Test the Client and WCF Service

Step 1 – Create a Sample WCF Service
In this step, you create a WCF service in Visual Studio, hosted in an IIS virtual directory.

1. In Visual Studio, on the File menu, click New Web Site.
2. In the Templates section, select WCF Service. Make sure that the Location is set to Http, and

specify http://localhost/WCFServiceBasicHttp as the Path. Click OK in the New Web Site dialog
box to create a virtual directory and a sample WCF service.

3. Browse to your WCF service at http://localhost/WCFServiceBasicHttp/Service.svc.
You should see your WCF service respond with details of the service.

Step 2 – Configure the WCF Service to Use basicHttpBinding
In this step, you configure your WCF service endpoint to use basicHttpBinding.

1. Right‐click the Web.config file of the WCF service and then click Edit WCF Configuration.
If you do not see the Edit WCF Configuration option, on the Tools menu, click WCF Service
Configuration Editor. Close the WCF Service Configuration Editor tool that appears. The option
should now appear on the web.config context menu.

2. In the Configuration Editor, in the Configuration section, expand Service and then expand
Endpoints.

3. Select the first node [Empty Name]. Set the name attribute to BasicHttpEndpoint.
By default, the name will be empty because it is an optional attribute.

4. In the Service Endpoint section, set the Binding attribute to basicHttpBinding by choosing this
option from the drop‐down list.

5. In the Configuration Editor, on the File menu, click Save.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 551

6. In Visual Studio, verify your configuration settings in Web.config. The configuration should look as
follows:

…
<services>
 <service behaviorConfiguration="ServiceBehavior" name="Service">
 <endpoint address="" binding="basicHttpBinding"
 name="BasicHttpEndpoint"
 bindingConfiguration=""
 contract="IService">
 <identity>
 <dns value="localhost" />
 </identity>
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
 contract="IMetadataExchange" />
 </service>
</services> …

Step 3 – Configure basicHttpBinding to use Windows Authentication
with TransportCredentialOnly
By default, the basicHttpBinding security mode is None. This default setting means that you do not have
authentication and that neither transport nor message security is enabled. By enabling Windows
Authentication with TransportCredentialOnly, you will get authentication, but no message protection; this
is similar to how an ASMX Web service works.

1. In the Configuration Editor, in the Configuration section, select the Bindings folder.
2. In the Bindings section, choose New Binding Configuration.
3. In the Create a New Binding dialog box, select basicHttpBinding.
4. Click OK.
5. Set the Name of the binding configuration to some logical and recognizable name; for example,

BasicHttpEndpointBinding.
6. Click the Security tab.
7. Set the Mode attribute to TransportCredentialOnly by choosing this option from the drop‐down

menu.
8. Set the TransportClientCredentialType to Windows by choosing this option from the drop‐down

list.
In this case, the Windows option represents Kerberos.

9. In the Configuration section, select BasicHttpEndpoint.
10. Set the BindingConfiguration attribute to BasicHttpEndpointBinding by choosing this option from

the drop‐down list.
This associates the binding configuration setting with the binding.

11. In the Configuration Editor, on the File menu, click Save.
12. In Visual Studio, verify your configuration, which should look as follows:

...
<bindings>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 552

 <basicHttpBinding>
 <binding name="BasicHttpEndpointBinding">
 <security mode="TransportCredentialOnly">
 <transport clientCredentialType="Windows" />
 </security>
 </binding>
 </basicHttpBinding>
</bindings>
<services>
 <service behaviorConfiguration="ServiceBehavior" name="Service">
 <endpoint address="" binding="basicHttpBinding"
 bindingConfiguration="BasicHttpEndpointBinding"
 name="BasicHttpEndpoint" contract="IService">
 <identity>
 <dns value="localhost" />
 </identity>
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
 contract="IMetadataExchange" />
 </service>
</services>
...

Step 4 – Enable Windows Authentication on IIS
In this step, you enable IIS for Windows Authentication to match the authentication scheme used in your
WCF service.

1. Open Internet Information Services (IIS) Manager by running the inetmgr command from the
command line.

2. Browse to the WCF Service virtual directory created in Step 1.
3. Right‐click the virtual directory and then click Properties.
4. In the Properties dialog box, click the Directory Security tab.
5. In the Authentication and access control section, click Edit.
6. In the Authentication Methods dialog box, clear the Enable anonymous access check box, and

then select the Integrated Windows authentication check box.
7. In the Authentication Methods dialog box, click OK button.
8. In the Properties dialog box, click Apply and then click OK.
9. Run the iisreset command from the command line.
10. Verify that your service is working correctly. In IIS Manager, browse to your service (Service.svc).

Important: Make sure that you have installed ASP.NET on your machine; if not or if in doubt, run the
following command:

> c:\Widows\Microsoft.NET\Framework\vX.X.XXXXX\aspnet_regiis.exe /i

Step 5 – Create a Windows Forms Test Client Application
In this step, you create a Windows Forms application to test the WCF service.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 553

1. Right‐click your solution, click Add, and then click New Project.
2. In the Add New Project dialog box, in the Templates section, select Windows Application.
3. In the Name field, type Test Client and then click OK to create a Windows Forms application.

Step 6 – Add a WCF Service Reference to the Client
In this step, you add a Web reference of the WCF service to your Client application. This How To article
uses a Web reference to show the usage of a WCF service as a legacy Web service; otherwise, you can add
it as a service reference.

1. Right‐click your Client project and then click Add Service References.
2. Click Advanced and then click Add Web Reference under the Compatibility section.
3. In the Add Web References dialog box, set the URL to your WCF Service ‐

http://localhost/WCFServiceBasicHttp/Service.svc
4. Click Go.
5. In the Web reference name: field, change localhost to WCFTestService.
6. Click Add Reference.

A Web reference to WCFTestService should now appear in your Client project.

Step 7 – Test the Client and WCF Service
In this step, you access the WCF service as a legacy ASMX Web service and make sure that it works.

1. In your Client project, drag a button control onto your Form.
2. Double‐click the button control to show the underlying code.
3. In the code behind the button click, create an instance of the proxy, pass the default user

credentials, and call MyOperation1 of your WCF Service. The code should look as follows:

private void button1_Click(object sender, EventArgs e)
{
 WCFTestService.Service myService = new
 WCFTestService.Service();
 myService.Credentials =
 System.Net.CredentialCache.DefaultCredentials;
 MessageBox.Show(myService.GetData(123, true));
 myService.Dispose();
}

4. Right‐click the Client project and then click Set as Startup Project.
5. Run the Client application ny pressing F5 or Ctrl+F5. When you click the button on the form, it the

message “You entered: 123” should appear.

Additional Resources
• For more information on using the DefaultCredentials property, see “How To: Pass Current

Credentials to an ASP.NET Web Service” at http://support.microsoft.com/kb/813834

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 554

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 555

How To – Use Certificate Authentication and Message
Security in WCF Calling from Windows Forms

Applies to
• Microsoft® Windows Communication Foundation (WCF) 3.5
• Microsoft Visual Studio® 2008

Summary
This How To article walks you through the process of using client certificates and
message security to authenticate your users. The article shows you how to create and
install client and service certificates during development, configure the WCF service and
client to use the respective certificates, and test the service with a sample WCF client.

Contents
• Objectives
• Overview
• Summary of Steps
• Step 1 – Create a Sample WCF Service
• Step 2 – Configure wsHttpBinding with Certificate Authentication and Message

Security
• Step 3 – Create and Install a Service Certificate
• Step 4 – Configure the Service Certificate for the WCF Service
• Step 5 – Create a Test Client
• Step 6 – Add a WCF Service Reference to the Client
• Step 7 – Create and Install the Client Certificate for Authentication
• Step 8 – Configure the Client Certificate in the WCF Client Application
• Step 9 – Test the Client and WCF Service
• Additional Resources

Objectives
• Learn how to create and use a temporary certificate for authentication and

message security.
• Learn where to store the temporary certificate.
• Learn how to troubleshoot common errors related to temporary certificates,

authentication, and message security in WCF.

Overview
When developing a WCF service that uses X.509 certificates to provide client
authentication and message security, it is necessary to work with temporary certificates.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 556

This is because production certificates are expensive and may not be readily available.
There are two options for specifying trust on a certificate:

• Peer trust – Validates the certificate directly.
• Chain trust – Validates the certificate against the issuer of a certificate known as

a root authority.

This How To article discusses the chain trust option because it is the most commonly
used approach in Business‐to‐Business (B2B) scenarios.

To use chain trust validation during development time, you create a self‐signed root
certificate authority (CA) and place it in the Trusted Root Certification Authority store of
the client and service machines. The certificate used by the WCF client for client
authentication and the WCF service for service authentication and message protection
is then created and signed by the root self‐signed certificate and installed in the
LocalMachine store.

You will use makecert.exe to create a certificate to act as your root CA. You will then use
your root CA certificate to sign additional certificates for your WCF service and client.
Finally, you will configure the WCF client and service to use your temporary certificate.

Summary of Steps
• Step 1 – Create a Sample WCF Service
• Step 2 – Configure wsHttpBinding with Certificate Authentication and Message

Security
• Step 3 – Create and Install a Service Certificate
• Step 4 – Configure the Service Certificate for the WCF Service
• Step 5 – Create a Test Client
• Step 6 – Add a WCF Service Reference to the Client
• Step 7 – Create and Install the Client Certificate for Authentication
• Step 8 – Configure the Client Certificate in the WCF Client Application
• Step 9 – Test the Client and WCF Service

Step 1 – Create a Sample WCF Service
In this step, you create a WCF service in Visual Studio.

1. In Visual Studio, from the File menu, click New Web Site.
2. In the Templates section, select WCF Service. Make sure that the Location is set

to Http and specify the virtual directory to be created in the Path (e.g.,
http://localhost/WCFTestService).

3. In the New Web Site dialog box, click OK to create a virtual directory and a
sample WCF service.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 557

4. Browse to your WCF service (i.e., http://localhost/WCFTestService/Service.svc).
You should see details of your WCF service.

Step 2 – Configure wsHttpBinding with Certificate
Authentication and Message Security
In this step, you configure the WCF service to use certificate authentication and
message security.

1. Right‐click the Web.config file of the WCF service and then choose the Edit WCF
Configuration option.

2. In the Configuration Editor, in the Configuration section, expand Service and
then expand Endpoints.

3. Select the first node [Empty Name] and Set the Name attribute to
wsHttpEndpoint.
By default, the name will be empty because it is an optional attribute.

4. Click the Identity tab and then delete the Dns attribute value.
5. In the Configuration Editor, select the Bindings folder.
6. In the Bindings section, choose New Binding Configuration.
7. In the Create a New Binding dialog box, select wsHttpBinding.
8. Click OK.
9. Set the Name of the binding configuration to some logical and recognizable

name; for example, wsHttpEndpointBinding.
10. Click the Security tab.
11. Make sure that the Mode attribute is set to Message, which is the default

setting.
12. Set the MessageClientCredentialType to Certificate by selecting this option from

the drop‐down list.
13. In the Configuration section, select the wsHttpEndpoint node.
14. Set the BindingConfiguration attribute to wsHttpEndpointBinding by selecting

this option from the drop‐down list.
This associates the binding configuration setting with the binding.

15. In the Configuration Editor, on the File menu, select Save.
16. In Visual Studio, open your configuration and comment out the identity element.

It should look as follows:

 <!--<identity>
 <dns value="" />
 </identity>-->

17. In Visual Studio, verify your configuration. The configuration should look as

follows:

…
<bindings>
 <wsHttpBinding>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 558

 <binding name="wsHttpEndpointBinding">
 <security>
 <message clientCredentialType="Certificate" />
 </security>
 </binding>
 </wsHttpBinding>
</bindings>
<services>
 <service behaviorConfiguration="ServiceBehavior" name="Service">
 <endpoint address="" binding="wsHttpBinding"
 bindingConfiguration="wsHttpEndpointBinding"
 name="wsHttpEndpoint" contract="IService">
 <!--<identity>
 <dns value="" />
 </identity>-->
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
contract="IMetadataExchange" />
 </service>
</services>
…

Step 3 – Create and Install a Service Certificate
In this step, you create a temporary service certificate and install it in the local store.
This certificate will be used for service authentication and to encrypt the message,
thereby protecting any other sensitive data.

Creating and installing the certificate is outside the scope of this How To article. For
detailed steps on how to do this, see “How To ‐ Create and Install Temporary
Certificates in WCF for Message Security During Development.”

Note:

• If you are running on Microsoft Windows® XP, give the certificate permissions for
the ASPNET identity instead of the NT Authority\Network Service identity
because the Internet Information Services (IIS) process runs under the ASPNET
account.

• The temporary certificate should be used for development and testing purposes
only. For actual production deployment, you will need to obtain a valid
certificate from a certificate authority (CA).

Step 4 – Configure the Service Certificate for the WCF
Service
In this step, you configure the WCF service to use the temporary certificate you created
in the previous step.

1. In the Configuration Editor, expand the Advanced node, and then expand the
Service Behaviors node.

2. Click Add.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 559

3. In the Service Behavior Element Extensions dialog box, select the
serviceCredentials option and then click Add.

4. Expand the serviceCredentials node and then select the serviceCertificate node.
5. Set the FindValue attribute to the name of the service certificate that you have

created; for example, "CN=tempCertServer".
6. Leave the default settings for StoreLocation and StoreName.
7. In the Configuration Editor, on the File menu, click Save.
8. In Visual Studio, verify your configuration. The configuration should look as

follows.
...
<behaviors>
 <serviceBehaviors>
 <behavior name="ServiceBehavior">
 <serviceMetadata httpGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="false" />
 <serviceCredentials>
 <serviceCertificate findValue="CN=tempCertServer" />
 </serviceCredentials>
 </behavior>
 </serviceBehaviors>
</behaviors>
...

Step 5 – Create a Test Client
In this step, you create a Windows Forms application to test the WCF service.

1. Right‐click your solution, click Add, and then click New Project.
2. In the Add New Project dialog box, in the Templates section, select Windows

Forms Application.
3. In the Name field, type Test Client and then click OK.

Step 6 – Add a WCF Service Reference to the Client
In this step, you add a reference to your WCF service.

1. Right‐click your Client project and then click Add Service Reference.
2. In the Add Service Reference dialog box, set the URL to your WCF Service (e.g.,

http://localhost/WCFTestService/Service.svc) and then click Go.
3. In the Web reference name field, change ServiceReference1 to WCFTestService.
4. Click Add Reference.

A reference to WCFTestService should appear beneath Web References in your
Client project.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 560

Step 7 – Create and Install the Client Certificate for
Authentication
In this step, you create a temporary client certificate by using the Root CA created in
Step 3 above, and install it in the local store. This certificate will be used for client
authentication and to encrypt the message, thereby protecting any other sensitive data.

1. Copy the root CA certificate (RootCATest.cer) and private key file
(RootCATest.pvk), created as part of Step 3, to the client machine.

2. Open a Visual Studio command prompt and browse to the location where you
copied the root CA certificate and private key file.

3. Run following command for creating a certificate signed by the root CA
certificate:

makecert -sk MyKeyName -iv RootCATest.pvk -n "CN=tempCert" -ic
RootCATest.cer -sr CurrentUser -ss my -sky signature -pe tempCert.cer

4. In the Enter Private Key Password dialog box, enter the password for the root
CA private key file created as part of the Step 3 above, and then click OK.

For more information and detailed steps, see “How To ‐ Create and Install Temporary
Certificates in WCF for Message Security During Development.”

Step 8 – Configure the Client Certificate in the WCF Client
Application
In this step, you configure the WCF client to use the temporary certificate you created in
the previous step.

1. In your test client, right‐click the App.config file and then click Edit WCF
Configuration.

2. In the Configuration Editor, expand the Advanced node, select Endpoint
Behaviors, and then select New Endpoint Behavior Configuration.

3. Click Add.
4. In the Adding Behavior Element Extension Sections dialog box, select

clientCredentials and then click Add.
5. Expand the clientCredentials node, Select the clientCertificate node, and then

set the FindValue attribute to the subject name of the client certificate that you
created and installed in Step 7; for example, "CN=tempCertClient".

6. Leave the default StoreLocation attribute set to CurrentUser as is.
7. In the Configuration Editor, expand the Client node, expand the Endpoints node,

and then select the WsHttpEndpoint node.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 561

8. Set the BehaviorConfiguration attribute to NewBehavior by choosing this option
from the drop‐down list.
This is the endpoint behavior you just created.

9. In the Configuration Editor, on the File menu, click Save.
10. In Visual Studio, verify your configuration. The configuration should look as

follows.

<system.serviceModel>
 <behaviors>
 <endpointBehaviors>
 <behavior name="NewBehavior">
 <clientCredentials>
 <clientCertificate findValue="CN=tempCertClient"/>
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 ...
 <client>
 <endpoint address="http://<<service address>>"
 behaviorConfiguration="NewBehavior" binding="wsHttpBinding"
 bindingConfiguration="wsHttpEnpoint1"
contract="ServiceReference1.IService"
 name="wsHttpEnpoint">
 <identity>
 <certificate encodedValue="<<Encode Value>>" />
 </identity>
 </endpoint>
 </client>
</system.serviceModel>

Step 9 – Test the Client and WCF Service
In this step, you access the WCF service, pass the user credentials, and make sure that
the username authentication works.

1. In your Client project, drag a Button control onto your form.
2. Double‐click the Button control to show the underlying code.
3. Create an instance of the proxy and call the GetData operation of your WCF

service. The code should look as follows:

private void button1_Click(object sender, EventArgs e)
{
 WCFTestService.ServiceClient myService = new
 WCFTestService.ServiceClient();
 MessageBox.Show(myService.GetData(123));
 myService.Close();
}

4. Right‐click the Client project and then click Set as Startup Project.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 562

5. Run the Client application by pressing F5 or Ctrl+F5.
When you click the button on the form, the message “You entered: 123” should
appear.

Additional Resources
• For more information on how to work with temporary certificates, see “How to:

Create Temporary Certificates for Use During Development” at
http://msdn2.microsoft.com/en‐us/library/ms733813.aspx

• For more information on how to view certificates using the Microsoft
Management Console (MMC) snap in, see “How to: View Certificates with the
MMC Snap‐in” at http://msdn2.microsoft.com/en‐us/library/ms788967.aspx

• For more information on differences in certificate validation between Microsoft
Internet Explorer and WCF, see “Differences Between Service Certificate
Validation Done by Internet Explorer and WCF” at
http://msdn2.microsoft.com/en‐us/library/aa702599.aspx

• For more information on differences in certificate validation between protocols,
see “Certificate Validation Differences Between HTTPS, SSL over TCP, and SOAP
Security” at http://msdn2.microsoft.com/en‐us/library/aa702579.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 563

How To – Use Certificate Authentication and Transport
Security in WCF Calling from Windows Forms

Applies to
• Microsoft® Windows Communication Foundation (WCF) 3.5
• Microsoft Visual Studio® 2008

Summary
This How To article walks you through the process of using client certificates to
authenticate your users with transport security. First, you will learn how to create and
install a client certificate for authentication and a service certificate for transport
security, during development. You will then learn how to configure a binding that
implements IMetadataExchange in a WCF service, and how to create a
svcutil.exe.config file to allow proxy creation from the client, which is necessary when
implementing transport security and certificate authentication when a WCF service is
hosted in Internet Information Services (IIS). Finally, you will learn how to correctly
configure security settings in IIS, and how to test the service with a sample WCF client.

Contents
• Objectives
• Overview
• Summary of Steps
• Step 1 – Create and Install a Temporary Certificate for Transport Security
• Step 2 – Create and Install a Temporary Client Certificate for Certificate

Authentication
• Step 3 – Create a Sample WCF Service
• Step 4 – Configure wsHttpBinding with Certificate Authentication and Transport

Security
• Step 5 – Configure the mex Endpoint to Use wsHttpbinding with Certificate

Authentication Configuration
• Step 6 – Configure the Virtual Directory to Use SSL and Require Client Certificates
• Step 7 – Create a Test Client
• Step 8 – Create a Svcutil Configuration File in the Client Machine
• Step 9 – Create a Proxy with the svcutil.exe Tool
• Step 10 – Test the Client and WCF Service
• Additional Resources

Objectives
• Learn how to create and use a temporary certificate for authentication and

transport security.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 564

• Learn where to store the temporary certificate.
• Learn how to configure a custom binding that implements IMetadataExchange

in a WCF service to allow publishing of metadata with certificate authentication
and transport security.

• Learn how to configure a svcutil.exe.config file to be able to create a proxy to the
WCF service with transport security and certificate authentication.

Overview
When developing a WCF service that uses X.509 certificates to provide client
authentication and transport security, it is necessary to work with temporary
certificates. This is because production certificates are expensive and may not be readily
available. There are two options for specifying trust on a certificate:

• Peer trust – Validates the certificate directly.
• Chain trust – Validates the certificate against the issuer of a certificate known as

a root authority.

Additionally, a certificate revocation list (CRL) validation is performed during certificate
authentication. This validation checks the list of certificates that were revoked by the
root certificate. Three modes of revocation exist:

• Online – The CRL list is retrieved and checked online, requiring connectivity to
the computers that contains the CRL.

• Offline – The CRL list is retrieved and checked online and is then cached offline
for subsequent validation.

• NoCheck – No validation is performed.

For the purposes of this How To article, the CRL is checked without configuration
changes when using certificate authentication., The article also allows for chain trust
validation when using transport security.

To use chain trust validation during development time, you first create a self‐signed root
certificate authority (CA) and install it in the Trusted Root Certification Authority in the
Local Machine. The certificate used by WCF is then created and signed by the root self‐
signed certificate and installed in the Personal store of the Computer Account. To allow
the CRL validation to succeed, you create a self‐signed root CRL file and install it in the
Trusted Root Certification Authority store of the Local Machine.

You will use makecert.exe to create a private key file and a certificate to act as your root
certificate authority (CA). You will then create a certificate revocation list file from the
private key that will act as your revocation list file for the root CA. You will have to install
the root certificate and CRL file. Finally, you will create and install the temporary
certificate from the root certificate, using the private key to sign and generate the key.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 565

Summary of Steps
• Step 1 – Create and Install a Temporary Certificate for Transport Security
• Step 2 – Create and Install a Temporary Client Certificate for Certificate

Authentication
• Step 3 – Create a Sample WCF Service
• Step 4 – Configure wsHttpBinding with Certificate Authentication and

Transport Security
• Step 5 – Configure the mex Endpoint to Use wsHttpbinding with Certificate

Authentication Configuration
• Step 6 – Configure the Virtual Directory to Use SSL and Require Client

Certificates
• Step 7 – Create a Test Client
• Step 8 – Create a Svcutil Configuration File in the Client Machine
• Step 9 – Create a Proxy with the svcutil.exe Tool
• Step 10 – Test the Client and WCF Service

Step 1 – Create and Install a Temporary Certificate for
Transport Security
In this step, you create and install a temporary certificate for transport security on the
server. You are also be required to install the root CA on the client for trust chain
validation to succeed when browsing the service in Microsoft Internet Explorer, creating
the proxy to the service, and calling the service from the proxy. For a complete set of
steps on how to create certificates for transport security, refer to the document “How
To – Create and Install Temporary Certificates in WCF for Transport Security During
Development.”

Step 2 – Create and Install a Temporary Client Certificate
for Certificate Authentication
In this step, you create and install a temporary client certificate for certificate
authentication on the client. You are also required to install the root certificate
authority (CA) and the CRL on the server in order for trust chain and revocation
validation to succeed. For a complete set of steps on how to create certificates for
certificate authentication, refer to the document “How To: Create and Install Temporary
Client Certificates in WCF for Certificate Authentication During Development.”

Step 3 – Create a Sample WCF Service
In this step, you create a WCF service in Visual Studio.

1. In Visual Studio, on the menu, click File and then click New Web Site.
2. In the Templates section, select WCF Service. Make sure that the Location is set

to Http and specify the virtual directory to be created in the Path with https

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 566

(e.g., https://ServerName/WCFTestService).
Note that the server name needs to match the certificate name either by
NetBIOS or Domain Name System (DNS) name.

3. In the New Web Site dialog box, click OK to create a virtual directory and a
sample WCF service.

Step 4 – Configure wsHttpBinding with Certificate
Authentication and Transport Security
In this step, you configure the WCF service to use certificate authentication and
transport security.

1. Right‐click the Web.config file of the WCF service and then click Edit WCF
Configuration.

2. In the Configuration Editor, in the Configuration section, expand Service and
then expand Endpoints.

3. Select the first node [Empty Name] and set the Name attribute to
wsHttpEndpoint.
By default, the name will be empty because it is an optional attribute.

4. Click the Identity tab and then delete the DNS attribute value.
5. In the Configuration Editor, select the Bindings folder.
6. In the Bindings section, choose New Binding Configuration.
7. In the Create a New Binding dialog box, select wsHttpBinding.
8. Click OK.
9. Set the Name of the binding configuration to some logical and recognizable

name; for example, wsHttpEndpointBinding.
10. Click the Security tab.
11. Make sure that the Mode attribute is set to Transport.
12. Set the TransportClientCredentialType to Certificate by selecting this option

from the drop‐down list.
13. In the Configuration section, select the wsHttpEndpoint node.
14. Set the BindingConfiguration attribute to wsHttpEndpointBinding by selecting

this option from the drop‐down list.
This associates the binding configuration setting with the binding.

15. In the Configuration Editor, on the File menu, select Save.
16. In Visual Studio, open your configuration and comment out the identity element.

It should look as follows:

 <!--<identity>
 <dns value="" />
 </identity>-->

17. In Visual Studio, verify your configuration. The configuration should look as

follows:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 567

…
<system.serviceModel>
<bindings>
 <wsHttpBinding>
 <binding name="wsHttpEndpointBinding">
 <security mode="Transport">
 <transport clientCredentialType="Certificate" />
 </security>
 </binding>
 </wsHttpBinding>
 </bindings>
<client/>
<services>
 <service behaviorConfiguration="ServiceBehavior"
name="MyService">
 <endpoint binding="wsHttpBinding"
bindingConfiguration="wsHttpEndpointBinding"
 name="wsHttpEndpoint" contract="IService" />
<endpoint address="mex" binding="mexHttpBinding"
contract="IMetadataExchange"/>
 </service>
 </services>…

Step 5 – Configure the mex Endpoint to Use wsHttpbinding
with Certificate Authentication Configuration
In this step, you change the configuration of the mex endpoint from mexHttpBinding
(the default) to use wsHttpbinding with the configuration you created in the previous
step in order to use certificate authentication. mexHttpendpoint cannot be used for
certificate authentication because the Web site requires Secure Sockets Layer (SSL), and
mexHttpsendpoint cannot be used either because it does not support certificate
authentication configuration in IIS. To create a proxy to a WCF service hosted in IIS with
a certificate authentication schema, you need an endpoint that implements
IMetadataExchange with wsHttpbinding with a security configuration that allows
certificate authentication.

1. In the Configuration Editor, in the Configuration section, expand Service and
then expand Endpoints.

2. Select the second node [Empty Name] and set the Name attribute to
mexEndpoint
By default, the name will be empty because it is an optional attribute.

3. Click the Binding attribute and change it to wsHttpbinding by selecting this
option from the drop‐down list.

4. Click the BindingConfiguration attribute and change it to
wsHttpEndpointBinding by selecting this option from the drop‐down list.
This associates the mex endpoint with the binding configuration setting that
configures certificate authentication.

5. In the Configuration Editor, on the File menu, select Save.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 568

6. In Visual Studio, verify your configuration. The configuration should look as
follows. Notice that that the endpoint is now a wsHttpbinding endpoint that
implements IMedataExchange (shown in bold).

…
<bindings>
 <wsHttpBinding>
 <binding name="wsHttpEndpointBinding">
 <security mode="Transport">
 <transport clientCredentialType="Certificate" />
 </security>
 </binding>
 </wsHttpBinding>
 </bindings>
 <client/>
 <services>
 <service behaviorConfiguration="returnFaults"
name="MyService">
 <endpoint binding="wsHttpBinding"
bindingConfiguration="wsHttpEndpointBinding"
 name="wsHttpEndpoint" contract="IService" />
 <endpoint address="mex" binding="wsHttpBinding"
bindingConfiguration="wsHttpEndpointBinding"
 name="mexEndpoint" contract="IMetadataExchange" />
 </service>
 </services>…

Step 6 – Configure the Virtual Directory to Use SSL and
Require Client Certificates
In this step, you configure the virtual directory in IIS to use SSL security and to require
client certificates.

1. Click Start and then click Run.
2. In the Run dialog box, type inetmgr and then click OK.
3. In the Internet Information Services (IIS) Manager dialog box, expand the (local

computer) node, and then expand the Web Sites node.
4. Expand Default Web Site and then right‐click the virtual directory.
5. In the Virtual Directory Properties dialog box, click the Directory Security tab,

and then click edit on secure communications. Click Require Secure
Channel(SSL) and then click Require Client Certificates.
You can now browse the service using Internet Explorer by navigating to
https://ServerName/WCFTestService. Internet Explorer will prompt you to
choose a certificate from a list of certificates installed in the user and personal
stores.

Step 7 – Create a Test Client
In this step, you create a Windows Forms application to test the WCF service.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 569

1. Right‐click your solution, click Add, and then click New Project.
2. In the Add New Project dialog box, in the Templates section, select Windows

Forms Application.
3. In the Name field, type Test Client and then click OK.

Step 8 – Create a Svcutil Configuration File in the Client
Machine
In this step, you create the svcutil.exe.config file that you need in order to create a
proxy to the service.

1. Right‐click the project in Visual Studio, click Add, and then click New item. Select
text file and name the file svcutil.exe.config.

2. Copy the configuration file below, paste it into the svcutil.exe.config file, click
File, and then click Save.
Verify the following in your configuration file:

a. The client certificate name is correctly specified. The certificate name is

determined by the attribute findValue “CN=…” under the client
credentials node.

b. The client certificate location is correctly specified. The certificate
location is determined by the attributes storeLocation="CurrenUser”
storeName="My". CurrentUser and My represent the current user and
personal store. This is the default location of the client certificate as
specified in Step 2 above.

<configuration>
 <system.serviceModel>
 <client>
 <endpoint
behaviorConfiguration="ClientCertificateBehavior"
 binding="wsHttpBinding"
 bindingConfiguration="Binding1"
contract="IMetadataExchange"
 name="https" />
 </client>
 <bindings>
 <wsHttpBinding>
 <binding name="Binding1">
 <security mode="Transport">
 <transport clientCredentialType="Certificate" />
 </security>
 </binding>
 </wsHttpBinding>
 </bindings>
 <behaviors>
 <endpointBehaviors>
 <behavior name="ClientCertificateBehavior">

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 570

 <clientCredentials>
 <clientCertificate findValue="CN=clienttempcert"
 storeLocation="CurrentUser"
 storeName="My"
 x509FindType="FindBySubjectDistinguishedName" />
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

Step 9 – Create a Proxy with the svcutil.exe Tool
In this step, you create a proxy to the service by using the svcutil.exe tool and the
svcutil.exe.config file.

1. Copy svcutil.exe from C:\Program Files\Microsoft Visual Studio 8\Common7\IDE
to the same location as the svcutil.exe.config file created in previous step.

2. Open a command prompt, navigate to the same directory as the
svcutil.exe.config file, and run the following command:

.\svcutil https://ServerName/WCFTestService /config:app.config.

This will generate two files: MyService.cs and app.config.

3. In Visual Studio, right‐click the project , click Add, and then click Existing item.
The location defaults to the same directory as the app.config file created in the
previous step.

4. Press the CTRL key and then select the app.config and MyService.cs files.
5. Right‐click the app.config file of the WCF service and then click Edit WCF

Configuration.
6. In the Configuration Editor, in the Configuration section, expand Advanced, click

EndpointsBehaviors, and then click New Endpoint Behavior.
7. In the Name text box, type ClientEndPointBehavior and then select client

credentials.
8. Double‐click clientCredentials, expand clientCredentials, and then click client

certificates.
9. In the client certificates, click findValue, enter the name of the certificate, click

the store location and store name, and then select the correct values for your
certificate.
These values should be the same as in the svc.util.exe.config file.

10. Under Endpoints, click wsHttpEndpoint B, select BehaviorConfiguration, and
then select ClientEndPointBehavior.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 571

Step 10 – Test the Client and WCF Service
In this step, you access the WCF service, pass the user credentials, and make sure that
the username authentication works.

1. In your client project, drag a Button control onto your form.
2. Double‐click the Button control to show the underlying code.
3. Create an instance of the proxy and call the GetData operation of your WCF

service. The code should look as follows:

private void button1_Click(object sender, EventArgs e)
{
 ServiceClient proxy = new ServiceClient();
 MessageBox.Show(myService.GetData(123));
 myService.Close();
}

4. Right‐click the client project and then click Set as Startup Project.
5. Run the client application by pressing F5 or Ctrl+F5.

When you click the button on the form, the message “You entered: 123” should
appear.

Additional Resources
• For more information on working with temporary certificates, see “How to:

Create Temporary Certificates for Use During Development” at
http://msdn2.microsoft.com/en‐us/library/ms733813.aspx

• For more information on viewing certificates using the Microsoft Management
Console (MMC) snap in, see “How to: View Certificates with the MMC Snap‐in”
at http://msdn2.microsoft.com/en‐us/library/ms788967.aspx

• For more information on differences in certificate validation between Microsoft
Internet Explorer and WCF, see “Differences Between Service Certificate
Validation Done by Internet Explorer and WCF” at
http://msdn2.microsoft.com/en‐us/library/aa702599.aspx

• For more information on differences in certificate validation between protocols,
see “Certificate Validation Differences Between HTTPS, SSL over TCP, and SOAP
Security” at http://msdn2.microsoft.com/en‐us/library/aa702579.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 572

How To – Use Delegation for Flowing the Original Caller
Credentials to the Back End in WCF Calling from Windows
Forms

Applies To
• Microsoft® Windows Communication Foundation (WCF) 3.5
• Microsoft Visual Studio® 2008

Summary
This How To article shows you how to flow the original caller credentials to the back end
in a WCF service that has been called from a Windows Forms application. The article
shows you how to configure the WCF service, implement delegation, and test the
service with a sample Windows Forms client.

Contents
• Objectives
• Overview
• Summary of Steps
• Step 1 – Create a Sample WCF Service
• Step 2 – Configure the WCF Service to Use Windows Authentication
• Step 3 – Identify and Configure the Remote Service to Be Accessed
• Step 4 – Configure the WCF Service Identity Trusted for Constrained Delegation
• Step 5 – Impersonate the Original Caller in the WCF Service
• Step 6 – Create a Test Client Application
• Step 7 – Add a WCF Service Reference to the Client
• Step 8 – Test the Client and WCF Service
• Additional Information
• Additional Resources

Objectives
• Learn how to configure a WCF process identity trusted for delegation.
• Learn how to constrain the delegation.
• Learn how to impersonate the original caller.

Overview
When a WCF Service impersonates the original caller, it accesses resources by using the
security context of the authenticated user. However, the application can only access
local resources. To access network resources while impersonating an original caller, your
service must use delegation. If your service uses Kerberos authentication to

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 573

authenticate its users, you can use delegation to pass the caller's identity through the
layers of your application, and to access network resources.

Note: If your application does not use Kerberos authentication, you can use protocol
transition to switch from a non‐Kerberos authentication mechanism to Kerberos, and
then use delegation to pass on the identity.

Kerberos delegation by default is unconstrained, and servers that are configured as
trusted for delegation in Microsoft Active Directory® can access any network resources
or any machine on the network while using the impersonated user's security context.
This represents a potential security threat, particularly if the Web server is
compromised.

To address this issue, you should use constrained delegation. This allows administrators
to specify exactly which services on a downstream server or a domain account can be
accessed when using an impersonated user's security context.

Note The list of services that can be accessed by delegation is maintained in an Active
Directory list referred to as the A2D2 list.

Summary of Steps
• Step 1 – Create a Sample WCF Service
• Step 2 – Configure the WCF Service to Use Windows Authentication
• Step 3 – Identify and Configure the Remote Service to Be Accessed
• Step 4 – Configure the WCF Service Identity Trusted for Constrained Delegation
• Step 5 – Impersonate the Original Caller in the WCF Service
• Step 6 – Create a Test Client Application
• Step 7 – Add a WCF Service Reference to the Client
• Step 8 – Test the Client and WCF Service

Step 1 – Create a Sample WCF Service
In this step, you create a sample WCF service in Visual Studio, hosted in an Internet
Information Services (IIS) virtual directory.

1. In Visual Studio, on the menu, click File > New Web Site.
2. In the Templates section, select WCF Service. Make sure that the Location is set

to Http and specify the virtual directory to be created in the Path (e.g.,
http://localhost/WCFServiceDelegation).

3. In the New Web Site dialog box, click OK to create a virtual directory, a solution
file, and a sample WCF service for the solution.

4. In Microsoft Internet Explorer, browse to your WCF service at
http://localhost/WCFServiceDelegation/Service.svc.
You should see details of your WCF service in the browser.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 574

Step 2 – Configure the WCF Service to Use Windows
Authentication
By default, Visual Studio configures your WCF service to use wsHttpBinding with
Windows authentication and Message Security.

• In Visual Studio, verify your configuration settings in Web.config. The
configuration should look as follows:

...
<services>
 <service name="Service" behaviorConfiguration="ServiceBehavior">
 <endpoint address="" binding="wsHttpBinding" contract="IService">
 <identity>
 <dns value="localhost"/>
 </identity>
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
 contract="IMetadataExchange"/>
 </service>
</services>
...

Step 3 – Identify and Configure the Remote Service to Be
Accessed
In this step, you identify the remote service to be accessed on behalf of the original
caller. This service needs to be enabled for Windows authentication and configured with
access rights to the original caller.

For the purposes of this exercise, you will access the Microsoft SQL Server® database on
a remote server on behalf of the original caller.

1. If you use a custom domain account to run SQL Server, you must create a service
principal name (SPN) for this account. You can do this by using the following
command:

setspn -A MSSQLSvc/ databaseservername.fullyqualifieddomainname
domain\customAccountName

If you run SQL Server by using the System account (which is not recommended
because of the associated high privileges that an attacker could exploit), an SPN
is created automatically for you.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 575

2. To allow access to SQL Server, you must create a SQL Server login for each of
your application's end users or for a set of groups that the users belong to, and
grant them read access to the target database.

Step 4 – Configure the WCF Service Identity Trusted for
Constrained Delegation
In this step, you configure Active Directory to allow your WCF service to use constrained
delegation to access a remote database server.

If your WCF Service runs using the Network Service machine account, you must enable
constrained delegation for your WCF server computer. However, if your WCF service
runs under a custom domain account, you must enable constrained delegation for the
custom domain account.

Note If you use a custom domain account for running your WCF service, create an SPN
for your custom domain account. Kerberos requires an SPN to support mutual
authentication.

To configure constrained delegation for the machine account

This procedure assumes that you are running your WCF service under the Network
Service machine account.

1. On the domain controller, start the Microsoft Management Console (MMC)
Active Directory Users and Computers snap‐in.

2. In the left pane of the MMC snap‐in, click the Computers node.
3. In the right pane, double‐click your WCF server computer to display the

Properties dialog box.
4. On the Delegation tab of the Properties window for the WCF server computer,

Do not trust the computer for delegation is selected by default. To use
constrained delegation, select Trust this computer for delegation to specified
services only. You specify precisely which service or services can be accessed in
the bottom pane.

5. Beneath Trust this computer for delegation to specified services only, keep the
default option Use Kerberos only selected.

6. Click the Add button to display the Add Services dialog box.
7. Click the Users or computers button.
8. In the Select Users or Computers dialog box, type the name of your database

server computer if you are running SQL Server as System or Network Service.
Alternatively, if you are running SQL Server by using a custom domain account,
enter that account name instead and then click OK.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 576

9. You will see all the service principal names configured for the selected user or
computer account. To restrict access to SQL Server, select the MSSQLSvc service,
and then click OK.

Note If you want to delegate to a file on a file share, you need to select the Common
Internet File System (CIFS) service.

To configure constrained delegation for a custom domain account

This procedure assumes that you are running your Web application under a custom
domain account.

1. Create an SPN for your custom domain account. Kerberos requires an SPN to
support mutual authentication. To create an SPN for the domain account:

i. Install the Windows Server 2003 Tools from the Microsoft Windows
Server® 2003 CD.

ii. From a command prompt, run the Setspn tool twice from the C:\Program
Files\Support Tools directory as shown below:

setspn ‐A HTTP/wcfservername domain\customAccountName

setspn ‐A HTTP/wcfservername.fullyqualifieddomainname

domain\customAccountName

Note You can only have a single SPN associated with any HTTP service
(DNS) name, which means you cannot create SPNs for different service
accounts mapped to the same HTTP server unless they are on different
ports. The SPN can include a port number.

2. On the domain controller, start the Microsoft Management Console (MMC)
Active Directory Users and Computers snap‐in.

3. In the left pane of the MMC snap in, click the Users node.
4. In the right pane, double‐click the user account you are using to run the WCF

service.
This displays the user account properties.

5. On the Delegation tab of the Properties window for the WCF server computer,
Do not trust the computer for delegation is selected by default. To use
constrained delegation, select Trust this computer for delegation to specified
services only. You specify precisely which service or services can be accessed in
the bottom pane.

6. Beneath Trust this computer for delegation to specified services only, keep the
default option Use Kerberos only selected.

7. Click the Add button to display the Add Services dialog box.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 577

8. Click the Users or computers button.
9. In the Select Users or Computers dialog box, type the name of your database

server computer if you are running SQL Server as System or Network Service.
Alternatively, if you are running SQL Server by using a custom domain account,
enter that account name instead and then click OK.

10. You will see all the service principal names configured for the selected user or
computer account. To restrict access to SQL Server, select the MSSQLSvc service,
and then click OK.

Step 5 – Impersonate the Original Caller in the WCF Service
Perform the following steps to declaratively impersonate specific operations:

1. In the Solution Explorer, expand the App_Code folder under your WCF Service
project, and then open the Service.cs file.

2. Add a using statement for the System.Security.Principal namespace.
3. Set the impersonation required on the operation implementation of the specific

operation as follows:

[OperationBehavior(Impersonation = ImpersonationOption.Required)]
public string GetData(int value)
{
 return string.Format("Hi, {0}, you have entered: {1}",
 WindowsIdentity.GetCurrent().Name, value);
}

4. Add the database access code to the WCF Service operation implementation.
The remote database is accessed using the original caller’s security context.

public string GetData(int value)
{
 // Access the database
 using (SqlConnection conn = new SqlConnection())
 {
 conn.ConnectionString = "Connection String";
 conn.Open();
 SqlCommand cmd = new SqlCommand("Select * from <<tableName>>",
 conn);
 SqlDataAdapter da = new SqlDataAdapter(cmd);
 da.Fill(dt);
 }

 return string.Format("Hi, {0}, you have entered: {1}",
 WindowsIdentity.GetCurrent().Name, value);
}

Step 6 – Create a Test Client Application
In this step, you create a Windows Forms application that you will use to test the WCF
service.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 578

1. Right‐click your solution, click Add, and then click New Project.
2. In the Add New Project dialog box, in the Templates section, select Windows

Forms Application.
3. In the Name field, type Test Client and then click OK to create a Windows Forms

application for testing.

Step 7 – Add a WCF Service Reference to the Client
In this step, you add a reference to your WCF service.

1. Right‐click your client project and then click Add Service Reference.
2. In the Add Service Reference dialog box, set the URL to your WCF service:

http://localhost/WCFServiceDelegation/Service.svc
3. In the Namespace field, change ServiceReference1 to WCFTestService.
4. Click OK.

A reference to WCFTestService should appear beneath Service References in
your client project.

Step 8 – Test the Client and WCF Service
In this step, you access the WCF service and make sure that it impersonates as
expected.

1. In your client project, drag a Button control onto your form.
2. Double‐click the Button control to show the underlying code.
3. Create an instance of the proxy and call the GetData method of your WCF

service. The code should look as follows:

private void button1_Click(object sender, EventArgs e)
{
 WCFTestService.ServiceClient myService = new
 WCFTestService.ServiceClient();
 MessageBox.Show(myService.GetData(123));
 myService.Close();
}

4. Right‐click the client project and then click Set as Startup Project.
5. Run the client application by pressing F5 or Ctrl+F5. When you click the button

on the form, it should display the message “Hi, <<logged in user id>>, you have
entered: 123”.

Additional Resources
• For more information on impersonation, see “Delegation and Impersonation

with WCF” at http://msdn2.microsoft.com/en‐us/library/ms731090.aspx.
• For further information on impersonation, see “How to: Impersonate a Client on

a Service” at http://msdn2.microsoft.com/en‐us/library/ms730088.aspx.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 579

How To – Use Health Monitoring to Instrument a WCF
Service for Security

Applies to
• Microsoft® Windows Communication Foundation (WCF) 3.5
• Microsoft Visual Studio® 2008

Summary
This How To article walks you through the process of configuring a WCF service for Health
Monitoring in order to instrument a custom event. The article shows you how to create a
custom web event, configure a WCF service for Health Monitoring, instrument a WCF service for
security events, and create a test client application to verify the events in the Event Log.

Contents
• Objectives
• Overview
• Summary of Steps
• Step 1 – Create a Custom Web Event
• Step 2 – Create a WCF Service for Monitoring
• Step 3 – Configure Your WCF Service for Health Monitoring
• Step 4 – Instrument Your WCF Service
• Step 5 – Create a Test Client
• Step 6 – Add a WCF Service Reference to the Client
• Step 7 – Test the Client and WCF Service
• Step 8 – Verify the Service Events in the Event Log
• Additional Resources

Objectives
• Learn to create a custom Web event.
• Learn to configure a WCF service for Health Monitoring.
• Learn to instrument a WCF service.

Overview
The Health Monitoring feature in WCF supports many standard events that you can use
to check the health of your WCF service. This feature supports an event provider model.
It allows you to instrument your WCF service and monitors user management events
around authentication and authorization. You can track access to sensitive operations
such as financial transactions or access to sensitive data by using the Health Monitoring
feature to detect and react to potentially suspicious behavior.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 580

This article shows you how to create a custom Web event in a class library project in
Visual Studio 2008. You will then create a sample WCF service project and configure the
service to use the Health Monitoring feature. Next, you will instrument the service by
raising the custom event. Finally, you will create an ASP.NET test client project to verify
the security events in the Event Log by invoking the custom event.

Summary of Steps
• Step 1 – Create a Custom Web Event
• Step 2 – Create a WCF Service for Monitoring
• Step 3 – Configure Your WCF Service for Health Monitoring
• Step 4 – Instrument Your WCF Service
• Step 5 – Create a Test Client
• Step 6 – Add a WCF Service Reference to the Client
• Step 7 – Test the Client and WCF Service
• Step 8 – Verify the Service Events in the Event Log

Step 1 – Create a Custom Web Event
In this step, you create a custom Web event by creating a class that inherits from
System.Web.Management.WebAuditEvent.

1. In Visual Studio, on the menu, click File ‐> New Project.
2. In the Templates section, select Class Library. Specify the name of the project

and the location to be created in the Path (e.g., C:/Projects/MyEventLibrary).
3. In the New Project dialog box, click OK to create a Class Library project and

sample class file named (Class1.cs).
4. Rename Class1.cs as MyEvent.cs.
5. Add a reference to your new project to System.Web and add the

System.Web.Management namespace to the top of MyEvent.cs.
6. Derive MyEvent from WebAuditEvent and create appropriate public

constructors that call the protected equivalents in the parent WebAuditEvent
class, as follows:

using System.Web.Management;

 public class MyEvent : WebAuditEvent
 {

 public MyEvent(string msg, object eventSource, int
eventCode)
 : base(msg, eventSource, eventCode)
 {
 }

 public MyEvent(string msg, object eventSource, int
eventCode, int eventDetailCode)
 : base(msg, eventSource, eventCode, eventDetailCode)
 {

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 581

 }

7. To log some custom details, override the FormatCustomEventDetails method as
follows:

 public override void
FormatCustomEventDetails(WebEventFormatter formatter)
 {
 base.FormatCustomEventDetails(formatter);

 // Add some custom data.
 formatter.AppendLine("");
 formatter.IndentationLevel += 1;
 formatter.AppendLine("******** SampleWebAuditEvent
Start ********");

 formatter.AppendLine(string.Format("Request path:
{0}",
 RequestInformation.RequestPath));

 formatter.AppendLine(string.Format("Request Url:
{0}",
 RequestInformation.RequestUrl));

 // Display some custom event message
 formatter.AppendLine("Some Critical Event Fired");

 formatter.AppendLine("******** SampleWebAuditEvent
End ********");

 formatter.IndentationLevel -= 1;
 }

8. Build the assembly by compiling the project.

Step 2 – Create a WCF Service for Monitoring
In this step, you create a WCF service in Visual Studio.

1. In Visual Studio, on the menu, click File ‐> New Web Site.
2. In the Templates section, select WCF Service. Make sure that the Location is set

to Http and specify the virtual directory to be created in the Path (e.g.,
http://localhost/HMWCFService).

3. In the New Web Site dialog box, click OK to create a virtual directory and a
sample WCF service.

4. Browse to your WCF service (i.e., http://localhost/HMWCFService/Service.svc).
You should see details of your WCF service.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 582

Step 3 – Configure Your WCF Service for Health Monitoring
In this step, you configure the WCF service to use Health Monitoring. You can configure
your application to use any of the three default providers. For this exercise, you will use
the EventLogWebEventProvider, which uses the EventLogWebEventProvider class to
write entries to the Windows application Event Log.

• In the Web.config file of your service application, add the following code, which
specifies the event mapping and the rules for using the EventLogProvider for the
custom event type MyEventLibrary.MyEvent.

…
<system.web>
 <healthMonitoring>
 <eventMappings>
 <add name="Some Custom Event"
type="MyEventLibrary.MyEvent, MyEventLibrary"/>
 </eventMappings>
 <rules>
 <add name="Custom event" eventName="Some Custom
Event" provider="EventLogProvider" minInterval="00:00:01"/>
 </rules>
 </healthMonitoring>
</system.web>
…

Step 4 – Instrument Your WCF Service
In this step, you instrument your WCF service to raise custom events.

1. In the Solution Explorer, select the WCF Service project and add a reference to
the Class Library project created in step1.

2. Expand the App_Code folder, open IService.cs, and add the following operation
contract:

 [OperationContract]
 string InvokeCriticalEvent();

3. Add a reference to System.Web and then add the System.Web.Management

namespace to the top of the Service.cs as follows:

using CustomEvents;
using System.Web.Management;

4. Implement the above contract by creating a new custom event object of type
MyEvent and calling its Raise method to fire the event as follows:

 public string InvokeCriticalEvent()
 {
 MyEvent obj = new MyEvent("Invoking Some Custom Event",
this, WebEventCodes.WebExtendedBase + 1);

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 583

 obj.Raise();
 return "Critical event invoked";
 }

5. Compile the WCF service project and test the service.

Note: When you raise a custom Web event, you must specify an event code that is
greater than System.Web.Management.WebEventCodes.WebExtendedBase. Codes
that are less than this value are reserved for system‐generated events.

Step 5 – Create a Test Client
In this step, you create an ASP.NET application to monitor your WCF service.

1. In the Solution Explorer, right‐click your solution and then click New Website.
2. In the Templates section, select ASP.NET Website. Make sure that the Location

is set to Http and specify the virtual directory to be created in the Path (e.g.,
http://localhost/HMWCFService).

3. In the New Web Site dialog box, click OK to create a virtual directory and a
sample ASP.NET Web site.

Step 6 – Add a WCF Service Reference to the Client
In this step, you add a reference to your WCF service.

1. Right‐click your ASP.NET client application and then click Add Service Reference.
2. In the Add Service Reference dialog box, set the URL to your WCF service, (e.g,

http://localhost/HMWCFService/Service.svc) and then click Go.
3. In the Web reference name field, change ServiceReference1 to HMWCFService.
4. Click Add Reference.

A reference to HMWCFService should appear beneath Web References in your
client project.

Step 7 – Test the Client and WCF Service
In this step, you access the WCF service and invoke the custom event.

1. In your ASP.NET test application project, drag a Button control onto your Web
form.

2. Double‐click the Button control to show the underlying code.
3. Create an instance of the proxy, and then call the InvokeCriticalEvent operation

of your WCF service. The code should look as follows:

protected void button1_Click(object sender, EventArgs e)
{
 HMWCFService.ServiceClient myService = new
 HMWCFService.ServiceClient();

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 584

 Response.Write(myService.InvokeCriticalEvent());
 myService.Close();
}

4. Right‐click the client project and then click Set as Startup Project.
5. Run the client application by pressing F5 or Ctrl+F5. When you click the button

on the form, the message “Critical event invoked” should appear.

Step 8 – Verify the Service Events in the Event Log
In this step, you verify the WCF service events in the Application Event Log.

1. On your Service host machine, click Start and then click Run.
2. In the command line, type eventvwr and then click OK to open the Event Viewer

window.
3. In the left pane, select the Application node to view a list of application events in

the right pane.
4. In the list, search for the latest event. You will see an event of Web Event

category, ASP.NET <<version no>> source, and Information type.
5. Open the event and view the following information, which appends your custom

message event:

Event code: 100001
Event message: Invoking Some Custom Event
Event time: 3/31/2008 10:55:42 AM
Event time (UTC): 3/31/2008 5:25:42 AM
Event ID: 1515c05420ea46e189f83e1550cb1f8a
Event sequence: 10
Event occurrence: 2
Event detail code: 0

Application information:
…
Process information:
…

Request information:
…
Custom event details:
 ******** SampleWebAuditEvent Start ********
 Request path: /Health/Default.aspx
 Request Url: http://localhost/HMWCFService/Default.aspx
 Password changed
 ******** SampleWebAuditEvent End ********
…

Additional Resources
• For more information on instrumenting ASP.NET applications, see “How To:

Instrument ASP.NET 2.0 Applications for Security” at
http://msdn2.microsoft.com/en‐us/library/ms998325.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 585

• For more information on Health Monitoring, see “How To: Use Health
Monitoring in ASP.NET 2.0” at http://msdn2.microsoft.com/en‐
us/library/ms998306.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 586

How To: Use netTcpBinding with Windows Authentication
and Message Security in WCF Calling from Windows Forms

Applies To
• Microsoft® Windows Communication Foundation (WCF) 3.5
• Windows Forms
• Microsoft Visual Studio® 2008

Summary
This how to shows you how to use the netTcpBinding with Windows Authentication and
Message security. netTcpBinding is used for communicating with WCF clients in an
intranet and provides transport security with windows authentication by default. This
how to shows you how to configure the service to use message security instead of
transport security. In this how to, the WCF service is hosted in a Windows service.

Contents
• Objectives
• Overview
• Summary of Steps
• Step 1 – Create a Windows Service
• Step 2 – Create a Sample WCF Service
• Step 3 – Modify the Windows Service to Host the WCF Service
• Step 4 – Configure the WCF Service to Use netTcpBinding with Message Security
• Step 5 – Configure the WCF Service to Publish Metadata
• Step 6 – Install the Windows Service
• Step 7 – Create a Test Client Application
• Step 8 – Test the Client and WCF Service
• Additional Resources

Objectives
• Create a WCF service hosted in a Windows service.
• Learn how to expose the WCF service with message security.
• Learn how to use Windows tokens for encrypting and signing your messages.
• Learn why you need service principle names (SPNs) and how to create them

Overview
Windows Authentication is suited for scenarios in which your users have domain
credentials. In the scenario described in this How To article, users are authenticated by
Windows Authentication. The scenario described in this How To article uses the
netTcpBinding binding to expose a WCF service to WCF-enabled clients. The

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 587

netTcpBinding binding offers improved performance over an HTTP binding. In this
scenario WCF is hosted in a Windows service. The WCF service with netTcpBinding can
be consumed by a WCF-enabled .NET application through the use of a service reference.
The Visual Studio service reference generates a proxy class to abstract the underlying
message-based communication. WCF message security is used to support a secure
communication channel in a end-to-end scenario. In general, you should always use
transport security unless you need the additional flexibility that message security
affords you. For example, you would use message security for scenarios in which there
are intermediaries who need to inspect and re-route the message.

In this How To, you will create a Windows service to host your WCF service. You will
then create sample WCF service in Visual Studio 2008 and configure the service to use
netTcpBinding with message security through the use of the WCF Configuration Editor.
Next, you will configure a mexTcpBinding so that the service can expose its metadata to
clients from which they can generate a WCF proxy and call your service. Finally, you will
create a test client to verify that the service is working properly.
Solution Summary

• Binding: By default, netTcpBinding offers improved performance over an HTTP
binding and is the ideal choice for cross machine communication between WCF
clients and a WCF service, in an intranet.

• Security Mode: Transport security is the default security mode for netTcpBinding
and should be preferred over Message security for better performance. If
needed, message security can provide greater control over signing and
encryption of the message.

• Client Authentication: Since this binding is used inside an intranet, Windows is
the recommended client authentication mechanism though the default is
UserName. The other possible values are None, Certificate and IssuedToken.

• Algorithm Suite: The default message encryption algorithm used is Basic256 and
should suffice for most scenarios. A stronger encryption algorithm can be chosen
for increased security.

• Hosting Consideration: This how-to hosts WCF in a Windows service. In general,
netTcpBinding services can be hosted in a windows service, IIS 7.0 (not IIS 6.0 or
lower), WAS or can be self-hosted. The choice should be based on the
deployment requirements of the service.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 588

Summary of Steps
• Step 1 – Create a Windows Service
• Step 2 – Create a Sample WCF Service
• Step 3 – Modify the Windows Service to Host the WCF Service
• Step 4 – Configure the WCF Service to Use netTcpBinding with Message

Security
• Step 5 – Configure the WCF Service to Publish Metadata
• Step 6 – Install the Windows Service
• Step 7 – Create a Test Client Application
• Step 8 – Test the Client and WCF Service

Step 1 – Create a Windows Service
In this step, you create a Windows service to host your WCF service.

1. In Visual Studio, on the File menu, click New and then click Project.
2. In the New Project dialog box, in the Project Types section, select Windows

under Visual C#.
3. In the Templates section, select Windows Service, and type the name of your

project (WCFServiceHost) in the Name field.
4. In the Add a Project dialog box, click OK to add a sample Windows service to the

solution.
5. Right-click Service1.cs and then click View Designer.
6. Right-click the designer and then click Add Installer to add the ProjectInstaller.cs

file with two objects, serviceProcessInstaller1 and serviceInstaller1.
7. In the designer view of ProjectInstaller.cs, right-click serviceProcessInstaller1

and then click Properties.
8. In the Properties pane, set the Account attribute to NetworkService.

This will run your Windows service under the Network Service account.

Step 2 – Create a Sample WCF Service
In this step, you add a WCF service to the Windows service that will host it.

1. Right-click the Windows service project, click Add, and then click New Item.
2. In the Add New Item dialog box, select WCF Service.
3. Set the Name as MyService.cs and then click the Add.

Note that the configuration file, App.config, gets added automatically.
4. Modify the DoWork() method signature in IMyService.cs to accept a string

parameter and return a string data type as shown below:

string DoWork(string value);

5. Modify the DoWork() method in MyService.cs to accept a string parameter and
return a string data type as below.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 589

public string DoWork(string value)

 {
 return "Welcome " + value;
 }

Step 3 – Modify the Windows Service to Host the WCF
Service
In this step, you add code to the OnStart() and OnStop() methods to start and stop the
WCF Service inside the Windows service process.

1. In the Solution Explorer, right-click Service1.cs and then click View Code.
2. In the Service1.cs file, add a using statement as follows:

using System.ServiceModel;

3. Declare an internal static member of ServiceHost type as follows:

internal static ServiceHost myServiceHost = null;

4. Add code to the OnStart method of the Windows service, to open the service:

protected override void OnStart(string[] args)
{
 if (myServiceHost != null)
 {
 myServiceHost.Close();
 }

 myServiceHost = new ServiceHost(typeof(MyService));
 myServiceHost.Open();
}

5. Add code to the OnStop method of the Windows service, to close the service
host

protected override void OnStop()
{
 if (myServiceHost != null)
 {
 myServiceHost.Close();
 myServiceHost = null;
 }
}

6. Build the solution and verify that your project produces WCFServiceHost.exe in

your project \bin directory.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 590

Step 4 – Configure the WCF Service to Use netTcpBinding
with Message Security
In this step, you configure your WCF service to use netTcpBinding and message security.

1. In the Solution Explorer, Right-click the App.config file and then click Edit WCF
Configuration.
If you do not see the Edit WCF Configuration option, on the Tools menu, click
WCF Service Configuration Editor. Close the WCF Service Configuration Editor
tool that appears. The option should now appear on the web.config context
menu.

2. In the Configuration Editor, expand the Services node and then expand
WCFHostService.MyService.

3. Select the Host node, select the default BaseAddress in the Base addresses
section, and then click Delete.

4. Click New and then in the Base Address Editor dialog box, set the Base address:
to net.tcp://localhost:8523/WCFTestService.

5. Expand the Endpoints node, select the first [Empty Name] node, and then set
the set the Name attribute to NetTcpBindingEndpoint.

6. Set the Binding attribute to netTcpBinding.
7. In the Configuration Editor dialog box, on the File menu, select Save.
8. In Visual Studio, verify the configuration in your App.config, which should look as

follows:

<services>
 <service
behaviorConfiguration="WCFHostService.MyServiceBehavior"
 name="WCFHostService.MyService">
 <endpoint address="" binding="netTcpBinding"
 bindingConfiguration=""
 name="NetTcpBindingEndpoint"
 contract="WCFHostService.IMyService">
 <identity>
 <dns value="localhost" />
 </identity>
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
 contract="IMetadataExchange" />
 <host>
 <baseAddresses>
 <add
baseAddress="net.tcp://localhost:8523/WCFTestService" />
 </baseAddresses>
 </host>
 </service>
</services>

9. In the Configuration Editor, select the Bindings node and then click the New
Binding Configuration link.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 591

10. In the Create a New Binding dialog box, select netTcpBinding and then click OK.
11. Set the Name attribute to NetTcpBindingEndpointConfig on the newly created

binding configuration.
12. Click the Security tab and then set the Mode attribute to Message.
13. Verify that the MessageClientCredentials attribute is set to Windows.
14. In the NetTcpBindingEndpoint binding created above, set the

BindingConfiguration to NetTcpBindingEndpointConfig by selecting it from the
dropdown.

15. In the Configuration Editor dialog box, on the File menu, select Save.
16. In Visual Studio, verify your configuration, which should look as follows:

...
<bindings>
 <netTcpBinding>
 <binding name="NetTcpBindingEndpointConfig">
 <security mode="Message" />
 </binding>
 </netTcpBinding>
</bindings>
...
<services>
 <service
behaviorConfiguration="WCFHostService.MyServiceBehavior"
 name="WCFHostService.MyService">
 <endpoint address="" binding="netTcpBinding"

bindingConfiguration="NetTcpBindingEndpointConfig"
 name="NetTcpBindingEndpoint"
contract="WCFHostService.IMyService">
 <identity>
 <dns value="localhost" />
 </identity>
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
bindingConfiguration=""
 contract="IMetadataExchange" />
 <host>
 <baseAddresses>
 <add
baseAddress="net.tcp://localhost:8523/WCFTestService" />
 </baseAddresses>
 </host>
 </service>
</services>
...

Step 5 – Configure the WCF Service to Publish Metadata
In this step, you configure your WCF service to publish metadata. Publishing the
metadata will allow your client to add a reference to the WCF service.

1. In the Configuration Editor, expand the Services node and then expand the
WCFHostService.MyService node.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 592

2. Expand the Endpoints node, select the remaining [Empty Name] node, and then
set the Name attribute to mexTcpBindingEndpoint.

3. Set the Binding attribute to mexTcpBinding.
4. In the Configuration Editor dialog box, on the File menu, select Save.
5. In Visual Studio, verify the configuration in your App.config file. The

configuration should look as follows:

...
<services>
 <service
behaviorConfiguration="WCFHostService.MyServiceBehavior"
 name="WCFHostService.MyService">
 <endpoint address="" binding="netTcpBinding"

bindingConfiguration="NetTcpBindingEndpointConfig"
 name="NetTcpBindingEndpoint"
contract="WCFHostService.IMyService">
 <identity>
 <dns value="localhost" />
 </identity>
 </endpoint>
 <endpoint address="mex" binding="mexTcpBinding"
bindingConfiguration=""
 name="mexTcpBindingEndpoint"
contract="IMetadataExchange" />
 <host>
 <baseAddresses> <add
baseAddress="net.tcp://localhost:8523/WCFTestService" />
 </baseAddresses>
 </host>
 </service>
</services>
...

6. In the Configuration Editor, expand the Advanced node and then expand the
Service Behaviors node.

7. Expand the WCFHostService.MyServiceBehavior node and then select the
serviceMetadata node.

8. Set the HttpGetEnabled attribute to False.
9. In the Configuration Editor dialog box, on the File menu, select Save.
10. In Visual Studio, verify the configuration in your App.config file. The

configuration should look as follows:

<behaviors>
 <serviceBehaviors>
 <behavior name="WCFHostService.MyServiceBehavior">
 <serviceMetadata httpGetEnabled="false" />
 <serviceDebug includeExceptionDetailInFaults="false"
/>
 </behavior>
 </serviceBehaviors>
</behaviors>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 593

Step 6 – Install the Windows Service
In this step, you install the Windows service and run it from the Services console.

1. Rebuild the solution and open a Visual Studio command prompt.
2. Navigate to the bin directory of the project where WCFServiceHost.exe was

copied.
3. On the command line, execute the following command to install the service:

Installutil WCFServiceHost.exe

4. After the service has installed successfully, open the services console by

executing services.msc on the command line.
5. In the services console, search for the name of the service, Service1, and start it.

Note: If you have modified the service that is already installed, you can uninstall it by
using following command:

Installutil /u WCFServiceHost.exe

Step 7 – Create a Test Client Application
In this step, you create a Windows Forms application to test the WCF service.

1. Right-click your solution, click Add, and then click New Project.
2. In the Add New Project dialog box, in the Templates section, select Windows

Forms Application.
3. In the Name field, type Test Client and then click OK.
4. Right-click your client project and then click Add Service Reference.
5. In the Add Service Reference dialog box, set the Service URI: to

net.tcp://localhost:8523/WCFTestService and then click Go.
6. Set the Service reference name: to WCFTestService and then click OK.

Step 8 – Test the Client and WCF Service
In this step, you use the test client to ensure that the WCF service is running properly.

1. In your Client project, drag a button control onto your form.
2. Double-click the button control to show the underlying code.
3. Create an instance of the proxy and call the DoWork method on your WCF

service.
When you call the service, your current user security context will automatically
be passed to your WCF service. The code should look as follows:

private void button1_Click(object sender, EventArgs e)

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 594

{
 WCFTestService.MyServiceClient myService = new
 WCFTestService.MyServiceClient();
 MessageBox.Show(myService.DoWork("Hello World!"));
 myService.Close();
}

4. Right-click the client project and then click Set as Startup Project.
5. Run the client application by pressing F5 or Ctrl+F5.

When you click the button on the form, it should display the message “Welcome
Hello World!”.

Additional Resources
• For more information on security authentication best practices, see “Best

Practices for Security in WCF” at 3 TUhttp://msdn2.microsoft.com/en-
us/library/ms731059.aspxU3T

• For additional information on message security, see “Message Security in WCF”
at 3TUhttp://msdn2.microsoft.com/en-us/library/ms733137.aspxU3T

• For more information on hosting in a Windows service, see “3TUHow to: Host a WCF
Service in a Managed Windows ServiceU3T.”

• For more information on WCF hosing considerations, see “Hosting Services” at
3TUhttp://msdn2.microsoft.com/en-us/library/ms730158.aspxU3T

• For more information on netTcpBinding configuration options see
“<netTcpBinding>” at 3 TUhttp://msdn2.microsoft.com/en-
us/library/ms731343.aspxU3T

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 595

How To – Use netTcpBinding with Windows Authentication
and Transport Security in WCF Calling from Windows
Forms

Applies to
• Microsoft® Windows Communication Foundation (WCF) 3.5
• Windows Forms
• Microsoft Visual Studio® 2008

Summary
This How To article shows you how to use the netTcpBinding binding with Windows
authentication and transport security. netTcpBinding is used for communicating with
WCF clients in an intranet environment and provides transport security and Windows
authentication by default. In this article, the WCF service is hosted in a Windows service.

Contents
• Objectives
• Overview
• Summary of Steps
• Step 1 – Create a Windows Service
• Step 2 – Create a Sample WCF Service
• Step 3 – Modify the Windows Service to Host the WCF Service
• Step 4 – Configure the WCF Service to Use netTcpBinding with Transport Security
• Step 5 – Configure the WCF Service to Publish Metadata
• Step 6 – Install the Windows Service
• Step 7 – Create a Test Client Application
• Step 8 – Test the Client and WCF Service
• Additional Resources

Objectives
• Create a WCF service hosted in a Windows service.
• Expose the WCF service over netTcpBinding to WCF-enabled clients.
• Run the WCF service in the Network Service security context.
• Call the service from a Windows Forms test client.

Overview
Windows authentication is suited for scenarios in which your users have domain
credentials. In the scenario described in this How To article, users are authenticated by
Windows authentication. The scenario described in this How To article uses the
netTcpBinding binding to expose a WCF service to WCF-enabled clients. The

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 596

netTcpBinding binding offers improved performance over an HTTP binding. Because
Internet Information Services (IIS) 6.0 cannot host a TCP binding, in this scenario WCF is
hosted in a Windows service. The WCF service with netTcpBinding can be consumed by
a WCF-enabled .NET application through the use of a service reference. The Visual
Studio service reference generates a proxy class to abstract the underlying message-
based communication. WCF transport security is used to support a secure
communication channel in a point-to-point scenario. In general, you should always use
transport security unless you need the additional flexibility that message security
affords you. For example, you would use message security for scenarios in which there
are intermediaries who need to inspect and re-route the message.

In this How To article, you will create a Windows service to host your WCF service. You
will then create sample WCF service in Visual Studio 2008 and configure the service to
use netTcpBinding with transport security through the use of the WCF Configuration
Editor. Next, you will configure mexTcpBinding so that the service can expose its
metadata to clients from which they can generate a WCF proxy and call your service.
Finally, you will create a test client to verify that the service is working properly.

Solution Summary

• Binding – By default, netTcpBinding offers improved performance over an HTTP
binding and is the ideal choice for cross-machine communication between WCF
clients and a WCF service, in an intranet environment.

• Security mode –Transport security is the default security mode for
netTcpBinding and should be preferred over message security for better
performance. If needed, message security can provide greater control over
signing and encryption of the message.

• Client authentication – Because this binding is used inside an intranet, Windows
is the default and recommended client authentication mechanism. The other
options for this binding are None (for anonymous authentication) and
Certificate.

• Protection level – It is recommended that you retain the default EncryptAndSign
protection level for maximum transport security. This can be lowered to Sign for
performance, but None is typically not recommended.

• Hosting consideration – For the purposes of this How To article, WCF is hosted in
a Windows service. In general, netTcpBinding services can be hosted in a
Windows service, in IIS 7.0 (not IIS 6.0 or lower), or in WAS, or it can be self-
hosted. The choice should be based on the deployment requirements of the
service.

Summary of Steps
• Step 1 – Create a Windows Service

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 597

• Step 2 – Create a Sample WCF Service
• Step 3 – Modify the Windows Service to Host the WCF Service
• Step 4 – Configure the WCF Service to Use netTcpBinding with Transport

Security
• Step 5 – Configure the WCF Service to Publish Metadata
• Step 6 – Install the Windows Service
• Step 7 – Create a Test Client Application
• Step 8 – Test the Client and WCF Service

Step 1 – Create a Windows Service
In this step, you create a Windows service to host your WCF service.

1. In Visual Studio, on the menu, click File -> New -> Project.
2. In the New Project dialog box, in the Project Types section, select Windows

under Visual C#.
3. In the Templates section, select Windows Service, specify the project location,

and name it “WCFServiceHost”.
4. In the Add a Project dialog box, click OK to add a sample Windows service to the

solution.
5. Right-click Service1.cs and then click View Designer.
6. Right-click the designer view and then click Add Installer to add the

ProjectInstaller.cs file with two objects, serviceProcessInstaller1 and
serviceInstaller1.

7. In the designer view of ProjectInstaller.cs, right-click serviceProcessInstaller1
and then click Properties.

8. In the properties section, set the Account attribute to NetworkService.
This will run your Windows service under the Network Service account.

Step 2 – Create a Sample WCF Service
In this step, you add a WCF service to the Windows service that will host it.

1. Right-click the Widows Service project, click Add, and then click New Item.
2. In the Add New Item dialog box, select WCF Service.
3. Set the Name as MyService.cs and then click Add.

Note that the configuration file, App.config, is automatically added.
4. In IMyService.cs, modify the DoWork() method signature to accept a string

parameter and return a string data type as follows:

string DoWork(string value);

5. In MyService.cs, modify the DoWork() method to accept a string parameter and
return a string data type as follows:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 598

public string DoWork(string value)
 {
 return "Welcome " + value;
 }

Step 3 – Modify the Windows Service to Host the WCF
Service
In this step, you add code to the OnStart() and OnStop() methods to start and stop the
WCF service inside the Windows service process.

1. In the Solution Explorer, right-click Service1.cs and then click View Code.
2. In the Service1.cs file, add a using statement as follows:

using System.ServiceModel;

3. Declare an internal static member of ServiceHost type as follows:

internal static ServiceHost myServiceHost = null;

4. To open the service host, add code to the OnStart method of a Windows service
as follows:

protected override void OnStart(string[] args)
{
 if (myServiceHost != null)
 {
 myServiceHost.Close();
 }

 myServiceHost = new ServiceHost(typeof(MyService));
 myServiceHost.Open();
}

5. To close the service host, add code to the OnStop method of a Windows service
as follows:

protected override void OnStop()
{
 if (myServiceHost != null)
 {
 myServiceHost.Close();
 myServiceHost = null;
 }
}

6. Build the solution and verify that your project produces “WCFServicecHost.exe”

in your project \bin directory.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 599

Step 4 – Configure the WCF Service to Use netTcpBinding
with Transport Security
In this step, you configure your WCF service, “MyService”, to use netTcpBinding.

1. Right=click the App.config file and then click Edit WCF Configuration.
If you do not see the Edit WCF Configuration option, on the Tools menu, click
WCF Service Configuration Editor. Close the WCF Service Configuration Editor
tool that appears. The option should now appear on the web.config context
menu.

2. In the Configuration Editor, expand the Services node and then expand
WCFHostService.MyService.

3. Select the Host node, select the default BaseAddress from the Base addresses
section, and then click Delete.

4. In the Base Address Editor dialog box, click New, and then set the Base address:
to "net.tcp://localhost:8523/WCFTestService".
The port number 8523 is arbitrary and used for this example only.
WCFTestService is also arbitrary and is used in this example to expose the
endpoint.

5. Expand the Endpoints node, select the first [Empty Name] endpoint created,
and then set the Name attribute to “NetTcpBindingEndpoint”.

6. Set the Binding attribute to netTcpBinding by choosing this option from the
drop-down list.

7. In the Configuration Editor, on the File menu, click Save.
Alternatively, press Ctrl + S.

8. In Visual Studio, verify your configuration in your App.config. The configuration
should look as follows:

<services>
 <service behaviorConfiguration="WCFHostService.MyServiceBehavior"
 name="WCFHostService.MyService">
 <endpoint address=""
 binding="netTcpBinding"
 bindingConfiguration=""
 name="NetTcpBindingEndpoint"
 contract="WCFHostService.IMyService">
 <identity>
 <dns value="localhost" />
 </identity>
 </endpoint>

 <endpoint address="mex"
 binding="mexHttpBinding"
 contract="IMetadataExchange" />
 <host>
 <baseAddresses>
 <add
baseAddress="net.tcp://localhost:8523/WCFTestService" />
 </baseAddresses>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 600

 </host>
 </service>
</services>

Note: Because netTcpBinding supports Windows authentication with transport
security by default, you do not have to change any other configuration in the
binding.

Step 5 – Configure the WCF Service to Publish Metadata
In this step, you configure your WCF service to publish metadata. Publishing the
metadata will allow your client to add a reference to your WCF service.

1. In the Configuration Editor, expand the Services node, and then expand the
WCFHostService.MyService node.

2. Expand the Endpoints node, select the second [Empty Name] endpoint created,
and then set the Name attribute to “MexTcpBindingEndpoint”.

3. Set the Binding attribute to mexTcpBinding by choosing this option from the
drop-down list.

4. In the Configuration Editor, on the File menu, click Save.
Alternatively, press Ctrl + S.

5. In Visual Studio, verify your configuration in App.config. The configuration should
look as follows:

...
<services>
 <service
behaviorConfiguration="WCFHostService.MyServiceBehavior"
 name="WCFHostService.MyService">
 <endpoint address=""
 binding="netTcpBinding"
 bindingConfiguration=""
 name="NetTcpBindingEndpoint"
 contract="WCFHostService.IMyService">
 <identity>
 <dns value="localhost" />
 </identity>
 </endpoint>

 <endpoint address="mex"
 binding="mexTcpBinding"
 bindingConfiguration=""
 name="MexTcpBidingEndpoint"
 contract="IMetadataExchange" />
 <host>
 <baseAddresses>
 <add
baseAddress="net.tcp://localhost:8523/WCFTestService" />
 </baseAddresses>
 </host>
 </service>
</services>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 601

...

6. In the Configuration Editor, expand the Advanced node, and then expand the
Service Behaviors node.

7. Expand the WCFHostService.MyServiceBehavior node and then select the
serviceMetadata node.

8. Set the HttpGetEnabled attribute to False.
9. In the Configuration Editor, on the File menu, click Save.
10. In Visual Studio, verify your configuration in App.config. The configuration should

look as follows:

<behaviors>
 <serviceBehaviors>
 <behavior name="WCFHostService.MyServiceBehavior">
 <serviceMetadata httpGetEnabled="false" />
 <serviceDebug includeExceptionDetailInFaults="false" />
 </behavior>
 </serviceBehaviors>
</behaviors>

Step 6 – Install the Windows Service
In this step, you install the Windows service and run it form the Services console.

1. Rebuild the solution and open a Visual Studio 2008 command prompt.
2. Navigate to the \bin directory of the project where WCFServiceHost.exe was

created.
3. Execute the following command:

 > Installutil WCFServiceHost.exe to install the service.

4. If the service installs successfully, open the service console by typing
services.msc in the Windows Run prompt.

5. Search for the name of the service, Service1, and then start it.

Note – If you modified the service that is already installed, you can uninstall it by using
following command:

> Installutil /u WCFServiceHost.exe

Step 7 – Create a Test Client Application
In this step, you create a Windows Forms application named Test Client to test the WCF
service.

1. Right-click your solution, click Add, and then click New ProjectB.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 602

2. In the Add New Project dialog box, in the Templates section, select Windows
Forms Application.

3. In the Name field, type Test Client and then click OK to create a Windows Forms
application.

4. Right-click your client project and then click Add Service Reference.
5. In the Add Service Reference dialog box, set the Service URI: to

“net.tcp://localhost:8523/WCFTestService” and then click Go.
6. Change the Service reference name: to “WCFTestService” and then click OK.

Step 8 – Test the Client and WCF Service
In this step, you use the test client to ensure that the WCF service is running properly.

1. In your client project, drag a Button control onto your form.
2. Double-click the Button control to show the underlying code.
3. In the code behind the button click, create an instance of the proxy, and call the

DoWork() method of your WCF service.
When you call the service, your current user security context will automatically
be passed to your WCF service. The code should look as follows:

private void button1_Click(object sender, EventArgs e)
{
 WCFTestService.MyServiceClient myService =
 new WCFTestService.MyServiceClient();
 MessageBox.Show(myService.DoWork("Hello World!"));
 myService.Close();
}

4. Right click the client project and then click Set as Startup Project.
5. Run the client application by pressing F5 or Ctrl+F5.

when you click the button on the form, the message “Welcome Hello World!”
should appear.

Additional Resources
• For more information on security authentication best practices, see “Best

Practices for Security in WCF” at 3 TUhttp://msdn2.microsoft.com/en-
us/library/ms731059.aspxU3T

• For additional information on message security, see “Message Security in WCF”
at 3TUhttp://msdn2.microsoft.com/en-us/library/ms733137.aspxU3T

• For more information on hosting in a Windows service, see the document “How
To: Host WCF in a Windows Service.”

• For more information on WCF hosting considerations, see “Hosting Services” at
3TUhttp://msdn2.microsoft.com/en-us/library/ms730158.aspxU3T

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 603

• For more information on netTcpBinding configuration options see
“<netTcpBinding>” at 3 TUhttp://msdn2.microsoft.com/en-
us/library/ms731343.aspxU3T

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 604

How To: Use Protocol Transition for Impersonating and
Delegating the Original Caller in WCF

Applies To
• Microsoft® Windows Communication Foundation (WCF) 3.5
• Microsoft Visual Studio® 2008
• Microsoft Windows Server® 2003

Summary
This How To article walks you through the process of using protocol transition for
impersonating and delegating the original caller. You will learn how to use the client certificate
for authentication. You will then use the service for user (S4U) Kerberos extensions to create a
Windows identity for the authenticated user, by using the user principal name (UPN) and
impersonating and delegating the original caller.

Contents
• Objectives
• Overview
• Summary of Steps
• Step 1 – Create a Sample WCF Service
• Step 2 – Configure wsHttpBinding with Certificate Authentication and Message Security
• Step 3 – Create and Install a Service Certificate
• Step 4 – Configure the Service Certificate for the WCF Service
• Step 5 – Impersonate the Original Caller in the WCF Service
• Step 6 – Configure the WCF Service Identity for Protocol Transition and Constrained

Delegation
• Step 7 – Create a Test Client
• Step 8 – Add a WCF Service Reference to the Client
• Step 9 – Create and Install the Client Certificate for Authentication
• Step 10 – Configure the Client Certificate in the WCF Client Application
• Step 11 – Test the Client and WCF Service
• Additional Resources

Objectives
• Learn how to do protocol transition in WCF by using a client certificate.
• Learn how to configure the WCF process identity for protocol transition and constrained

delegation.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 605

Overview
In many situations—for example, if your users access a WCF service over the Internet—you
cannot use Kerberos authentication because firewalls prevent the client computer from directly
communicating with the domain controller. Instead, your application must authenticate the
client by using another approach, such as username authentication, or client certificate
authentication.

Windows Server 2003 includes a protocol transition feature that permits services to use a non‐
Windows authentication mechanism to authenticate users, while still using Kerberos
authentication and delegation to access downstream network resources. This allows your
application to access downstream servers that require Windows authentication, and allows you
to use Windows auditing to track user access to back‐end resources.

Note that impersonating a Windows identity to access downstream resources brings a number
of advantages, but also some disadvantages. The advantages include the ability to use Windows
auditing to track user access to back‐end resources, and the ability to implement fine‐grained
access controls to resources (such as databases) on a per‐user basis. The disadvantages include
the additional administration required to administer fine‐grained access controls, and reduced
scalability. For many applications, the trusted subsystem model is appropriate; for example,
where the WCF service authenticates the caller, but then uses a service identity to access
downstream resources on behalf of the original caller. This results in reduced administration
and improved scalability.

The use of protocol transition to access downstream resources relies on two extensions to the
Kerberos protocol. Both extensions are implemented in Windows Server 2003. These
extensions are:

• Service‐for‐User‐to‐Self (S4U2Self), which allows you to obtain a Windows token for the
client by supplying a UPN without a password.

• Service‐for‐User‐to‐Proxy (S4U2Proxy), which allows an administrator to control exactly
which downstream services can be accessed with the S4U2Self token.

Summary of Steps
• Step 1 – Create a Sample WCF Service
• Step 2 – Configure wsHttpBinding with Certificate Authentication and Message

Security
• Step 3 – Create and Install a Service Certificate
• Step 4 – Configure the Service Certificate for the WCF Service
• Step 5 – Impersonate the Original Caller in the WCF Service
• Step 6 – Configure the WCF Service Identity for Protocol Transition and Delegation
• Step 7 – Create a Test Client
• Step 8 – Add a WCF Service Reference to the Client

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 606

• Step 9 – Create and Install the Client Certificate for Authentication
• Step 10 – Configure the Client Certificate in the WCF Client Application
• Step 11 – Test the Client and WCF Service

Step 1 – Create a Sample WCF Service
In this step, you create a WCF service in Visual Studio.

1. In Visual Studio, on the menu, click File and then click New Web Site.
2. In the Templates section, select WCF Service. Make sure that the Location is set to Http

and specify the virtual directory to be created in the Path (e.g.,
http://localhost/WCFTestService).

3. In the New Web Site dialog box, click OK to create a virtual directory and a sample WCF
service.

4. Browse to your WCF service (i.e., http://localhost/WCFTestService/Service.svc).
You should see details of your WCF service.

Step 2 – Configure wsHttpBinding with Certificate
Authentication and Message Security
In this step, you configure the WCF service to use certificate authentication and message
security.

1. Right‐click the Web.config file of the WCF service, and then click Edit WCF
Configuration.

2. In the Configuration Editor, in the Configuration section, expand Service and then
expand Endpoints.

3. Select the first node [Empty Name] and set the Name attribute to wsHttpEndpoint.
By default, the name will be empty because it is an optional attribute.

4. Click the Identity tab and then delete the Dns attribute value.
5. In the Configuration Editor, select the Bindings folder.
6. In the Bindings section, choose New Binding Configuration.
7. In the Create a New Binding dialog box, select wsHttpBinding.
8. Click OK.
9. Set the Name of the binding configuration to some logical and recognizable name; for

example, wsHttpEndpointBinding.
10. Click the Security tab.
11. Make sure that the Mode attribute is set to Message, which is the default setting.
12. Set the MessageClientCredentialType to Certificate by selecting this option from the

drop‐down list.
13. In the Configuration section, select the wsHttpEndpoint node.
14. Set the BindingConfiguration attribute to wsHttpEndpointBinding by selecting this

option from the drop‐down list.
This associates the binding configuration setting with the binding.

15. In the Configuration Editor, on the File menu, click Save.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 607

16. In Visual Studio, open your configuration and comment out the identity element. It
should look as follows:

 <!--<identity>
 <dns value="" />
 </identity>-->

17. In Visual Studio, verify your configuration. The configuration should look as follows:

…
<bindings>
 <wsHttpBinding>
 <binding name="wsHttpEndpointBinding">
 <security>
 <message clientCredentialType="Certificate" />
 </security>
 </binding>
 </wsHttpBinding>
</bindings>
<services>
 <service behaviorConfiguration="ServiceBehavior" name="Service">
 <endpoint address="" binding="wsHttpBinding"
 bindingConfiguration="wsHttpEndpointBinding"
 name="wsHttpEndpoint" contract="IService">
 <!--<identity>
 <dns value="" />
 </identity>-->
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
contract="IMetadataExchange" />
 </service>
</services>
…

Step 3 – Create and Install a Service Certificate
In this step, you create a temporary service certificate and install it in the local store. This
certificate will be used for service authentication and to encrypt the message, thereby
protecting any other sensitive data.

Creating and installing the certificate is outside the scope of this How To article. For detailed
steps on how to do this, see “How To ‐ Create and Install Temporary Certificates in WCF for
Message Security During Development.”

Note:

• If you are running on Microsoft Windows® XP, give the certificate permissions for the
ASPNET identity instead of the NT Authority\Network Service identity because the
Internet Information Services (IIS) process runs under the ASPNET account in Windows
XP.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 608

• The temporary certificate should be used for development and testing purposes only.
For actual production deployment, you will need to get a valid certificate from a
certificate authority (CA).

Step 4 – Configure the Service Certificate for the WCF Service
In this step, you configure the WCF service to use the temporary certificate you created in the
previous step.

1. In the Configuration Editor, expand the Advanced node, and then expand the Service
Behaviors and ServiceBehavior nodes.

2. Click Add.
3. In the Service Behavior Element Extensions dialog box, select the serviceCredentials

option and then click Add.
4. Expand the serviceCredentials node and then select the serviceCertificate node.
5. Set the FindValue attribute to the name of the service certificate that you created; for

example, "CN=tempCertServer".
6. Leave the default settings for StoreLocation and StoreName.
7. In the Configuration Editor, on the File menu, click Save.
8. In Visual Studio, verify your configuration. The configuration should look as follows.

...
<behaviors>
 <serviceBehaviors>
 <behavior name="ServiceBehavior">
 <serviceMetadata httpGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="false" />
 <serviceCredentials>
 <serviceCertificate findValue="CN=tempCertServer" />
 </serviceCredentials>
 </behavior>
 </serviceBehaviors>
</behaviors>
...

Step 5 – Impersonate the Original Caller in the WCF Service
Perform the following steps to retrieve the UPN from the client certificate, create the
WindowsIdentity token, and impersonate the original caller.

1. Add using statements to add references to the relevant namespaces as follows:

using System.IdentityModel.Policy;
using System.IdentityModel.Claims;
using System.Security.Principal;

2. Extract the Subject name from the certificate, as shown in the following example. Note
that the Subject name for the client certificate is the user’s UPN – this is done
consciously at the time of client certificate creation in order to simplify the process.
Alternatively, you could have other extended attributes with the user UPN.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 609

public string GetData(int value)
{

 AuthorizationContext authCon =
ServiceSecurityContext.Current.AuthorizationContext;
 X509CertificateClaimSet certClaims = null;
 foreach (ClaimSet cSet in authCon.ClaimSets)
 {
 certClaims = cSet as X509CertificateClaimSet;
 if (certClaims != null)
 break;
 }
 // As the subject name starts with "CN=" we are extracting the substring
 string userName = certClaims.X509Certificate.Subject.Substring(3);

 return string.Format("You entered: {0}", value);
}

3. Using the WindowsIdentity constructor, pass the UPN string as the parameter, get the
WindowsIdentity token, and impersonate the original caller. If your WCF process
identity is configured for protocol transition and trusted for delegation, you can access
the remote resources as well.

public string GetData(int value)
{

 AuthorizationContext authCon =
ServiceSecurityContext.Current.AuthorizationContext;
 X509CertificateClaimSet certClaims = null;
 foreach (ClaimSet cSet in authCon.ClaimSets)
 {
 certClaims = cSet as X509CertificateClaimSet;
 if (certClaims != null)
 break;
 }
 // As the subject name starts with "CN=" we are extracting the substring
 string userName = certClaims.X509Certificate.Subject.Substring(3);

 WindowsIdentity winId = new WindowsIdentity(userName);
 using (winId.Impersonate())
 {
 // access the local resources on behalf of the original callers
 // Or access remote resources, like SQL database on remote machine
 // if configured for protocol transition and constrained delegation.
 }

 return string.Format("You entered: {0}", value);
}

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 610

Step 6 – Configure the WCF Service Identity for Protocol
Transition and Constrained Delegation
In this step, you configure Active Directory to allow your WCF service to use protocol transition
and constrained delegation to access a remote database server.

If your WCF service runs using the Network Service machine account, you must enable
constrained delegation for your WCF server computer. However, if your WCF Service runs
under a custom domain account, you must enable constrained delegation for the custom
domain account.

Note: If you use a custom domain account for running your WCF service, create a service
principal name (SPN) for your custom domain account. Kerberos requires an SPN in order to
support mutual authentication.

To configure constrained delegation for the machine account

This procedure assumes that you are running your WCF service under the Network Service
machine account.

1. On the domain controller, start the Microsoft Management Console (MMC) Active
Directory Users and Computers snap‐in.

2. In the left pane of the MMC snap‐in, click the Computers node.
3. In the right pane, double‐click your WCF server computer to display the Properties

dialog box.
4. On the Delegation tab of the Properties window for the WCF server computer, Do not

trust the computer for delegation is selected by default. To use constrained delegation,
select Trust this computer for delegation to specified services only. You specify
precisely which service or services can be accessed in the bottom pane.

5. Beneath Trust this computer for delegation to specified services only, select the option
Use any authentication protocol.

6. Click the Add button to display the Add Services dialog box.
7. Click the Users or computers button.
8. In the Select Users or Computers dialog box, type the name of your database server

computer if you are running SQL Server as System or Network Service.
Alternatively, if you are running SQL Server by using a custom domain account, enter
that account name instead and then click OK.

9. You will see all the SPNs configured for the selected user or computer account. To
restrict access to SQL Server, select the MSSQLSvc service, and then click OK.

Note If you want to delegate to a file on a file share, you need to select the Common Internet
File System (CIFS) service.

To configure constrained delegation for a custom domain account

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 611

This procedure assumes that you are running your Web application under a custom domain
account.

1. Create an SPN for your custom domain account. Kerberos requires an SPN in order to
support mutual authentication. To create an SPN for the domain account:

a. Install the Windows Server 2003 Tools from the Windows Server 2003 CD.
b. From a command prompt, run the Setspn tool twice from the C:\Program

Files\Support Tools directory as shown below:

setspn -A HTTP/wcfservername domain\customAccountName

setspn -A HTTP/wcfservername.fullyqualifieddomainname

domain\customAccountName

Note You can only have a single SPN associated with any HTTP service (DNS)
name, which means you cannot create SPNs for different service accounts
mapped to the same HTTP server unless they are on different ports. The SPN can
include a port number.

2. On the domain controller, start the Microsoft Management Console (MMC) Active
Directory Users and Computers snap‐in.

3. In the left pane of the MMC snap in, click the Users node.
4. In the right pane, double‐click the user account you are using to run the WCF service.

This displays the user account properties.
5. On the Delegation tab of the Properties window for the WCF server computer, Do not

trust the computer for delegation is selected by default. To use constrained delegation,
select Trust this computer for delegation to specified services only. You specify
precisely which service or services can be accessed in the bottom pane.

6. Beneath Trust this computer for delegation to specified services only, select the option
Use any authentication protocol.

7. Click the Add button to display the Add Services dialog box.
8. Click the Users or computers button.
9. In the Select Users or Computers dialog box, type the name of your database server

computer if you are running SQL Server as System or Network Service.
Alternatively, if you are running SQL Server by using a custom domain account, enter
that account name instead and then click OK.

10. You will see all the SPNs configured for the selected user or computer account. To
restrict access to SQL Server, select the MSSQLSvc service, and then click OK.

Step 7 – Create a Test Client
In this step, you create a Windows Forms application to test the WCF service.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 612

1. Right‐click your solution, click Add, and then click New Project.
2. In the Add New Project dialog box, in the Templates section, select Windows Forms

Application.
3. In the Name field, type Test Client and then click OK.

Step 8 – Add a WCF Service Reference to the Client
In this step, you add a reference to your WCF service.

1. Right‐click your client project and then click Add Service Reference.
2. In the Add Service Reference dialog box, set the URL to your WCF Service (e.g.,

http://localhost/WCFTestService/Service.svc) and then click Go.
3. In the Web reference name field, change ServiceReference1 to WCFTestService.
4. Click Add Reference.

A reference to WCFTestService should appear beneath Web References in your client
project.

Step 9 – Create and Install the Client Certificate for
Authentication
In this step, you create a temporary client certificate by using the Root CA created as part of the
Step 3, and install it in the local store. This certificate will be used for client authentication and
to encrypt the message, thereby protecting any other sensitive data.

1. Copy the root CA certificate (RootCATest.cer) and privatekeyfile (RootCATest.pvk),
created as part of Step 3, to the client machine.

2. Open a Visual Studio command prompt and browse to the location where you copied
the root CA certificate and privatekeyfile.

3. Run following command for creating a certificate signed by the root CA certificate:

makecert -sk MyKeyName -iv RootCATest.pvk -n "CN=User@DomainName.com" -ic
RootCATest.cer -sr CurrentUser -ss my -sky signature -pe User1.cer

4. In the Enter Private Key Password dialog box, enter the password for the root CA
privatekeyfile created as part of the Step 3 above, and then click OK.

For more information and detailed steps, see “How To ‐ Create and Install Temporary
Certificates in WCF for Message Security During Development.”

Step 10 – Configure the Client Certificate in the WCF Client
Application
In this step, you configure the WCF client to use the temporary certificate you created in the
previous step.

1. In your test client, right‐click the App.config file and then click Edit WCF Configuration.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 613

2. In the Configuration Editor, expand the Advanced node, select Endpoint Behaviors, and
then select New Endpoint Behavior Configuration.

3. Click Add.
4. In the Adding Behavior Element Extension Sections dialog box, select clientCredentials

and then click Add.
5. Expand the clientCredentials node, expand the serviceCertificate node, and then select

authentication below this node.
6. Set the CertificateValidationMode to PeerTrust by choosing this option from the drop‐

down list.
7. Select the clientCertificate node, and then set the FindValue attribute to the subject

name of the client certificate that you created and installed in Step 7; for example,
"CN=User@DomainName.com".

8. Leave the default StoreLocation attribute set to CurrentUser as is.
9. In the Configuration Editor, expand the Client node, expand the Endpoints node, and

then select the WsHttpEndpoint node.
10. Set the BehaviorConfiguration attribute to NewBehavior by choosing this option from

the drop‐down list.
This is the endpoint behavior you just created.

11. In the Configuration Editor, on the File menu, click Save.
12. In Visual Studio, verify your configuration. The configuration should look as follows.

<system.serviceModel>
 <behaviors>
 <endpointBehaviors>
 <behavior name="NewBehavior">
 <clientCredentials>
 <clientCertificate findValue="CN=tempCertClient"/>
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 ...
 <client>
 <endpoint address="http://<<service address>>"
 behaviorConfiguration="NewBehavior" binding="wsHttpBinding"
 bindingConfiguration="wsHttpEnpoint1"
contract="ServiceReference1.IService"
 name="wsHttpEnpoint">
 <identity>
 <certificate encodedValue="<<Encode Value>>" />
 </identity>
 </endpoint>
 </client>
</system.serviceModel>

Step 11 – Test the Client and WCF Service
In this step, you access the WCF service, pass the user credentials, and make sure that the
username authentication works.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 614

1. In your client project, drag a Button control onto your form.
2. Double‐click the Button control to show the underlying code.
3. Create an instance of the proxy and call the GetData operation of your WCF service. The

code should look as follows:

private void button1_Click(object sender, EventArgs e)
{
 WCFTestService.ServiceClient myService = new
 WCFTestService.ServiceClient();
 MessageBox.Show(myService.GetData(123));
 myService.Close();
}

4. Right‐click the client project and then click Set as Startup Project.
5. Run the client application by pressing F5 or Ctrl+F5.

When you click the button on the form, the message “You entered: 123” should appear.

Additional Resources
• For more information on protocol transition and ASP.NET, see “How To: Use Protocol

Transition and Constrained Delegation in ASP.NET 2.0” at
http://msdn2.microsoft.com/en‐us/library/ms998355.aspx

• For more information on S4U Kerberos extensions, see “Exploring S4U Kerberos
Extensions in Windows Server 2003” at http://msdn2.microsoft.com/en‐
us/magazine/cc188757.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 615

How To – Use the SQL Server Role Provider with Username
Authentication in WCF Calling from Windows Forms

Applies to
• Microsoft® Windows Communication Foundation (WCF) 3.5
• Microsoft Visual Studio® 2008

Summary
This How To article walks you through the process of using username authentication
over wsHttpBinding binding to authenticate your users against a Microsoft SQL Server™
Role Provider. The article shows you how to configure the Role Provider, configure WCF,
and test the service with a sample WCF client. Use of the SQL Server Role Provider
requires that you first set up and use the SQL Server Membership Provider.

Contents
• Objectives
• Overview
• Summary of Steps
• Step 1 – Create a WCF Service with Username Authentication Using the SQL

Server Membership Provider
• Step 2 – Create a Role Store for the SQL Server Role Provider
• Step 3 – Grant Access Permission to the WCF Service Process Identity
• Step 4 – Enable and Configure the Role Provider
• Step 5 – Create Roles and Assign Users
• Step 6 – Implement Declarative Role‐based Security
• Step 7 – Create a Test Client
• Step 8 – Add a WCF Service Reference to the Client
• Step 9 – Configure the Client to Set RevocationMode to NoCheck
• Step 10 – Test the Client and WCF Service
• Additional Resources

Objectives
• Configure the SQL Server Membership Provider.
• Configure the SQL Server Role Provider.
• Create a WCF service hosted in Microsoft Internet Information Services (IIS).
• Create and configure a certificate for the service.
• Expose the WCF service through wsHttpBinding.
• Call the service from a test client.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 616

Overview
Username authentication is suited for scenarios in which your users do not have domain
credentials. In the scenario described in this How To article, users are stored in SQL
Server and are authenticated first against the SQL Server Membership Provider and then
against the SQL Server Role Provider. The wsHttpBinding binding is used to provide
support for message‐based security, reliable messaging, and transactions, while also
allowing the possibility that legacy clients can consume the service. WCF message
security is used to support the scenario in which there may be intermediaries inspecting
the message before final delivery. In general, you should always use transport security
unless you need the additional flexibility that message security affords you.

In order to use the SQL Server Membership Provider, you will first create a user store
and populate it with your users. You will then configure the membership store to allow
the WCF service process identity to have access. You will set the clientCredentialType
attribute to UserName on wsHttpBinding in order to configure the WCF service to use
Username authentication. You will then install a certificate on the server and configure
it for WCF so that messages sent between the client and server are encrypted. You will
create a role store and populate it with your users and then configure the role store to
grant access to the WCF process identity. You will use the PrincipalPermissionAttribute
in your WCF service code to specify which roles are allowed to access specific operations
in your WCF service. For test purposes, you will set the revocationMode attribute to
NoCheck so that the temporary test certificate works properly.

Summary of Steps
• Step 1 – Create a WCF Service with Username Authentication Using the SQL

Server Membership Provider
• Step 2 – Create a Role Store for SQL Server Role Provider
• Step 3 – Grant Access Permission to the WCF Service Process Identity
• Step 4 – Enable and Configure the Role Provider
• Step 5 – Create Roles and Assign Users
• Step 6 – Implement Declarative role‐based security
• Step 7 – Create a Test Client
• Step 8 – Add WCF Service Reference to the Client
• Step 9 – Configure the Client to Set RevocationMode to NoCheck
• Step 10 – Test the Client and WCF Service

Step 1 – Create a WCF Service with Username
Authentication Using the SQL Server Membership Provider
In this step, you create a WCF service with username authentication using the SQL
Server Membership Provider and message security.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 617

1. Create a user store for the SQL Server Membership Provider with the following

command:

aspnet_regsql -S .\SQLExpress -E -A m

2. Grant the WCF service process identity permission to the Aspnetdb database.
You can accomplish this by creating a new SQL Server login for the WCF process
identity (Network Service on Microsoft Windows Server® 2003 or ASPNET on
Microsoft Windows® XP), create a new user in the Aspnetdb database, and then
add the user to the aspnet_Membership_FullAccess database role.

3. Create a sample WCF service in Visual Studio 2008 by creating a new Web site
project and selecting the WCF Service project template.

4. Configure the WCF service to use username authentication and message security
by using the WCF Configuration Editor.

5. Configure the SQL Server Membership Provider to use username authentication
by adding a connection string to the database in the service’s web.config file and
then adding a membership element to specify usage of the SQL Server
Membership Provider.

6. Create and install a temporary certificate for the service.
7. Configure WCF to use the certificate by modifying the Service Credentials

element in the WCF Configuration Editor.

For more information on these steps, see “How To – Use Username Authentication with
the SQL Server Membership Provider and Message Security in WCF from Windows
Forms” and follow steps 1 through 7.

Step 2 – Create a Role Store for the SQL Server Role
Provider
The SQL Server Role Provider stores user information in a SQL Server database. You can
create your SQL Server role store manually by using Aspnet_regsql.exe from the
command line.

• From a Visual Studio 2008 command prompt, run the following command.

aspnet_regsql -S .\SQLExpress -E -A r

In this command:

• ‐S – Specifies the server, which is (.\SQLExpress) in this example.
• ‐E – Specifies to use Windows Authentication to connect to SQL Server.
• ‐A r – Specifies to add only the Role Provider feature.
• For a complete list of the commands, run Aspnet_regsql /?

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 618

Step 3 – Grant Access Permission to the WCF Service
Process Identity
In Step 1, you granted the WCF service process identity access to the aspnetdb
database. In this step, you add the Network Service database user to the
aspnet_Roles_FullAccess role. You can do this either by using Enterprise Manager or by
running the following script in SQL Query Analyzer:

-- Add user to database role
USE aspnetdb
GO
sp_addrolemember 'aspnet_Roles_FullAccess', 'Network Service'

Note:
• If you are running on Windows XP, add the ASPNET database user instead of

Network Service because the IIS process runs under the ASPNET account in
Windows XP.

• If you do not have Enterprise Manager or Query Analyzer, you can use Microsoft
SQL Server Management Studio Express, available at
http://www.microsoft.com/downloads/details.aspx?FamilyId=C243A5AE‐4BD1‐
4E3D‐94B8‐5A0F62BF7796&displaylang=en

Step 4 – Enable and Configure the Role Provider
In this step, you configure the use of the SQL Server Role Provider in your WCF service.

1. In the web.config file, verify that you have a connection string similar to the
following:

<connectionStrings>
 <add name="MyLocalSQLServer"
 connectionString="Initial Catalog=aspnetdb;
 data source=.\sqlexpress;Integrated Security=SSPI;" />
</connectionStrings>

2. Add a <roleManager> element inside the <system.web> element as shown in the
following example. Note the use of the <clear/> element, which prevents the
default provider from being loaded and then never used.

...
<system.web>
 <roleManager enabled="true" defaultProvider="MySqlRoleProvider"
>
 <providers>
 <clear/>
 <add name="MySqlRoleProvider"
 connectionStringName="MyLocalSQLServer"
 applicationName="MyAppName"

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 619

 type="System.Web.Security.SqlRoleProvider" />
 </providers>
 </roleManager>
</system.web>
...

3. Save the Web.Config file; otherwise the changes might get lost during execution
of the following steps.

4. Right‐click the Web.config file of the WCF service and then click Edit WCF
Configuration.
If you do not see the Edit WCF Configuration option, on the Tools menu, select
WCF Service Configuration Editor. Close the WCF Service Configuration Editor
tool that appears. The option should now appear on the web.config context
menu.

5. In the Configuration Editor, expand the Advanced node, and then expand the
Service Behaviors folder.

6. Select the default behavior, ServiceBehavior.
7. In the Behavior: ServiceBehavior section, click Add.
8. In the Adding Behavior Element Extension Sections dialog box, select

serviceAuthorization and then click Add.
9. In the Configuration section, under Service Behaviors, select the

serviceAuthorization option.
10. Set the principalPermissionMode attribute to UseAspNetRoles by choosing this

option from the drop‐down list.
11. Set the roleProviderName attribute to MySqlRoleProvider, which you created

above.
12. In the Configuration Editor dialog box, on the File menu, select Save.
13. In Visual Studio, verify your configuration, which should look as follows:

….
<behavior name="ServiceBehavior">
 <serviceMetadata httpGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="false" />
 ….
 <serviceAuthorization
principalPermissionMode="UseAspNetRoles"
 roleProviderName="MySqlRoleProvider" />
 ….
 </behavior>
….

Step 5 – Create Roles and Assign Users
In this step, you create roles for your application and assign users to those roles by using
the ASP.NET Web Site Configuration Tool.

1. In the Solution Explorer, select the WCF service project, and then on the Website
menu, select ASP.NET Configuration.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 620

2. On the ASP.NET Web Site Administration Tool page, click the Security tab, and
then click the Select authentication type link.

3. On the page that appears, select the From the internet radio button and then
click Done.

4. Click the Create user link.
5. On the Create User page, enter the details of the user you want to create in the

SQL store, and then click Create User. If successful, a new user will be created.
6. Click the Create or Manage roles link.
7. Enner the New role name – for example, “Managers” – and then click Add Role.

If successful, a new role will be created.
8. On the Roles creation page, click the Manage link, choose the user created in the

previous steps, and assign this user to the role by selecting the User Is In Role
check box.

Step 6 – Implement Declarative Rolebased Security
In this step, you provide authorized access to the GetData method only for users in the
Managers role.

1. Open the Service.cs file and add the following statement for using the
System.Security.Permissions namespace:

using System.Security.Permissions;

2. Add the PrincipalPermissionAttribute to authorize users in the Managers role,
with the SecurityAction as Demand to the GetData method.

[PrincipalPermission(SecurityAction.Demand, Role="Managers")]
public string GetData(int value)
{
 return string.Format("You entered: {0}", value);
}

Step 7 – Create a Test Client
In this step, you create a Windows Forms application to test the WCF service.

1. Right‐click your solution, click Add, and then click New Project.
2. In the Add New Project dialog box, in the Templates section, select Windows

Application.
3. In the Name field, type Test Client and then click OK to create a Windows Forms

application.

Step 8 – Add a WCF Service Reference to the Client
In this step, you add a reference to your WCF Service.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 621

1. Right‐click your Client project and then click Add Service Reference.
2. In the Add Service Reference dialog box, set the URL to your WCF service – for

example, http://localhost/WCFTestService/Service.svc – and then click Go
3. In the Namespace field, change ServiceReference1 to WCFTestService and then

click OK.
A reference to WCFTestService should now appear beneath Service References
in your Client project.

Step 9 – Configure the Client to Set RevocationMode to NoCheck
This step is required because you installed a temporary service certificate in Step 1.

1. Right‐click the client configuration (App.config) file and then click Edit WCF
Configuration.

2. In the Configuration Editor, expand the Advanced node and then select New
Endpoint Behavior Configuration.

3. Click Add.
4. In the Adding Behavior Element Extension Sections dialog box, select

clientCredentials and then click Add.
5. Expand the clientCredentials node, expand the serviceCertificate node, and then

select Authentication below this node.
6. Set the RevocationMode attribute to NoCheck by choosing this option from the

drop‐down list.
7. In the Configuration Editor, expand the Client node, expand the Endpoints node,

and then select the WsHttpEndpoint node.
8. Set the BehaviorConfiguration attribute to NewBehavior by choosing this option

from the drop‐down list.
This is the endpoint behavior you just created.

9. In the Configuration Editor dialog box, on the File menu, select Save.
10. In Visual Studio, verify your configuration, which should look as follows:

…
<behaviors>
 <endpointBehaviors>
 <behavior name="NewBehavior">
 <clientCredentials>
 <serviceCertificate>
 <authentication revocationMode="NoCheck" />
 </serviceCertificate>
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
</behaviors>
<client>
 <endpoint address="http://<<fully qualified machine
name>>/WCFTestService/Service.svc"
 behaviorConfiguration="NewBehavior"
binding="wsHttpBinding"

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 622

 bindingConfiguration="wsHttpEndpoint"
contract="WCFTestService.IService"
 name="wsHttpEndpoint">
 <identity>
 <certificate encodedValue="SomeEncodeValue" />
 </identity>
 </endpoint>
</client>
…

Important: This should be done in development only, when using the makecert utility
for creating the certificates. In a real‐world production environment, you should not
overwrite the RevocationMode settings.

Note: If your client application is on a separate machine, you will need to install the
Root Authority certificate created in Step 6 on your client machine as well.

Step 10 – Test the Client and WCF Service
In this step, you access the WCF service as a legacy ASMX Web Service and make sure
that it works.

1. In your Client project, drag a button control onto your Form.
2. Double‐click the button control to show the underlying code.
3. In the code behind the button click, create an instance of the proxy; pass the

credentials of a user with the Managers role created in previous steps, and then
call the GetData operation of your WCF service. The code should look as follows:

private void button1_Click(object sender, EventArgs e)
{
 WCFTestService.ServiceClient myService = new
 WCFTestService.ServiceClient();

//pass the credentials of a user in Manager’s role
 myService.ClientCredentials.UserName.UserName = "username";
 myService.ClientCredentials.UserName.Password = "p@ssw0rd";
 MessageBox.Show(myService.GetData(123));
 myService.Close();
}

4. Right‐click the Client project and then click Set as Startup Project.
5. Run the Client application by pressing F5 or Ctrl+F5. When you click the button

on the form, then a message “You entered: 123” should appear.
6. Test the application by passing the credentials of a user belonging to a different

role (e.g., Employee) and you should receive the security exception Access
Denied.
This is because the GetData operation can be accessed only by the users who
belong to the Managers role.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 623

Additional Resources
• For more information on how to work with the ASP.NET Role Provider, see “How

to: Use the ASP.NET Role Provider with a Service” at
http://msdn2.microsoft.com/en‐us/library/aa702542.aspx

• For more information on how to work with the ASP.NET Role Manager, see “How
To: Use Role Manager in ASP.NET 2.0” at http://msdn2.microsoft.com/en‐
us/library/ms998314.aspx

• For more information on how to work with the ASP.NET Membership Provider,
see “How to: Use the ASP.NET Membership Provider” at
http://msdn2.microsoft.com/en‐us/library/ms731049.aspx

• For more information on how to work with temporary certificates, see “How to:
Create Temporary Certificates for Use During Development” at
http://msdn2.microsoft.com/en‐us/library/ms733813.aspx

• For more information on how to view certificates with the Microsoft
Management Console (MMC) snap in, see “How to: View Certificates with the
MMC Snap‐in” at http://msdn2.microsoft.com/en‐us/library/ms788967.aspx

• For more information on differences in certificate validation between Microsoft
Internet Explorer and WCF, see “Differences Between Service Certificate
Validation Done by Internet Explorer and WCF” at
http://msdn2.microsoft.com/en‐us/library/aa702599.aspx

• For more information on differences in certificate validation between protocols,
see “Certificate Validation Differences Between HTTPS, SSL over TCP, and SOAP
Security” at http://msdn2.microsoft.com/en‐us/library/aa702579.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 624

How To – Use the SQL Server Role Provider with Windows
Authentication in WCF Calling from Windows Forms

Applies to
• Microsoft® Windows Communication Foundation (WCF) 3.5
• Microsoft Visual Studio® 2008
• SQL Server

Summary
This How To article walks you through the process of using Windows Authentication
over wsHttpBinding binding to authenticate your users against a Microsoft SQL Server™
Role Provider. The article shows you how to configure the Role Provider, configure WCF,
and test the service with a sample WCF client. Use of the SQL Server Role Provider
requires that you first set up and use the SQL Server Membership Provider.

Contents
• Objectives
• Overview
• Summary of Steps
• Step 1 – Create a WCF Service with Windows Authentication
• Step 2 – Create a Role Store for the SQL Server Role Provider
• Step 3 – Grant Access Permission to the WCF Service Process Identity
• Step 4 – Enable and Configure the Role Provider
• Step 5 – Create and Assign Roles to Windows Accounts
• Step 6 – Implement Declarative Role‐based Security
• Step 7 – Create a Test Client
• Step 8 – Add a WCF Service Reference to the Client
• Step 9 – Test the Client and WCF Service
• Additional Resources

Objectives
• Configure the SQL Server Role Provider to use Microsoft Windows® accounts for

authorizing users of the service.
• Create a WCF service hosted in Microsoft Internet Information Services (IIS).
• Expose the WCF service through netTcpBinding.
• Call the service from a test client.

Overview
Windows authentication is suited for scenarios in which your users have domain
credentials. In the scenario described in this How To article, users are authenticated

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 625

against their Windows domain account and authorized against roles in the SQL Server
Role Provider. The netTcpBinding binding offers improved performance over an HTTP
binding. Because IIS 6.0 cannot host a TCP binding, the scenario described in this How
To article instead hosts WCF in a Windows service. The WCF service with netTcpBinding
can be consumed by a WCF‐enabled .NET application through the use of a service
reference. WCF transport security is used to support a secure communication channel in
a point‐to‐point scenario. In general, you should always use transport security unless
you need the additional flexibility that message security affords you. For example, you
would use message security for scenarios in which there are intermediaries who need to
inspect and re‐route the message.

You will first create a new WCF service and set the clientCredentialType attribute to
Windows on the netTcpBinding in order to configure the WCF service to use Windows
Authentication. You will then create a new Windows service and configure it to host
your WCF service. Next, you will install a certificate on the server and configure it for
WCF so that messages sent between the client and server are encrypted. You will create
a role store, populate it with roles, and map Windows accounts to these roles. You will
then configure the role store to grant access to the WCF process identity. Finally, you
will use the PrincipalPermissionAttribute in your WCF service code to specify which
roles are allowed to access specific operations in your WCF service.

Summary of Steps

• Step 1 – Create a WCF Service with Windows Authentication
• Step 2 – Create a Role Store for the SQL Server Role Provider
• Step 3 – Grant Access Permission to the WCF Service Process Identity
• Step 4 – Enable and Configure the Role Provider
• Step 5 – Create and Assign Roles to Windows Accounts
• Step 6 – Implement Declarative Role‐based Security
• Step 7 – Create a Test Client
• Step 8 – Add a WCF Service Reference to the Client
• Step 9 – Test the Client and WCF Service

Step 1 – Create a WCF Service with Windows Authentication
In this step, you create a WCF service using netTcpBinding with Windows
Authentication and WCF transport security.

1. In Visual Studio 2008, create a sample Windows service by creating a project and
selecting the Windows Service project template. Add an installer to the Windows
service project so that it can be installed on the host machine.

2. Create a sample WCF service in Visual Studio 2008 by creating a new Web site
project and selecting the WCF Service project template.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 626

3. Modify the Windows service to host the WCF service by overriding the OnStart()
and OnStop() methods to start and stop the WCF service within the Windows
service.

4. Configure the WCF service to use netTcpBinding with transport security by using
the WCF Configuration Editor.

5. Add a mexHttpBinding binding to the WCF service so that it can publish
metadata.
This interface will allow client applications to generate a proxy from the service
definition.

6. Install the Windows service by calling the installer from the command line using
installutil.exe.

For more information on these steps, see “How To ‐ Use netTcpBinding with Windows
Authentication and Transport Security in WCF from Windows Forms” and follow steps 1
through 6.

Step 2 – Create a Role Store for the SQL Server Role
Provider
The SQL Server Role Provider stores user information in a SQL Server database. You can
create your SQL Server role store manually by using Aspnet_regsql.exe from the
command line.

• From a Visual Studio 2008 command prompt, run the following command.

aspnet_regsql -S .\SQLExpress -E -A r

In this command:

• ‐S – Specifies the server, which is (.\SQLExpress) in this example.
• ‐E – Specifies to use Windows Authentication to connect to SQL Server.
• ‐A r – Specifies to add only the Role Provider feature.
• For a complete list of the commands, run Aspnet_regsql /?

Step 3 – Grant Access Permission to the WCF Service
Process Identity
Your WCF service process identity requires access to the Aspnetdb database. If you host
the WCF service in Microsoft Internet Information Services (IIS) 6.0 on Microsoft
Windows Server® 2003, the NT AUTHORITY\Network Service account is used by default
to run WCF Service.

1. Create a SQL Server login for NT AUTHORITY\Network Service.
2. Grant the login access to the Aspnetdb database by creating a database user.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 627

3. Add the user to the aspnet_Roles_FullAccess database role.

You can perform these steps by using Enterprise Manager or by running the following
script in SQL Query Analyzer:

-- Create a SQL Server login for the Network Service account
sp_grantlogin 'NT AUTHORITY\Network Service'

-- Grant the login access to the roles database
USE aspnetdb
GO
sp_grantdbaccess 'NT AUTHORITY\Network Service', 'Network Service'

-- Add user to database role
USE aspnetdb
GO
sp_addrolemember 'aspnet_Roles_FullAccess', 'Network Service'

Note:

• If you are running on Microsoft Windows® XP, add the ASPNET database user
instead of Network Service because the IIS process runs under the ASPNET
account in Windows XP.

• If you do not have Enterprise Manager or Query Analyzer, you can use Microsoft
SQL Server Management Studio Express, available at
http://www.microsoft.com/downloads/details.aspx?FamilyID=c243a5ae‐4bd1‐
4e3d‐94b8‐5a0f62bf7796&displaylang=en

Step 4 – Enable and Configure the Role Provider
In this step, you configure the use of the SQL Server Role Provider in your WCF service.

1. In the web.config file, verify that you have a connection string similar to the
following:

<connectionStrings>
 <add name="MyLocalSQLServer"
 connectionString="Initial Catalog=aspnetdb;
 data source=.\sqlexpress;Integrated Security=SSPI;" />
</connectionStrings>

2. Add a <roleManager> element inside the <system.web> element as shown in
the following example. Note the use of the <clear/> element, which prevents the
default provider from being loaded and then never used.

...
<system.web>
 <roleManager enabled="true" defaultProvider="MySqlRoleProvider"

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 628

>
 <providers>
 <clear/>
 <add name="MySqlRoleProvider"
 connectionStringName="MyLocalSQLServer"
 applicationName="MyAppName"
 type="System.Web.Security.SqlRoleProvider" />
 </providers>
 </roleManager>
</system.web>
...

3. Save the Web.Config file; otherwise the changes might get lost during execution
of the following steps.

4. Right‐click the Web.config file of the WCF service and then click Edit WCF
Configuration.
If you do not see the Edit WCF Configuration option, click the Tools menu and
select WCF Service Configuration Editor. Close the WCF Service Configuration
Editor tool that appears. The option should now appear on the web.config
context menu.

5. In the Configuration Editor, expand the Advanced node, and then expand the
Service Behaviors folder.

6. Select the default behavior "ServiceBehavior".
7. In the Behavior: ServiceBehavior section, click the Add.
8. In the Adding Behavior Element Extension Sections dialog box select

serviceAuthorization and then click Add.
9. In the Configuration section, under Service Behaviors, select

serviceAuthorization.
10. Set the principalPermissionMode attribute to UseAspNetRoles by choosing this

option from the drop‐down list.
11. Set the roleProviderName attribute to “MySqlRoleProvider”, which you created

above.
12. In the Configuration Editor dialog box, on the File menu, click Save.
13. In Visual Studio, verify your configuration, which should look as follows.

….
<behavior name="ServiceBehavior">
 <serviceMetadata httpGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="false" />
 ….
 <serviceAuthorization principalPermissionMode="UseAspNetRoles"
 roleProviderName="MySqlRoleProvider" />
 ….
 </behavior>
….

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 629

Step 5 – Create and Assign Roles to Windows Accounts
In this step, you create roles for your application and assign users to those roles by
executing SQL scripts to add them to the database directly.

1. Create a new role, Managers, for your application.
2. Add an existing Windows user to the Managers role.

You can perform these steps by using Enterprise Manager or by running the following
script in SQL Query Analyzer.

USE aspnetdb
GO

-- Create a new role, called Managers
EXEC aspnet_Roles_CreateRole 'MyAppName', 'Managers'

-- Assign a windows user to the Managers role
-- parameters <<Application name>>, <<User Name>>, <<Role Name>>,
<<DateTime>>
EXEC aspnet_UsersInRoles_AddUsersToRoles 'MyAppName',
'Domain\userName', 'Managers', 8

Important: The application name should be the same name that is specified in the Role
Provider configuration.

Note: If you do not have Enterprise Manager or Query Analyzer, you can use Microsoft
SQL Server Management Studio Express, available at
http://www.microsoft.com/downloads/details.aspx?FamilyID=c243a5ae‐4bd1‐4e3d‐
94b8‐5a0f62bf7796&displaylang=en

Step 6 – Implement Declarative Rolebased Security
In this step, you provide authorized access to the GetData method only for users in the
Managers role.

1. Open the Service.cs file and add a statement for using the
System.Security.Permissions namespace:

using System.Security.Permissions;

2. Add the PrincipalPermissionAttribute attribute to authorize users in the
Managers role with the SecurityAction as Demand to the GetData method:

[PrincipalPermission(SecurityAction.Demand, Role="Managers")]
public string GetData(int value)
{

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 630

 return string.Format("You entered: {0}", value);
}

Step 7 – Create a Test Client
In this step, you create a Windows Forms application to test the WCF service.

1. Right‐click your solution, click Add, and then click New Project.
2. In the Add New Project dialog box, the Templates section, select Windows

Application.
3. In the Name field, type Test Client and then click OK.

A Windows Forms application is created.

Step 8 – Add a WCF Service Reference to the Client
In this step, you add a reference to your WCF service.

1. Right‐click your Client project and then click Add Service Reference.
2. In the Add Service Reference dialog box, set the URL to your WCF service – for

example, http://localhost/WCFTestService/Service.svc – and then click Go
3. In the Namespace field, change ServiceReference1 to WCFTestService and then

click OK.
A reference to WCFTestService should now appear beneath Service References
in your Client project.

Step 9 – Test the Client and WCF Service
In this step, you access the WCF service and make sure that it authorizes the users
correctly.

1. In your Client project, drag a button control onto your form.
2. Double‐click the button control to show the underlying code.
3. In the code behind the button click, create an instance of the proxy, pass the

credentials of a user with Managers role created in step 10, and call the GetData
operation of your WCF Service. The code should look as follows:

private void button1_Click(object sender, EventArgs e)
{
 WCFTestService.ServiceClient myService = new
 WCFTestService.ServiceClient();

MessageBox.Show(myService.GetData(123));
 myService.Close();
}

4. Right‐click the Client project and then click Set as Startup Project.
5. Run the Client application by pressing F5 or Ctrl+F5. When you click the button

on the form, the message “You entered: 123” should appear.
6. Test the application by passing the credentials of a user belonging to a different

role (e.g., Employee) and you should receive the security exception Access

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 631

Denied. This is because the GetData operation can be accessed only by users
who belong to Managers role.

Additional Resources
• For more information on how to work with the ASP.NET Role Provider, see “How

to: Use the ASP.NET Role Provider with a Service” at
http://msdn2.microsoft.com/en‐us/library/aa702542.aspx

• For more information on how to work with the ASP.NET Role Manager, see “How
To: Use Role Manager in ASP.NET 2.0” at http://msdn2.microsoft.com/en‐
us/library/ms998314.aspx

• For more information on how to work with the ASP.NET Membership Provider,
see “How to: Use the ASP.NET Membership Provider” at
http://msdn2.microsoft.com/en‐us/library/ms731049.aspx

• For more information on how to work with temporary certificates, see “How to:
Create Temporary Certificates for Use During Development” at
http://msdn2.microsoft.com/en‐us/library/ms733813.aspx

• For more information on how to view certificates with the Microsoft
Management Console (MMC) snap in, see “How to: View Certificates with the
MMC Snap‐in” at http://msdn2.microsoft.com/en‐us/library/ms788967.aspx

• For more information on differences in certificate validation between Microsoft
Internet Explorer and WCF, see “Differences Between Service Certificate
Validation Done by Internet Explorer and WCF” at
http://msdn2.microsoft.com/en‐us/library/aa702599.aspx

• For more information on differences in certificate validation between protocols,
see “Certificate Validation Differences Between HTTPS, SSL over TCP, and SOAP
Security” at http://msdn2.microsoft.com/en‐us/library/aa702579.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 632

How To – Use Username Authentication with the SQL
Server Membership Provider and Message Security in WCF
from Windows Forms

Applies to
• Microsoft® Windows Communication Foundation (WCF) 3.5
• Microsoft Visual Studio® 2008
• Microsoft SQL Server ®

Summary
This How To article walks you through the process of using username authentication
over wsHttpBinding to authenticate your users against a Microsoft SQL Server
Membership Provider. The article shows you how to configure the Membership
Provider, configure WCF, create and install the necessary certificate, and test the service
with a sample WCF client.

Contents
• Objectives
• Overview
• Summary of Steps
• Step 1 – Create a User Store for SQL Server Membership Provider
• Step 2 – Grant Access Permission to the WCF Service Process Identity
• Step 3 – Create a Sample WCF Service
• Step 4 – Configure wsHttpBinding with Username Authentication and Message

Security
• Step 5 – Configure Membership Provider for Username Authentication
• Step 6 – Create and Install a Service Certificate
• Step 7 – Configure the Service Certificate for WCF
• Step 8 – Create a User in the User Store
• Step 9 – Create a Test Client
• Step 10 – Add a WCF Service Reference to the Client
• Step 11 – Test the Client and WCF Service
• Additional Resources

Objectives
• Configure the SQL Server Membership Provider.
• Create a WCF service hosted in Microsoft Internet Information Services (IIS).
• Create and configure a certificate for the service.
• Call the service from a test client.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 633

Overview
Username authentication is suited for scenarios in which your users do not have domain
credentials. In the scenario described in this How To article, users are stored in SQL
Server and are authenticated against the SQL Server Membership Provider, an identity
management system that uses forms authentication. The wsHttpBinding binding is used
in order to provide support for message‐based security, reliable messaging, and
transactions, while also allowing the possibility that legacy clients can consume the
service. WCF message security is used to support the scenario in which there may be
intermediaries inspecting the message before final delivery. In general, you should
always use transport security unless you need the additional flexibility that message
security affords you.

In order to use the SQL Server Membership Provider, you will first create a user store
and populate it with your users. You will then configure the store to allow the WCF
service access to authenticate users. You will set the clientCredentialType attribute to
UserName on the wsHttpBinding binding in order to configure the WCF service to use
UserName authentication. You will then install a certificate on the server and configure
it for WCF so that messages sent between client and server are encrypted. For test
purposes, you will set the revocationMode attribute to NoCheck so that the temporary
test certificate works properly.

Summary of Steps
• Step 1 – Create a User Store for SQL Server Membership Provider
• Step 2 – Grant Access Permission to the WCF Service Process Identity
• Step 3 – Create a Sample WCF Service
• Step 4 – Configure wsHttpBinding with Username Authentication and Message

Security
• Step 5 – Configure the Membership Provider for Username Authentication
• Step 6 – Create and Install a Service Certificate
• Step 7 – Configure the Service Certificate for WCF
• Step 8 – Create a User in the User Store
• Step 9 – Create a Test Client
• Step 10 – Add a WCF Service Reference to the Client
• Step 11 – Test the Client and WCF Service

Step 1 – Create a User Store for SQL Membership Provider
The SQL Server Membership Provider stores user information in a SQL Server database.
You can create your SQL Server user store manually by using Aspnet_regsql.exe from
the command line.

From a Visual Studio 2008 command prompt, run the following command:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 634

aspnet_regsql -S .\SQLExpress -E -A m

In this command:

• ‐S specifies the server, which is (.\SQLExpress) in this example.
• ‐E specifies to use Windows Authentication to connect to SQL Server.
• ‐A m specifies to add only the membership feature. For simple authentication

against a SQL Server user store, only the membership feature is required.
• For a complete list of the commands, run Aspnet_regsql /?

Step 2 – Grant Access Permission to the WCF Service
Process Identity

Your WCF service process identity requires access to the Aspnetdb database. If you host
the WCF Service in Internet Information Services (IIS) 6.0 on Microsoft Windows Server®
2003, the NT AUTHORITY\Network Service account is used by default to run the WCF
service.

To grant database access

1. Create a SQL Server login for NT AUTHORITY\Network Service.
2. Grant the login access to the Aspnetdb database by creating a database user.
3. Add the user to the aspnet_Membership_FullAccess database role.

You can perform these steps by using the SQL Server Enterprise Manager, or you can
run the following script in SQL Query Analyzer.

-- Create a SQL Server login for the Network Service account
sp_grantlogin 'NT AUTHORITY\Network Service'

-- Grant the login access to the membership database
USE aspnetdb
GO
sp_grantdbaccess 'NT AUTHORITY\Network Service', 'Network Service'

-- Add user to database role
USE aspnetdb
GO
sp_addrolemember 'aspnet_Membership_FullAccess', 'Network Service'

Note:

• If you are running on Microsoft Windows® XP, create a SQL Server login for the
ASPNET identity instead of the NT Authority\Network Service identity, as IIS
process runs under the ASPNET account in Windows XP.

• If you do not have Enterprise Manager or Query Analyzer, you can use Microsoft
SQL Server Management Studio Express (SSMSE), available at
http://www.microsoft.com/downloads/details.aspx?FamilyID=c243a5ae‐4bd1‐
4e3d‐94b8‐5a0f62bf7796&displaylang=en

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 635

Step 3 – Create a Sample WCF Service
In this step, you create a WCF service in Visual Studio.

1. In Visual Studio select File ‐> New Web Site.
2. In the Templates section, select WCF Service. Make sure that the Location is set

to Http and specify the virtual directory to be created in the Path (e.g.,
http://localhost/WCFTestService).

3. In the New Web Site dialog box, click OK to create a virtual directory and a
sample WCF service.

4. Browse to your WCF service (i.e., http://localhost/WCFTestService/Service.svc).
You should see details of your WCF service.

Step 4 – Configure wsHttpBinding with Username
Authentication and Message Security
In this step, you configure the WCF service to use Username authentication and
message security.

1. In the Solution Explorer, right‐click the Web.config file of the WCF service and
choose the Edit WCF Configuration option.

2. If you do not see the Edit WCF Configuration option, click the Tools menu and
select WCF Service Configuration Editor. Close the WCF Service Configuration
Editor tool that appears. The option should now appear on the web.config
context menu.

3. In the configuration editor, in the Configuration section, expand Service and
then expand Endpoints.

4. Select the first node [Empty Name]. Set the name attribute to wsHttpEndpoint.
By default, the name field will be empty because it is an optional attribute.

5. Click the Identity tab and then delete the Dns attribute value.
6. In the configuration editor, select the Bindings folder.
7. In the Bindings section, choose New Binding Configuration.
8. In the Create a New Binding dialog box, select wsHttpBinding.
9. Click OK.
10. Set the Name of the binding configuration to some logical and recognizable

name; for example, wsHttpEndpointBinding.
11. Click the Security tab.
12. Make sure that the Mode attribute is set to Message, which is the default

setting.
13. Set the MessageClientCredentialType to the Username option by selecting this

option from the drop‐down list.
14. In the Configuration section, select the wsHttpEndpoint node.
15. Set the BindingConfiguration attribute to wsHttpEndpointBinding by selecting

this option from the drop‐down list.
This associates the binding configuration setting with the binding.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 636

16. In the configuration editor dialog box, on the File menu, select Save.
17. In Visual Studio, open your configuration and comment out the identity element.

It should look as follows:

 <!--<identity>
 <dns value="" />
 </identity>-->

18. In Visual Studio, verify your configuration. The configuration should look as

follows:

…
<bindings>
 <wsHttpBinding>
 <binding name="wsHttpEndpointBinding">
 <security>
 <message clientCredentialType="UserName" />
 </security>
 </binding>
 </wsHttpBinding>
</bindings>
<services>
 <service behaviorConfiguration="ServiceBehavior"
name="Service">
 <endpoint address="" binding="wsHttpBinding"
 bindingConfiguration="wsHttpEndpointBinding"
 name="wsHttpEndpoint" contract="IService">
 <!--<identity>
 <dns value="" />
 </identity>-->
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
contract="IMetadataExchange" />
 </service>
</services>
…

Step 5 – Configure Membership Provider for Username
Authentication
In this step, you configure the SQL Server Membership Provider to use Username
authentication.

1. In the web.config file, replace the existing single <connectionStrings/> element
with the following to point to your membership database.

<connectionStrings>
 <add name="MyLocalSQLServer"
 connectionString="Initial Catalog=aspnetdb;
 data source=.\sqlexpress;Integrated Security=SSPI;" />
</connectionStrings>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 637

2. Add a <membership> element inside the <system.web> element as shown in
the following example. Note the use of the <clear/> element prevents the
default provider from being loaded and then never used.

...
<system.web>
 ...
 <membership defaultProvider="MySqlMembershipProvider" >
 <providers>
 <clear/>
 <add name="MySqlMembershipProvider"
 connectionStringName="MyLocalSQLServer"
 applicationName="MyAppName"
 type="System.Web.Security.SqlMembershipProvider" />
 </providers>
 </membership>
</system.web>
...

3. Save the Web.Config file, to ensure that the changes do not get lost during the
following steps.

4. In the configuration editor, expand the Advanced node, and then expand the
Service Behaviors folder.

5. Select the default behavior that was created. Its name will be ServiceBehavior.
6. In the Behavior: ServiceBehavior section, click Add.
7. In the Adding Behavior Element Extension Sections dialog box, select

serviceCredentials and then click Add.
8. In the Configuration section, and then under Service Behaviors, select the

serviceCredentials option.
9. Set the UsernamePasswordValidationMode attribute to MembershipProvider

by choosing this option from the drop‐down list.
10. Set the MembershipProviderName attribute to MySqlMembershipProvider.
11. In the configuration editor dialog box, on the File menu, select Save.
12. In Visual Studio, verify your configuration. The configuration should look as

follows:

…
<behaviors>
 <serviceBehaviors>
 <behavior name="ServiceBehavior">
 <serviceMetadata httpGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="false" />
 <serviceCredentials>
 <userNameAuthentication
userNamePasswordValidationMode="MembershipProvider"
 membershipProviderName="MySqlMembershipProvider" />
 </serviceCredentials>
 </behavior>
 </serviceBehaviors>
</behaviors>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 638

…

Step 6 – Create and Install a Service Certificate
In this step, you create a temporary Service Certificate and install it in the local store.
This certificate will be used to encrypt the message, protecting the username and
password as well as any other sensitive data.

Creating and installing the certificate is outside the scope of this How To article. For
detailed steps on how to do this, see “How To ‐ Create and Install Temporary
Certificates in WCF for Message Security During Development.”

Note:

• If you are running on Windows XP, give the certificate permissions for the
ASPNET identity instead of the NT Authority\Network Service identity because
the IIS process runs under the ASPNET account in Windows XP.

• Temp certificate should be used for development and testing purposes only. For
actual production deployment, you will need to get a valid certificate from a
certificate authority (CA).

Step 7 – Configure the Service Certificate for WCF
In this step, you configure WCF to use the temporary certificate you created in the
previous step.

1. In the configuration editor, expand the Advanced node, expand the
ServiceBehaviors and ServiceBehavior nodes, and then expand the
serviceCredentials node.

2. Select the serviceCertificate node and set the FindValue attribute to the subject
name of the certificate you are going to use; for example, "CN=tempCert".

3. In the configuration editor dialog box, on the File menu, select Save.
4. In Visual Studio, verify your configuration. The configuration should look as

follows:

...
<behaviors>
 <serviceBehaviors>
 <behavior name="ServiceBehavior">
 <serviceMetadata httpGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="false" />
 <serviceCredentials>
 <serviceCertificate findValue="CN=tempCert" />
 <userNameAuthentication
userNamePasswordValidationMode="MembershipProvider"
 membershipProviderName="MySqlMembershipProvider" />
 </serviceCredentials>
 </behavior>
 </serviceBehaviors>
</behaviors>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 639

...

Step 8 – Create a User in the User Store
In this step, you will create a user that the test client will use to log into the service.

1. In the Solution Explorer, choose the WCF service project, and then on the
Website menu, select ASP.NET Configuration.

2. On the ASP.NET Web Site Administration Tool page, click the Security tab, and
then click the Select authentication type link.

3. On the page that appears, select the From the internet radio button and then
click Done.

4. Click the Create user link.
5. On the Create User page, enter the details of the user you want to create in the

SQL store and then click Create User.
If successful, a new user will be created. By default, you will need to create a
password of at least seven characters with one character that is not
alphanumeric.

Step 9 – Create a Test Client
In this step, you create a Windows Forms application to test the WCF service.

1. Right‐click your solution, click Add, and then click New Project.
2. In the Add New Project dialog box, in the Templates section, select Windows

Forms Application.
3. In the Name field, type Test Client and then click OK.

Step 10 – Add a WCF Web Reference to the Client
In this step, you add a reference to your WCF service.

1. Right‐click your Client project and select Add Web Reference.
2. In the Add Web Reference dialog box, set the URL to your WCF service (e.g.,

http://localhost/WCFTestService/Service.svc) and then click Go.
3. In the Web reference name field, change ServiceReference1 to WCFTestService.
4. Click Add Reference.

In your Client project, a reference to WCFTestService should now appear
beneath Web References.

Step 11 – Test the Client and WCF Service
In this step, you access the WCF service, pass the user credentials, and make sure that
the username authentication works.

1. In your Client project, drag a Button control onto your form.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 640

2. Double‐click the Button control to show the underlying code.
3. Create an instance of the proxy, pass the credentials of the user created in step

8, and then call the GetData operation of your WCF Service. The code should
look as follows:

private void button1_Click(object sender, EventArgs e)
{
 WCFTestService.ServiceClient myService = new
 WCFTestService.ServiceClient();
 myService.ClientCredentials.UserName.UserName = "username";
 myService.ClientCredentials.UserName.Password = "p@ssw0rd";
 MessageBox.Show(myService.GetData(123));
 myService.Close();
}

4. Right‐click the Client project and select Set as Startup Project.
5. Run the Client application by pressing F5 or Ctrl+F5.

When you click the button on the form, it should display the message “You
entered: 123”.

Additional Resources
• For more information on how to work with the SQL Server Membership Provider,

see “How to: Use the ASP.NET Membership Provider” at
http://msdn2.microsoft.com/en‐us/library/ms731049.aspx

• For more information on how to work with temporary certificates, see “How to:
Create Temporary Certificates for Use During Development” at
http://msdn2.microsoft.com/en‐us/library/ms733813.aspx and “Working with
Certificates” at http://msdn2.microsoft.com/en‐us/library/ms731899.aspx

• For more information on how to view certificates with the Microsoft
Management Console (MMC) snap in, see “How to: View Certificates with the
MMC Snap‐in” at http://msdn2.microsoft.com/en‐us/library/ms788967.aspx

• For more information on differences in certificate validation between Microsoft
Internet Explorer and WCF, see “Differences Between Service Certificate
Validation Done by Internet Explorer and WCF” at
http://msdn2.microsoft.com/en‐us/library/aa702599.aspx

• For more information on differences in certificate validation between protocols,
see “Certificate Validation Differences Between HTTPS, SSL over TCP, and SOAP
Security” at http://msdn2.microsoft.com/en‐us/library/aa702579.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 641

How To – Use Username Authentication with Transport
Security in WCF Calling from Windows Forms

Applies to
• Microsoft® Windows Communication Foundation (WCF) 3.5
• Microsoft Visual Studio® 2008

Summary
This How To article walks you through the process of using username authentication
with transport security to authenticate your users against a Microsoft SQL Server®
membership provider and optionally authorize users with the SQL Server role provider.
The article shows you how to configure the membership provider and the role provider,
create a custom HTTP module for authenticating users against the membership
provider, and create a class that derives from IauthorizationPolicy so that WCF can
authorize users.

Contents
• Objectives
• Overview
• Summary of Steps
• Step 1 – Create a User Store for the SQL Server Membership Provider and a Role

Store for the SQL Server Role Provider
• Step 2 – Grant Access Permission to the WCF Service Process
• Step 3 – Create a Sample WCF Service
• Step 4 – Configure basicHttpBinding with Transport Security and an

Authentication Type of “None”
• Step 5 – Configure the WCF Service for ASP.NET Compatibility Mode
• Step 6 – Configure the SQL Server Membership Provider in the Web

Configuration File
• Step 7 – Configure the SQL Server Role Provider and Enable It in WCF
• Step 8 – Create the User and Assign Roles
• Step 9 – Implement a Custom HTTP Module Class That Derives from IHttpModule

to Authenticate Users with the SQL Server Membership Provider
• Step 10 – Configure the WCF Service to Use the HTTP Module for Authentication
• Step 11 – Implement a Class that Derives from IAuthorizationPolicy
• Step 12 – Configure the WCF Service to Use the Authorization Policy
• Step 13 – Configure Security Settings in IIS
• Step 14 – Implement Authorization Checks on Your Service
• Step 15 – Create a Test Client
• Step 16 – Add a WCF Service Reference and Web Service Reference to the Client

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 642

• Step 17 – Test the WCF/ASMX Client and WCF Service
• Additional Resources

Objectives
• Learn to configure the SQL Server Membership Provider.
• Learn to configure the SQL Server Role Provider.
• Learn to create a custom HTTP module to authenticate the user by using the SQL

Server membership provider with transport security in Internet Information
Services (IIS).

• Learn to configure the custom HTTP module.
• Learn to call the service from a WCF test client and from an ASMX test client.

Overview
Username authentication is suited for scenarios in which your users do not have
Microsoft Windows® credentials. In the scenario described in this How To article, users
and roles are stored in SQL Server. Users are authenticated in ASP.NET against the SQL
Server membership provider and optionally are authorized in the WCF service against
the SQL Server role provider. The the WCF service uses the basicHttpBinding binding
type to provide compatibility with ASMX clients. Because transport security does not
support username authentication, a custom HTTP module will be created for
authentication, and the authentication type will be set to “None” in the WCF Service.

To use the SQL Server membership provider and role provider, you will first create a
user and role store and then populate it with your users and roles. You will then
configure the store to allow access to the WCF service process, in order to authenticate
and authorize the users. Finally, you must configure IIS and WCF security settings to
allow users to be authenticated and authorized correctly in ASP.NET and the WCF
service.

Summary of Steps
• Step 1 – Create a User Store for the SQL Server Membership Provider and a

Role Store for the SQL Server Role Provider
• Step 2 – Grant Access Permission to the WCF Service Process
• Step 3 – Create a Sample WCF Service
• Step 4 – Configure basicHttpBinding with Transport Security and an

Authentication Type of “None”
• Step 5 – Configure the WCF Service for ASP.NET Compatibility Mode
• Step 6 – Configure the SQL Server Membership Provider in the Web

Configuration File
• Step 7 – Configure the SQL Server Role Provider and Enable It in WCF
• Step 8 – Create the User and Assign Roles

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 643

• Step 9 – Implement a Custom HTTP Module Class That Derives from
IHttpModule to Authenticate Users with the SQL Server Membership Provider

• Step 10 – Configure the WCF Service to Use the HTTP Module for
Authentication

• Step 11 – Implement a Class that Derives from IAuthorizationPolicy
• Step 12 – Configure the WCF Service to Use the Authorization Policy
• Step 13 – Configure Security Settings in IIS
• Step 14 – Implement Authorization Checks on Your Service
• Step 15 – Create a Test Client
• Step 16 – Add a WCF Service Reference and Web Service Reference to the

Client
• Step 17 – Test the WCF/ASMX Client and WCF Service

Step 1 – Create a User Store for the SQL Server Membership
Provider and a Role Store for the SQL Server Role Provider
The SQL Server membership provider stores user information, and the SQL Server role
provider stores role information, in a SQL Server database. The user and role
information work independently and can be created in different SQL Server databases.
For the purposes of this example, both will be created in the same database. You can
create your SQL Server user and role store manually by using the Aspnet_regsql.exe
command from the command line.

• From a Visual Studio 2008 command prompt, run the following command:

aspnet_regsql -S .\SQLExpress -E -A m -A r

In this command:

• -S specifies the database server, which is (.\SQLExpress) in this example.
• -E specifies to use Windows authentication to connect to SQL Server.
• -A m –A r specifies to add the membership and the role features.

For a complete list of the commands, run Aspnet_regsql /?

Note: By default, a database with the name Aspnetdb is created. Use the -d option to
specify a different database name.

Step 2 – Grant Access Permission to the WCF Service
Process

In this step, you grant the WCF service process identity access to the Aspnetdb
database. If you host the WCF service in IIS 6.0 on Microsoft Windows Server® 2003, the
NT AUTHORITY\Network Service account is used by default to run the WCF service.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 644

1. Create a SQL Server login for NT AUTHORITY\Network Service.
2. Grant the login access to the Aspnetdb database by creating a database user.
3. Add the user to the aspnet_Membership_FullAccess database role.
4. Add the user to the aspnet_Roles_FullAccess database role.

You can perform these steps by using the SQL Server Management Studio, or you can
run the following script in SQL Query Analyzer:

-- Create a SQL Server login for the Network Service account
sp_grantlogin 'NT AUTHORITY\Network Service'

-- Grant the login access to the membership database
USE aspnetdb
GO
sp_grantdbaccess 'NT AUTHORITY\Network Service', 'Network Service'

-- Add user to database role
USE aspnetdb
GO
sp_addrolemember 'aspnet_Membership_FullAccess', 'Network Service'

USE aspnetdb
GO
sp_addrolemember 'aspnet_Roles_FullAccess', 'Network Service'

Note:

• If you are running on Microsoft Windows® XP, create a SQL Server login for the
ASPNET identity instead of the NT Authority\Network Service identity, as the IIS
process runs under the ASPNET account in Windows XP.

• If you do not have Management Studio or Query Analyzer, you can use Microsoft
SQL Server Management Studio Express (SSMSE), available at
4TUhttp://www.microsoft.com/downloads/details.aspx?FamilyID=c243a5ae-4bd1-
4e3d-94b8-5a0f62bf7796&displaylang=enU4T

Step 3 – Create a Sample WCF Service
In this step, you create a WCF service in Visual Studio.

1. In Visual Studio, on the menu, click File and then click New Web Site.
2. In the Templates section, select WCF Service. Make sure that the Location is set

to Http and specify the virtual directory to be created in the Path (e.g.,
https://localhost/WCFTestService).

3. In the New Web Site dialog box, click OK to create a virtual directory and a
sample WCF service.

4. Change the service metadata to be published via https instead of http. Double-
click the Web.config file, scroll down to service metadata, and change the entry
<serviceMetadata httpGetEnabled="true"/> to <serviceMetadata
httpsGetEnabled="true"/>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 645

Step 4 – Configure basicHttpBinding with Transport
Security and an Authentication Type of “None”
In this step, you configure the WCF service to use transport security and an
authentication type of “none.”

1. In the Solution Explorer, right-click the Web.config file of the WCF service and
then click Edit WCF Configuration.
If you do not see the Edit WCF Configuration option, click the Tools menu and
then click WCF Service Configuration Editor. Close the WCF Service
Configuration Editor tool that appears. The option should now appear on the
web.config context menu.

2. In the Configuration Editor, in the Configuration section, expand Service and
then expand Endpoints.

3. Select the first node [Empty Name]. Set the name attribute to basicEndpoint.
By default, the name field will be empty because it is an optional attribute.

4. Click the binding and change it from wsHttpBinding to basicHttpBinding.
5. Click the Identity tab and then delete the Dns attribute value.
6. Select the second node [Empty Name]. Set the name attribute to MexEndpoint.

By default, the name field will be empty because it is an optional attribute.
7. Click the binding and change it to mexHttpsBinding.
8. In the Configuration Editor, select the Bindings folder.
9. In the Bindings section, choose New Binding Configuration.
10. In the Create a New Binding dialog box, select basicHttpBinding.
11. Click OK.
12. Set the Name of the binding configuration to some logical and recognizable

name; for example, BasicBindingConfiguration.
13. Click the Security tab and then set the Mode attribute to Transport.
14. Set the TransportClientCredentialType to None by selecting this option from the

drop-down list.
Authentication will be done by the HTTP module in ASP.NET.

15. In the Configuration section, select the basicEndpoint node.
16. Set the BindingConfiguration attribute to BasicBindingConfiguration by

selecting this option from the drop-down list.
This associates the binding configuration setting with the binding.

17. In the Configuration Editor, on the File menu, select Save.
18. In Visual Studio, open your configuration and delete the identity element under

basicEndpoint node, if there is one.
19. In Visual Studio, verify your configuration. The configuration should look as

follows:

<bindings>
 <basicHttpBinding>
 <binding name="BasicBindingConfiguration">
 <security mode="Transport" />
 <transport clientCredentialType="None" />
 </security>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 646

 </binding>
</basicHttpBinding>
</bindings>
<services>
 <service behaviorConfiguration="ServiceBehavior" name="Service">
 <endpoint address="" binding="basicHttpBinding"
 bindingConfiguration="BasicBindingConfiguration"
 name="basicEndpoint" contract="IService" />
 <endpoint address="mex" binding="mexHttpsBinding"
 bindingConfiguration=""
 contract="IMetadataExchange" />
 </service>
 </services>

Step 5 – Configure the WCF Service for ASP.NET
Compatibility Mode
In this step, you configure the WCF service for ASP.NET compatibility mode. This is
required because authentication is done by the HTTP module and you must be able to
get the principal and the identity from the HTTP context in order to authorize users
either imperatively or declaratively in WCF.

1. Right-click the Service.svc file and then click View Code.
2. Add the following using statement to the list of other using statements:

using System.ServiceModel.Activation;
3. Add the following attribute on top of the Service class:

[AspNetCompatibilityRequirements(RequirementsMode =
AspNetCompatibilityRequirementsMode.Required)]
public class Service : IService

4. Open Web.config and add the following entry on the top, inside the

<system.serviceModel> node:
<system.serviceModel>
 <serviceHostingEnvironment aspNetCompatibilityEnabled="true" />

Step 6 – Configure the SQL Server Membership Provider in
the Web Configuration File
In this step, you configure the SQL Server membership provider in the Web
Configuration file.

1. In the Web.config file, replace the existing single <connectionStrings/> element
with the following to point to your SQLServer membership provider database:

<connectionStrings>
 <add name="MyLocalSQLServer"
 connectionString="Initial Catalog=aspnetdb;
 data source=.\sqlexpress;Integrated Security=SSPI;" />
</connectionStrings>

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 647

2. Add a <membership> element inside the <system.web> element as shown in the
following example.
Note the use of the <clear/> element prevents the default provider from being
loaded and then never used. Make sure that the connection string name points
to your previous connection string setting.

...
<system.web>
 ...
 <membership defaultProvider="MySqlMembershipProvider" >
 <providers>
 <clear/>
 <add name="MySqlMembershipProvider"
 connectionStringName="MyLocalSQLServer"
 applicationName="MyAppName"
 type="System.Web.Security.SqlMembershipProvider" />
 </providers>
 </membership>
</system.web>
...

3. Save the Web.Config file, to ensure that the changes do not get lost during the
following steps.

Step 7 – Configure the SQL Server Role Provider and Enable
It in WCF
In this step, you configure the use of the SQL Server role provider in the Web.configfile
and enable it in your WCF service.

1. Add a <roleManager> element inside the <system.web> element as shown in the
following example.
Note the use of the <clear/> element, which prevents the default provider from
being loaded and then never used.

...
<system.web>

 ...
 <roleManager enabled="true" defaultProvider="MySqlRoleProvider"
>
 <providers>
 <clear/>
 <add name="MySqlRoleProvider"
 connectionStringName="MyLocalSQLServer"
 applicationName="MyAppName"
 type="System.Web.Security.SqlRoleProvider" />
 </providers>
 </roleManager>
</system.web>
...

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 648

2. Save the Web.Config file; otherwise the changes might get lost during execution
of the following steps.

3. Right-click the Web.config file of the WCF service and then click Edit WCF
Configuration.
If you do not see the Edit WCF Configuration option, select WCF Service
Configuration Editor on the Tools menu. Close the WCF Service Configuration
Editor tool that appears. The option should now appear on the web.config
context menu.

4. In the Configuration Editor, expand the Advanced node, and then expand the
Service Behaviors folder.

5. Select the default behavior, ServiceBehavior.
6. In the Behavior: ServiceBehavior section, click Add.
7. In the Adding Behavior Element Extension Sections dialog box, select

serviceAuthorization, and then click Add.
8. In the Configuration section, under Service Behaviors, select the

serviceAuthorization option.
9. Set the principalPermissionMode attribute to UseAspNetRoles by choosing this

option from the drop-down list.
10. Set the roleProviderName attribute to MySqlRoleProvider, which you created

above.
11. In the Configuration Editor, on the File menu, click Save.
12. In Visual Studio, verify your configuration, which should look as follows:

….
<behavior name="ServiceBehavior">
 <serviceMetadata httpsGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="false" />
 ….
 <serviceAuthorization
 principalPermissionMode="UseAspNetRoles"
 roleProviderName="MySqlRoleProvider" />
 ….
 </behavior>
….

Step 8 – Create the User and Assign Roles
In this step, you create the user and assign a newly created role by using the ASP.NET
Web Site Configuration Tool.

1. In the Solution Explorer, select the WCF service project, and then on the Website
menu, select ASP.NET Configuration.

2. On the ASP.NET Web Site Administration Tool page, click the Security tab, and
then click the Select authentication type link.

3. On the page that appears, select the From the internet radio button and then
click Done.

4. Click the Create user link.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 649

5. On the Create User page, enter the details of the user you want to create in the
SQL Server store, and then click Create User.
If successful, a new user will be created.

6. Click the Create or Manage roles link.
7. Enter the new role name – for example, “Managers” – and then click Add Role.

If successful, a new role will be created.
8. On the Roles creation page, click the Manage link, choose the user created in the

previous step, and assign this user to the role by selecting the User Is In Role
check box.

Step 9 – Implement a Custom HTTP Module Class That
Derives from IHttpModule to Authenticate Users with the
SQL Server Membership Provider
In this step, you implement a custom HTTP module to authenticate users by using the
SQL Server membership provider. You will create a Windows class library that will derive
from IHttpModule.

1. Open a new instance of Visual Studio, leaving your WCF service solution open.
2. In the new instance of Visual Studio, click File, click New, and then click Project.
3. Expand Visual C#, click Windows, and then select Class Library.
4. In the Name field, enter UserAuthenticator and then click OK.
5. In the Solution Explorer, right-click References, click Add Reference, select the

.NET tab, select System.Web, and then click OK.
6. Copy and paste the code below inside the Class1.cs file. This class has the

following characteristics:
a. It subscribes to event handlers Authenticate Request, which will execute

when the request starts to authenticate the user, and End Request, which
will execute when Authenticate Request has finished.

b. It checks for the authorization header. If it is not present, it sends a
response back to the client with the header “WWW-Authenticate” to
challenge the client to send credentials. If it is present, it extracts the
username and credentials from the header and authenticates them
against the SQL Server membership provider.

c. If authentication fails, it returns status 401 to flag authentication failure.
If authentication succeeds, it builds the generic principal and assigns it to
the HTTP application context current user, o be used for later WCF
authorization.

7. Build the class solution.

using System;
using System.Collections.Generic;
using System.Text;
using System.Web;
using System.Web.Security;

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 650

using System.Security.Principal;

namespace Module
{
 public class UserNameAuthenticator: IHttpModule
 {

 public void Dispose()
 {
 }

 public void Init(HttpApplication application)
 {
 application.AuthenticateRequest += new
 EventHandler(this.OnAuthenticateRequest);
 application.EndRequest += new
 EventHandler(this.OnEndRequest);
 }

 public void OnAuthenticateRequest(object source, EventArgs
 eventArgs)
 {

 HttpApplication app = (HttpApplication)source;

 //the Authorization header is checked if present
 string authHeader = app.Request.Headers["Authorization"];
 if (!string.IsNullOrEmpty(authHeader))
 {
 string authStr = app.Request.Headers["Authorization"];

 if (authStr == null || authStr.Length == 0)
 {
 // No credentials; anonymous request
 return;
 }

 authStr = authStr.Trim();
 if (authStr.IndexOf("Basic", 0) != 0)
 {
 // header is not correct...we'll pass it along and
 // assume someone else will handle it
 return;
 }

 authStr = authStr.Trim();

 string encodedCredentials = authStr.Substring(6);

 byte[] decodedBytes =
 Convert.FromBase64String(encodedCredentials);
 string s = new ASCIIEncoding().GetString(decodedBytes);

 string[] userPass = s.Split(new char[] { ':' });

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 651

 string username = userPass[0];
 string password = userPass[1];
 //the user is validated against the
 //SqlMemberShipProvider
 //If it is validated then the roles are retrieved from
 // the role provider and a generic principal is created
 //the generic principal is assigned to the user context
 // of the application

 if (Membership.ValidateUser(username, password))
 {
 string[] roles = Roles.GetRolesForUser(username);
 app.Context.User = new GenericPrincipal(new
 GenericIdentity(username, "Membership Provider"),
 roles);

 }
 else
 {
 DenyAccess(app);
 return;

 }

 }
 else
 {
 app.Response.StatusCode = 401;
 app.Response.End();

 }
 }
 public void OnEndRequest(object source, EventArgs eventArgs)
 {
 //the authorization header is not present
 //the status of response is set to 401 and it ended
 //the end request will check if it is 401 and add
 //the authentication header so the client knows
 //it needs to send credentials to authenticate
 if (HttpContext.Current.Response.StatusCode == 401)
 {
 HttpContext context = HttpContext.Current;
 context.Response.StatusCode = 401;
 context.Response.AddHeader("WWW-Authenticate", "Basic
Realm");
 }
 }

 private void DenyAccess(HttpApplication app)
 {
 app.Response.StatusCode = 401;
 app.Response.StatusDescription = "Access Denied";

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 652

 // Write to response stream as well, to give user visual
 // indication of error during development
 app.Response.Write("401 Access Denied");

 app.CompleteRequest();
 }

 }
}

Step 10 – Configure the WCF Service to Use the HTTP
Module for Authentication
In this step, you configure the WCF service to use the HTTP module for authentication.

1. Right-click Web site and then click Add Reference. Select the Browse tab,
navigate to the directory containing the UserNameAuthenticator.dll file, select
the file, and then click OK.

2. Configure the HTTP module in Web.Config. Open Web.Config in the Visual Studio
editor and locate the httpModules node. If there is one, add the authentication
module only as below. If it is not present create an httpModules entry with the
authentication module as shown below:

<httpModules>

 …
 <add name="BasicAuthenticationModule"
 type="Module.UserNameAuthenticator,UserAuthenticator" />
 </httpModules>

Step 11 – Implement a Class that Derives from
IAuthorizationPolicy
In this step, you implement a class that derives from IAuthorizationPolicy, which will
assign the principal to the thread current principal and the identity to the WCF context.
This will allow declarative authorization and retrieval of the caller’s identity from the
WCF security context.

1. Open a new instance of Visual Studio, leaving your WCF service solution open.
2. In the new instance of Visual Studio click File, click New, and then click Project.
3. Expand Visual C#, click Windows, and then select Class Library.
4. In the Name field, enter AuthorizationPolicy and then click OK.
5. In the Solution Explorer, right-click on References and then click Add Reference.

Select the .NET tab, select System.Web, select
System.IdentityModel,System.IdentityModel.Selectors, and then click OK.

6. Copy and paste the code below inside the Class1.cs file.
This class has the following characteristics:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 653

a. It implements Evaluate method, which retrieves the principal from
Httpcontext and assigns it to the evaluation context of WCF, so that WCF
can do declarative authorization checks.

b. It implements Evaluate, which retrieves the identity from Httpcontext
and assigns it to the evaluation context of WCF, so that WCF can retrieve
the identity of the caller from the WCF security context; otherwise It will
not be available and you will need to get the identity from HttpContext.

7. Build the class solution.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IdentityModel.Claims;
using System.IdentityModel.Policy;
using System.Web;
using System.Security.Principal;

namespace AuthorizationPolicy
{
 // syncs Thread.CurrentPrincipal in WCF with whatever is set
 // by the HTTP pipeline on Context.User (optional)
 public class HttpContextPrincipalPolicy : IAuthorizationPolicy
 {
 public bool Evaluate(EvaluationContext evaluationContext, ref
 object state)
 {
 HttpContext context = HttpContext.Current;

 if (context != null)
 {
 evaluationContext.Properties["Principal"] =
 context.User;
 evaluationContext.Properties["Identities"] =
 new List<IIdentity>() { context.User.Identity };
 }

 return true;
 }

 public System.IdentityModel.Claims.ClaimSet Issuer
 {
 get { return ClaimSet.System; }
 }

 public string Id
 {
 get { return "HttpContextPrincipalPolicy"; }
 }
 }
}

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 654

Step 12 – Configure the WCF Service to Use the
Authorization Policy
In this step, you configure the WCF service to use the authorization policy.

1. Right-click Web site and then click Add Reference. Select the Browse tab,
navigate to the directory containing the AuthorizationPolicy.dll file, and then
click OK.

2. Right-click the Web.config file of the WCF service and then click Edit WCF
Configuration.
If you do not see the Edit WCF Configuration option, select WCF Service
Configuration Editor on the Tools menu. Close the WCF Service Configuration
Editor tool that appears. The option should now appear on the web.config
context menu.

3. In the Configuration Editor, expand the Advanced node, and then expand the
Service Behaviors folder.

4. Select the default behavior, ServiceBehavior.
5. In the Configuration section, under Service Behaviors, select the

serviceAuthorization option.
6. Click the AuthorizationPolicies tab and then click new. Navigate to the bin

directory of the Web site and select AuthorizationPolicy.dll.
7. Select the AuthorizationPolicy.HttpContextPrincipalPolicy type and then click

OK.
8. In the Configuration Editor dialog box, on the File menu, select Save.

The configuration file should now include the following configuration:

 <serviceAuthorization principalPermissionMode="UseAspNetRoles"
 roleProviderName="MySqlRoleProvider">
 <authorizationPolicies>
 <add
 policyType="AuthorizationPolicy.HttpContextPrincipalPolicy,
AuthorizationPolicy, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=null" />
 </authorizationPolicies>
 </serviceAuthorization>

Step 13 – Configure Security Settings in IIS
In this step, you configure the Web site in IIS to use Secure Sockets Layer (SSL) and
anonymous security. You will need to have created a certificate for SSL security. To
create a temporary certificate for SSL, refer to document “How To - Create and Install
Temporary Certificates in WCF for Transport Security During Development.”

1. Click Start and then click Run.
2. In the Run dialog box, type inetmgr and then click OK.
3. In the Internet Information Services (IIS) Manager dialog box, expand the (local

computer) node, and then expand the Web Sites node.
4. Right-click Default Web Site and then click Properties.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 655

5. In the Default Web Site Properties dialog box, click the Directory Security tab,
and then in the Secure Communications section, click Server Certificate.

6. On the Welcome screen of the Web Server Certificate Wizard, click Next to
continue.

7. On the Server Certificate screen, select the Assign an existing certificate radio
button option, and then click Next.

8. On the Available Certificates screen, select the certificate you created and
installed, and then click Next.

9. Expand the Default Web Site node, right-click the virtual directory on your WCF
service Web site, and then click Properties.

10. In the Web site properties dialog box, click the Directory Security tab, and then
in the Anonymous access and authentication control section, click Edit. Select
only the Enable Anonymous Access option. Clear the other options.

11. In the WCF service project, double-click the Web.config file and set
Authentication to None.
The following XML fragment contains the example:

<system.web>
…
<authentication mode="None" />

Step 14 – Implement Authorization Checks on Your Service
In this step, you authorize the user in WCF, either declaratively or imperatively.

Declarative check

1. Open the Service.cs file and add the following statement for using the
System.Security.Permissions namespace:

using System.Security.Permissions;

2. Add the PrincipalPermissionAttribute to authorize users in the Managers role,
with the SecurityAction as Demand to the GetData method:

[PrincipalPermission(SecurityAction.Demand, Role="Managers")]
public string GetData(int value)
{
 return string.Format("You entered: {0}", value);
}

Imperative check

In the same GetData method, you can perform the imperative check with the call to
Roles.IsUserInRole. The below example demonstrates the imperative check:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 656

using System.Web.Security;
...
public string GetData(int value)
 {
 if(Roles.IsUserInRole("accounting"))
 {
 return string.Format("You entered: {0}", value);
 }
 else return “not authorized” ;
 }

You can also retrieve the identity of the user with the call to

ServiceSecurityContext.Current.PrimaryIdentity.Name

Step 15 – Create a Test Client
In this step, you create a Windows Forms application to test the WCF service.

1. Right-click your solution, click Add, and then click New Project.
2. In the Add New Project dialog box, in the Templates section, select Windows

Forms Application.
3. In the Name field, type Test Client and then click OK.

Step 16 – Add a WCF Service Reference and Web Service
Reference to the Client
In this step, you add both a WCF and Web reference to your WCF service to test
consuming your service from WCF and ASMX clients.

Add a WCF Service reference

1. Right-click your client project and then click Add Service Reference.
2. In the Add Service Reference dialog box, set the URL to your WCF service (e.g.,

https://localhost/WCFTestService/Service.svc) and then click Go.
3. You will be asked to enter a username and password. Provide a valid user name

and password created in previous steps.
4. In the Service reference name field, change ServiceReference1 to

WCFTestService. Click OK.
5. In your Client project, a reference to WCFTestService should now appear

beneath Service References.
6. Double click the app.config file and change the authentication mode from none

to basic

<basicHttpBinding>
<binding name="basicEndpoint" closeTimeout="00:01:00" />

 <security mode="Transport">
 <transport clientCredentialType="Basic"
 proxyCredentialType="None"

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 657

 realm="" />
 </binding>

Add a Web Service reference

1. Right-click your Client project and select Add Service Reference. Click on
Advanced button then click Add Web Reference .

2. In the Add Web Reference dialog box, set the URL to your WCF service (e.g.,
http://localhost/WCFTestService/Service.svc) and then click Go. You will be
asked to enter user name and password. Provide a valid user name and
password created in previous steps.

3. In the Web reference name field, change ServiceReference1 to
ASMXTestService.

4. Click Add Reference.
In your client project, a reference to WCFTestService should now appear
beneath Web References.

Step 17 – Test the WCF/ASMX Client and WCF Service
In this step, you access the WCF service, pass the user credentials, and make sure that
the username authentication works.

1. In your client project, drag a Button control onto your form.
2. Double-click the Button control to show the underlying code.
3. Create an instance of the proxy, pass the credentials of the user created in step

8, and then call the GetData operation of your WCF Service. The code should
look as follows:

private void button1_Click(object sender, EventArgs e)
{
 //WCF client call
 WCFTestService.ServiceClient myService = new
 WCFTestService.ServiceClient();
 myService.ClientCredentials.UserName.UserName = "username";
 myService.ClientCredentials.UserName.Password = "p@ssw0rd";
 MessageBox.Show(myService.GetData(123));
 myService.Close();
 //ASMX client call

 NetworkCredential netCred = new
 NetworkCredential("username", " p@ssw0rd");
 ASMXTestService.Service proxy = new
 basicreference.Service();
 proxy.Credentials = netCred;
 proxy.GetData(21, true);

}

4. Right-click the client project and then click Set as Startup Project.
5. Run the client application by pressing F5 or Ctrl+F5.

When you click the button on the form, the message “You entered: 123” should
appear.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 658

Additional Resources

• For more information on how to work with the ASP.NET Role Provider, see “How
to: Use the ASP.NET Role Provider with a Service” at
4TUhttp://msdn2.microsoft.com/en-us/library/aa702542.aspxU4T

• For more information on how to work with the ASP.NET Role Manager, see “How
To: Use Role Manager in ASP.NET 2.0” at 4TUhttp://msdn2.microsoft.com/en-
us/library/ms998314.aspxU4T

• For more information on how to work with the ASP.NET Membership Provider,
see “How to: Use the ASP.NET Membership Provider” at
4TUhttp://msdn2.microsoft.com/en-us/library/ms731049.aspxU4T

• For more information on how to work with temporary certificates, see “How to:
Create Temporary Certificates for Use During Development” at
4TUhttp://msdn2.microsoft.com/en-us/library/ms733813.aspxU4T

• For more information on how to view certificates with the Microsoft
Management Console (MMC) snap in, see “How to: View Certificates with the
MMC Snap-in” at 4 TUhttp://msdn2.microsoft.com/en-us/library/ms788967.aspxU4T

• For more information on differences in certificate validation between Microsoft
Internet Explorer and WCF, see “Differences Between Service Certificate
Validation Done by Internet Explorer and WCF” at
4TUhttp://msdn2.microsoft.com/en-us/library/aa702599.aspxU4T

• For more information on differences in certificate validation between protocols,
see “Certificate Validation Differences Between HTTPS, SSL over TCP, and SOAP
Security” at 4TUhttp://msdn2.microsoft.com/en-us/library/aa702579.aspxU4T

• For more Information on IHTTP Module interface, see
4TUhttp://msdn.microsoft.com/en-us/library/system.web.ihttpmodule.aspxU4T

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 659

How To – Use wsHttpBinding with UserName
Authentication and TransportWithMessageCredentials in
WCF Calling from Windows Forms

Applies to
• Microsoft® Windows Communication Foundation (WCF) 3.5
• Microsoft Visual Studio® 2008

Summary
This How To article walks you through the process of using username authentication
over wsHTTPBinding to authenticate your users against a Microsoft SQL Server®
Membership Provider. The WCF service in this article will use transport security, with
credentials in the message protected using message security. The article shows you how
to configure the membership provider, configure WCF, create and install the necessary
certificate, and test the service with a sample WCF client.

Contents
• Objectives
• Overview
• Summary of Steps
• Step 1 – Create a User Store for the SQL Server Membership Provider
• Step 2 – Grant Access Permission to the WCF Service Process Identity
• Step 3 – Create and Install a Service Certificate for Transport Security
• Step 4 – Create a Sample WCF Service Project with SSL
• Step 5 – Configure the Virtual Directory to Require SSL
• Step 6 – Configure wsHttpBinding for Username Authentication and

TransportWithMessageCredential Security
• Step 7 – Configure the Service to Publish Metadata Securely
• Step 8 – Configure the Membership Provider for Username Authentication
• Step 9 – Create a User in the User Store
• Step 10 – Create a Test Client Application
• Step 11 – Add a WCF Service Reference to the Client
• Step 12 – Test the Client and WCF Service
• Additional Resources

Objectives
• Configure the SQL Server Membership Provider.
• Create a WCF service hosted in Internet Information Services (IIS).
• Configure the service to use the Secure Sockets Layer (SSL) protocol.
• Create and configure a certificate for the service.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 660

• Expose the WCF service over wsHttpBinding by using
TransportWithMessageSecurity.

• Call the service from a test client.

Overview
Username authentication is suited for scenarios in which your users do not have domain
credentials. In the scenario described in this How To article, users are stored in SQL
Server and are authenticated against the SQL Server Membership Provider, an identity
management system that uses forms authentication. The wsHttpBinding binding is used
in order to provide support for message‐based security, reliable messaging, and
transactions, while also allowing the possibility that legacy clients can consume the
service. WCF TransportWithMessageCredential security is used to support a secure
communication channel in a point‐to‐point scenario while allowing you to transmit user
credentials that are encrypted and protected in the message.

In order to use the SQL Server Membership Provider, you will first create a user store
and populate it with your users. You will then configure the store to allow the WCF
service access to authenticate users. You will set the clientCredentialType attribute to
UserName on the wsHttpBinding binding in order to configure the WCF service to use
username authentication. You will then install a certificate on the server and configure it
for WCF so that messages sent between client and server are encrypted.

Summary of Steps
• Step 1 – Create a User Store for the SQL Server Membership Provider
• Step 2 – Grant Access Permission to the WCF Service Process Identity
• Step 3 – Create and Install a Service Certificate for Transport Security
• Step 4 – Create a Sample WCF Service Project with SSL
• Step 5 – Configure the Virtual Directory to Require SSL
• Step 6 – Configure wsHttpBinding for Username Authentication and

TransportWithMessageCredential Security
• Step 7 – Configure the Service to Publish Metadata Securely
• Step 8 – Configure the Membership Provider for Username Authentication
• Step 9 – Create a User in the User Store
• Step 10 – Create a Test Client Application
• Step 11 – Add a WCF Service Reference to the Client
• Step 12 – Test the Client and WCF Service

Step 1 – Create a User Store for the SQL Server Membership
Provider
The SQL Server Membership Provider stores user information in a SQL Server database.
You can create your SQL Server user store manually by using Aspnet_regsql.exe from
the command line.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 661

To do this, from a Visual Studio 2008 command prompt, run the following command:

aspnet_regsql -S .\SQLExpress -E -A m

In this command:

• ‐S specifies the server, which is (.\SQLExpress) in this example.
• ‐E specifies to use Windows Authentication to connect to SQL Server.
• ‐A m specifies to add only the membership provider feature. For simple

authentication against a SQL Server user store, only the membership provider
feature is required.

• For a complete list of the commands, run Aspnet_regsql /?

Step 2 – Grant Access Permission to the WCF Service
Process Identity
Your WCF service process identity requires access to the Aspnetdb database. If you host
the WCF service in Internet Information Services (IIS) 6.0 on Microsoft Windows Server®
2003, the NT AUTHORITY\Network Service account is used by default to run the WCF
service.

To grant database access

1. Create a SQL Server login for NT AUTHORITY\Network Service.
2. Grant the login access to the Aspnetdb database by creating a database user.
3. Add the user to the aspnet_Membership_FullAccess database role.

You can perform these steps by using the SQL Server Enterprise Manager, or you can
run the following script in SQL Query Analyzer:

-- Create a SQL Server login for the Network Service account
sp_grantlogin 'NT AUTHORITY\Network Service'

-- Grant the login access to the membership database
USE aspnetdb
GO
sp_grantdbaccess 'NT AUTHORITY\Network Service', 'Network Service'

-- Add user to database role
USE aspnetdb
GO
sp_addrolemember 'aspnet_Membership_FullAccess', 'Network Service'

Note:

• If you are running on Microsoft Windows® XP, create a SQL Server login for the
ASPNET identity instead of the NT Authority\Network Service identity, as the IIS
process runs under the ASPNET account in Windows XP.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 662

• If you do not have Enterprise Manager or Query Analyzer installed, you can use
Microsoft SQL Server Management Studio Express (SSMSE), available at
http://www.microsoft.com/downloads/details.aspx?FamilyID=c243a5ae‐4bd1‐
4e3d‐94b8‐5a0f62bf7796&displaylang=en

Step 3 – Create and Install a Service Certificate for
Transport Security
In this step, you create a temporary service certificate and install it in the local store.
This certificate will be used for establishing an SSL connection between the client and
the WCF service.

Creating and installing the certificate is outside the scope of this How To article. For
details on how to do this, see “How To – Create and Install Temporary Certificates in
WCF for Transport Security during Development” and follow steps 1 through 4.

Note: Temporary certificates should be used for development and testing purposes
only. For actual production deployment, get a valid certificate from a certificate
authority (CA).

Step 4 – Create a Sample WCF Service Project with SSL
In this step, you create a WCF service in Visual Studio and enable SSL.

1. In Visual Studio, on the File menu, click New Web Site.
2. In the Templates section, select WCF Service. Make sure that the Location is set

to Http and then click Browse.
3. In the Choose Location dialog box, click Local IIS.
4. Select the Use Secure Sockets Layer check box at the bottom of the dialog box,

and then click Open.
5. In the New Web Site dialog box, set the new Location to https://localhost/

WCFTestService and then click OK.

Note: The SSL port might not be configured by default on the IIS, so it might throw
errors while creating the WCF service. To prevent this, open IIS Manager, right‐click
Default Web Site, and then click Properties option. In the Default Web Site Properties
dialog box, click the Web Site tab and make sure that the SSL port: is set to 443.

Step 5 – Configure the Virtual Directory to Require SSL
In this step, you configure the virtual directory hosting the WCF service to use SSL.

1. Click Start and then click Run.
2. In the command line, type inetmgr and then click OK to open the IIS Manager.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 663

3. In IIS Manager, expand the (local computer) node, expand the Web Sites node,
and then expand the Default Web Site node.

4. Right‐click your virtual directory (WCFTestService) and then click Properties.
5. In the Default Web Site Properties dialog box, on the Directory Security tab, click

Edit in the Secure Communications section.
6. In the Secure communications dialog box, select the Require secure channel

(SSL) check box.
7. In the Secure communications dialog box, click OK.
8. In the Default Web Site Properties dialog box, click OK.

Step 6 – Configure wsHttpBinding for Username
Authentication and TransportWithMessageCredential
Security
In this step, you configure the WCF service to use username authentication and
TransportWithMessageCredentialSecurity.

1. In the Solution Explorer, right‐click the Web.config file of the WCF service and
then click Edit WCF Configuration.
If you do not see the Edit WCF Configuration option, click the Tools menu and
then click WCF Service Configuration Editor. Close the WCF Service
Configuration Editor tool that appears. The option should now appear on the
web.config context menu.

2. In the Configuration Editor, in the Configuration section, expand Service and
then expand Endpoints.

3. Select the first node [Empty Name] and then set the Name attribute to
wsHttpEndpoint.

4. Click the Identity tab and delete the Dns attribute value.
5. In the Configuration Editor, select the Bindings folder.
6. In the Bindings section, choose New Binding Configuration.
7. In the Create a New Binding dialog box, select wsHttpBinding.
8. Click OK.
9. Set the Name of the binding configuration to some logical and recognizable

name; for example, wsHttpEndpointBinding.
10. Click the Security tab.
11. Set the Mode attribute to TransportWithMessageCredential by choosing this

option from the drop‐down list.
12. Set the MessageClientCredentialType to UserName by choosing this option

from the drop‐down list.
13. Set the TransportClientCredentialType to None by choosing this option from the

drop‐down list.
14. In the Configuration section, select the wsHttpEndpoint node.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 664

15. Set the BindingConfiguration attribute to wsHttpEndpointBinding by choosing
this option from the drop‐down list.
This associates the binding configuration setting with the binding.

16. In the Configuration Editor, on the File menu, click Save.
17. In Visual Studio, open your configuration and comment out the identity element.

It should look as follows:

 <!--<identity>
 <dns value="" />
 </identity>-->

18. In Visual Studio, verify your configuration. The configuration should look as
follows:
…
<bindings>
 <wsHttpBinding>
 <binding name="wsHttpEndpointBinding">
 <security mode="TransportWithMessageCredential">
 <transport clientCredentialType="None" />
 <message clientCredentialType="UserName" />
 </security>
 </binding>
</wsHttpBinding>
</bindings>
<services>
 <service behaviorConfiguration="ServiceBehavior"
name="Service">
 <endpoint address="" binding="wsHttpBinding"
 bindingConfiguration="wsHttpEndpointBinding"
 name="wsHttpEndpoint" contract="IService">
 <!--<identity>
 <dns value="" />
 </identity>-->
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
contract="IMetadataExchange" />
 </service>
</services>

Step 7 – Configure the Service to Publish Metadata Securely
In this step, you configure your WCF service to publish and secure the metadata. By
publishing the metadata, you will allow your client to add a reference to your WCF
service.

1. In the Configuration Editor, expand the Services node and then expand
Endpoints.

2. Select the second endpoint created [Empty Name] and then set the Name
attribute to MexHttpsBindingEndpoint.

3. Set the Binding attribute to mexHttpsBinding by choosing this option from the
drop‐down list.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 665

4. In the Configuration Editor, on the File menu, click Save.
5. In Visual Studio, verify your configuration in Web.config. The configuration

should look as follows:
...
<services>
 <service behaviorConfiguration="ServiceBehavior"
name="Service">
 <endpoint address="" binding="wsHttpBinding"
 bindingConfiguration="wsHttpEndpointBinding"
 name="wsHttpEndpoint" contract="IService">
 </endpoint>

 <endpoint address="mex" binding="mexHttpsBinding"
bindingConfiguration=""
 name="MexHttpsBindingEndpoint"
contract="IMetadataExchange" />

 </service>
</services>
...

6. In the Configuration Editor, expand the Advanced node, and then expand the
Service Behaviors node.

7. Select the serviceMetadata node.
8. Set the HttpGetEnabled attribute to False and the HttpsGetEnabled attribute to

True.
9. In the Configuration Editor, on the File menu, click Save.
10. In Visual Studio, verify your configuration in App.config. The configuration should

look as follows:

<behaviors>
 <serviceBehaviors>
 <behavior name="ServiceBehavior">
 <serviceMetadata httpGetEnabled="false"
httpsGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="false" />
 </behavior>
 </serviceBehaviors>
</behaviors>

Step 8 – Configure the Membership Provider for Username
Authentication
In this step, you configure the SQL Server Membership Provider to use username
authentication.

1. In the web.config file, replace the existing single <connectionStrings/> element
with the following to point to your membership database:

<connectionStrings>
 <add name="MyLocalSQLServer"
 connectionString="Initial Catalog=aspnetdb;

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 666

 data source=.\sqlexpress;Integrated Security=SSPI;" />
</connectionStrings>

2. Add a <membership> element inside the <system.web> element as shown in
the following example. Notice that the use of the <clear/> element prevents the
default provider from being loaded and then never used.

...
<system.web>
 ...
 <membership defaultProvider="MySqlMembershipProvider" >
 <providers>
 <clear/>
 <add name="MySqlMembershipProvider"
 connectionStringName="MyLocalSQLServer"
 applicationName="MyAppName"
 type="System.Web.Security.SqlMembershipProvider" />
 </providers>
 </membership>
</system.web>
...

3. Save the Web.Config file, to ensure that the changes do not get lost during the
following steps.

4. In the Configuration Editor, expand the Advanced node, and then expand the
Service Behaviors folder.

5. Select the ServiceBehavior node.
6. In the Behavior: ServiceBehavior section, click Add.
7. In the Adding Behavior Element Extension Sections dialog box, select

serviceCredentials and then click Add.
8. In the Configuration section, under Service Behavior, select serviceCredentials.
9. Set the UsernamePasswordValidationMode attribute to MembershipProvider

by choosing this option from the drop‐down list.
10. Set the MembershipProviderName attribute to MySqlMembershipProvider by

choosing this option from the drop‐down list.
11. In the Configuration Editor, on the File menu, click Save.
12. In Visual Studio, verify your configuration. The configuration should look as

follows:

…
<behaviors>
 <serviceBehaviors>
 <behavior name="ServiceBehavior">

 <serviceMetadata httpGetEnabled="false"
httpsGetEnabled="true" />

 <serviceDebug includeExceptionDetailInFaults="false" />
 <serviceCredentials>
 <userNameAuthentication
userNamePasswordValidationMode="MembershipProvider"
 membershipProviderName="MySqlMembershipProvider" />

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 667

 </serviceCredentials>
 </behavior>
 </serviceBehaviors>
</behaviors>
…

Step 9 – Create a User in the User Store
In this step, you create a user that the test client will use to log into the WCF service.

1. In the Solution Explorer, choose the WCF service project, and then on the
Website menu, click ASP.NET Configuration.

2. On the ASP.NET Web Site Administration Tool page, on the Security tab, click the
Select authentication type link.

3. On the page that appears, select the From the internet radio button and then
click Done.

4. Click the Create user link.
5. On the Create User page, enter the details of the user you want to create in the

SQL store and then click Create User.
If the procedure is successful, a new user will be created. By default, you will
need to create a password of at least seven characters, with one character that is
not alphanumeric.

Step 10 – Create a Test Client Application
In this step, you create a Windows Forms application to test the WCF service.

1. Right‐click your solution, click Add, and then click New Project.
2. In the Add New Project dialog box, in the Templates section, select Windows

Forms Application.
3. In the Name field, type Test Client and then click OK.

Step 11 – Add a WCF Service Reference to the Client
In this step, you add a reference to your WCF service to the client.

1. Right‐click your client project and then click Add Service Reference.
2. In the Add Service Reference dialog box, set the URL to your WCF service (for

example, https://localhost/WCFTestService/Service.svc) and then click Go.
3. In the Namespace field, change ServiceReference1 to WCFService and then click

OK.
,A reference to WCFTestService should appear beneath Service References In
your client project.

Step 12 – Test the Client and WCF Service
In this step, you access the WCF service, pass the user credentials, and make sure that
the authentication works through a secure channel (HTTPS).

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 668

1. In your client project, drag a Button control onto your form.
2. Double‐click the Button control to show the underlying code.
3. Create an instance of the proxy, pass the credentials of the user created in step

12, and then call the GetData operation of your WCF service. The code should
look as follows:

private void button1_Click(object sender, EventArgs e)
{
 WCFTestService.ServiceClient myService = new
 WCFTestService.ServiceClient();
 myService.ClientCredentials.UserName.UserName = "username";
 myService.ClientCredentials.UserName.Password = "p@ssw0rd";
 MessageBox.Show(myService.GetData(123));
 myService.Close();
}

4. Right‐click the client project and then click Set as Startup Project.
5. Run the client application by pressing F5 or Ctrl+F5.

When you click the button on the form, the message “You entered: 123” should
appear.

Additional Resources
• For more information on how to work with temporary certificates, see “How to:

Create Temporary Certificates for Use During Development” at
http://msdn2.microsoft.com/en‐us/library/ms733813.aspx

• For more information on how to view certificates by using the Microsoft
Management Console (MMC) snap in, see “How to: View Certificates with the
MMC Snap‐in” at http://msdn2.microsoft.com/en‐us/library/ms788967.aspx

• For more information on differences in certificate validation between Microsoft
Internet Explorer and WCF, see “Differences Between Service Certificate
Validation Done by Internet Explorer and WCF” at
http://msdn2.microsoft.com/en‐us/library/aa702599.aspx

• For more information on differences in certificate validation between protocols,
see “Certificate Validation Differences Between HTTPS, SSL over TCP, and SOAP
Security” at http://msdn2.microsoft.com/en‐us/library/aa702579.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 669

How To – Use WsHttpBinding with Windows Authentication
and Message Security in WCF Calling from Windows Forms

 Applies to
• Microsoft® Windows Communication Foundation (WCF) 3.5
• Windows Forms
• Microsoft Visual Studio® 2008

Summary
This How To article walks you through the process of using Windows Authentication
over wsHttpBinding binding using transport security. The article shows you how to
configure WCF and test the service with a sample WCF client. This configuration is suited
for intranet scenarios where there is a domain controller that will issue Kerberos tickets
to provide message protection. There is no need for certificate installation in these
scenarios.

Contents
• Objectives
• Overview
• Summary of Steps
• Step 1 – Create a Sample WCF Service
• Step 2 – Configure the WCF Service to Use wsHttpBinding with Windows

Authentication and Message Security
• Step 3 – Create a Test Client
• Step 4 – Add a WCF Service Reference to the Client
• Step 5 – Test the Client and WCF Service
• Deployment Considerations
• Additional Resources

Objectives
• Create a WCF service hosted in Internet Information Services (IIS).
• Expose the WCF service with message security.
• Learn how to use Windows tokens to encrypt and sign your messages.
• Learn why you need service principle names (SPNs) and how to create them.
• Call the service from a test client.

Overview
In the scenario described in this How To article, users are authenticated by using
Windows Authentication. This approach is suited for scenarios in which your users have

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 670

domain credentials. The wsHttpBinding binding is used in order to provide support for
message-based security, reliable messaging, and transactions, while also allowing the
possibility that legacy clients can consume the service. Message security is used to
encrypt and sign your messages while allowing for intermediaries to re-route your
message as needed. In general, you should always use WCF transport security unless
you need the additional flexibility that message security affords you. The scenario
described in this How To article uses a Kerberos ticket and a domain controller as the
broker for authentication. This mechanism avoids the need for certificates that would
otherwise be required for message protection.

Message security is used instead of Transport security in order to support:

• Partial encryption of the message.
• Message security that extends beyond a single point-to-point communication

channel.
• Flexibility to use other transports such as Transmission Control Protocol (TCP) or

named pipes.

Summary of Steps
• Step 1 – Create a Sample WCF Service
• Step 2 – Configure the WCF Service to Use wsHttpBinding with Windows

Authentication and Message Security
• Step 3 – Create a Test Client
• Step 4 – Add a WCF Service Reference to the Client
• Step 5 – Test the Client and WCF Service

Step 1 – Create a Sample WCF Service
In this step, you create a WCF service in Visual Studio, hosted in an IIS virtual directory.

1. In Visual Studio, on the menu, select File > New Web Site.
2. In the New Web Site dialog box, under Templates, select WCF Service. Make

sure that the Location is set to Http.
3. In the New Web Site dialog box, set the new Web site address as

https://localhost/ WCFTestService and then click OK.

Step 2 – Configure the WCF Service to Use wsHttpBinding
with Windows Authentication and Message Security
By default, wsHttpBinding is configured with message security and Windows
Authentication, so you don’t have to actually do anything in this step but verify that
your configuration looks as follows:

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 671

…
<services>
 <service name="Service" behaviorConfiguration="ServiceBehavior">
 <!-- Service Endpoints -->
 <endpoint address="" binding="wsHttpBinding" contract="IService">
 <identity>
 <dns value="localhost"/>
 </identity>
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
contract="IMetadataExchange"/>
 </service>
</services>
…

Note: Remove the <identity>, which gets added automatically, to prevent run-time
errors (“The token provider cannot get tokens for target.”) when testing with the client
application.

Step 3 – Create a Test Client
In this step, you create a Windows Forms application to test the WCF service.

1. Right-click your solution, click Add, and then click New Project.
2. In the Add New Project dialog box, in the Templates section, select Windows

Forms Application.
3. In the Name field, type Test Client and then click OK button.

Step 4 – Add a WCF Service Reference to the Client
In this step, you add a reference to your WCF service.

1. Right-click your client project and then click Add Service Reference.
2. In the Add Service Reference dialog box, set the URL to your WCF service; for

example, http://localhost/WCFTestService/Service.svc
3. In the Namespace field, change ServiceReference1 to WCFTestService and then

click OK.
4. Click OK.

A reference to WCFTestService should now appear beneath Service References
in your Client project.

Step 5 – Test the Client and WCF Service
In this step, you access the WCF service from the client and make sure that it works.

1. In your client project, drag a Button control onto your form.
2. Double-click the Button control to show the underlying code.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 672

3. In the code behind the button click, create an instance of the proxy and call the
GetData operation of your WCF service. The code should look as follows:

private void button1_Click(object sender, EventArgs e)
 {
 WCFTestService.ServiceClient myService = new
WCFTestService.ServiceClient();

 MessageBox.Show(myService.GetData(123));
 myService.Close();
 }

4. Right-click the client project and then click Set as Startup Project.
5. Run the client application by pressing F5 or Ctrl+F5. When you click the button

on the form, the message “You entered: 123” should appear.

Additional Considerations
By default, negotiateServiceCredentials is set to true, but this can be set to false if you
do not support the WS-Trust or WS-SecureConversation specifications. Setting this
value to false will also make your service interoperable with Simple Object Access
Protocol (SOAP) stacks that implement the Kerberos token profile from OASIS. The
following is a configuration sample for setting the negotiateServiceCredentials to false:
…
<bindings>
 <wsHttpBinding>
 <binding name="WsHttpBindingConfig">
 <security>
 <message negotiateServiceCredential="false" />
 </security>
 </binding>
 </wsHttpBinding>
</bindings>
<services>
 <service behaviorConfiguration="ServiceBehavior"
 name="Service">
 <endpoint address="" binding="wsHttpBinding"
 bindingConfiguration="WsHttpBindingConfig"
 contract="IService">
 </endpoint>
 </service>
</services>
…

If this property is set to false, the service account must be associated with a service
principal name (SPN). To do this, run the service under the NETWORK SERVICE or LOCAL
SYSTEM account. Alternatively, use the SetSpn.exe tool to create an SPN for the service
account. In either case, the client must use the correct SPN; you can specify the SPN
value in the configuration as follows:
…
<services>
 <service behaviorConfiguration="ServiceBehavior"
 name="Service">

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 673

 <endpoint address="" binding="wsHttpBinding"
bindingConfiguration="WsHttpBindingConfig"
 contract="IService">
 <identity>
 <servicePrincipalName value="Host/<MachineName>" />
 </identity>
 </endpoint>
 </service>
</services>
…

For more information, see “MessageSecurityOverHttp3T.3TNegotiateServiceCredential
Property” at 5TUhttp://msdn2.microsoft.com/en-
us/library/system.servicemodel.messagesecurityoverhttp.negotiateservicecredential.as
pxU5T

Deployment Considerations
First, make sure that you have a domain controller in the network to authenticate the
client and service.

If you are using a custom domain account in the identity pool for your WCF application
in IIS, execute the following steps:

1. Create an SPN for Kerberos to be able to authenticate the client.
By default, “NT AUTHORITY\NETWORK SERVICE” maps to the computer
account, so Kerberos works with this account. Go to the domain controller of
you domain and create an SPN mapping to the custom domain account. The
SPN has the format HTTP/Machinename or
HTTP/fullyQualifiedNameofMachine. The examples below show how to
create an SPN and map it to the custom domain account myAccount:

• Setspn –a HTTP/machinename myAccount
• Setspn –a HTTP/machinename.code.com myAccount

2. Give permissions to the domain account to access C:\windows\temp. If this is
not done, you will not be able to create a service reference or a proxy client
with svcutil.exe. Perform the following steps:

• Open Microsoft Windows® Explorer and navigate to the Windows
folder.

• Right-click the Temp directory and then click the Security tab.
• In the user list, click Add and then enter the domain account name in

the format domain\accountName.
• Clear all permissions and then click Advanced.
• Double-click the account.
• In the list of permissions, select the List Folder / Read Data and

Delete permissions.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 674

Additional Resources:
• For more information on Windows Authentication, see “Explained: Windows

Authentication in ASP.NET 2.0” at 5 TUhttp://msdn2.microsoft.com/en-
us/library/aa480475.aspxU5T

• For more information on debugging authentication errors, see “Debugging
Windows Authentication Errors” at 5 TUhttp://msdn2.microsoft.com/en-
us/library/bb463274.aspxU5T

• For more information on security authentication best practices, see “Best
Practices for Security in WCF” at 5 TUhttp://msdn2.microsoft.com/en-
us/library/ms731059.aspxU5T

• For additional information on message security, see “Message Security in WCF”
at 5TUhttp://msdn2.microsoft.com/en-us/library/ms733137.aspxU5T

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 675

How To – Use wsHttpBinding with Windows Authentication
and Transport Security in WCF Calling from Windows
Forms

Applies to
• Microsoft® Windows Communication Foundation (WCF) 3.5
• Microsoft Visual Studio® 2008

Summary
This How To article walks you through the process of using Windows Authentication over
wsHTTPBinding using transport security. The article shows you how to configure WCF, create
and install the necessary certificate, and test the service with a sample WCF client.

Contents
• Objectives
• Overview
• Summary of Steps
• Step 1 – Create and Install a Service Certificate for Transport Security
• Step 2 – Create a Sample WCF Service Project with SSL
• Step 3 – Configure the Virtual Directory to Require SSL
• Step 4 – Configure wsHttpBinding for Windows Authentication and Transport Security
• Step 5 – Configure the Service to Publish Metadata Securely
• Step 6 – Create a Test Client Application
• Step 7 – Add a WCF Service Reference to the Client
• Step 8 – Test the Client and WCF Service
• Additional Resources

Objectives
• Create a WCF service hosted in Internet Information Services (IIS).
• Configure the service to use the Secure Sockets Layer (SSL) protocol.
• Create and configure a certificate for the service.
• Expose the WCF service over wsHttpBinding.
• Call the service from a test client.

Overview
Windows Authentication is suited for scenarios in which your users have domain credentials. In
the scenario described in this How To article, users are authenticated by Windows
Authentication. The wsHttpBinding binding is used in order to provide support for message‐
based security, reliable messaging, and transactions, while also allowing the possibility that
legacy clients can consume the service. WCF transport security is used to support a secure
communication channel in a point‐to‐point scenario. In general, you should always use transport
security unless you need the additional flexibility 2that message security affords you. For

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 676

example, you would use message security for scenarios in which there are intermediaries who
need to inspect and re‐route the message.

In order to use SSL for transport security, you first need to install a service certificate. This
certificate will be used to encrypt and protect the communication channel. You then configure
the WCF service and IIS to use SSL. You will set the clientCredentialType attribute to Windows
on the wsHttpBinding binding in order to configure the WCF service to use Windows
Authentication. You will then configure and expose a mexHttpsBinding endpoint to expose the
service metadata to the client securely. This metadata allows the client to generate a proxy and
call the service.

Summary of Steps
• Step 1 – Create and Install a Service Certificate for Transport Security
• Step 2 – Create a Sample WCF Service Project with SSL
• Step 3 – Configure the Virtual Directory to Require SSL
• Step 4 – Configure wsHttpBinding for Windows Authentication and Transport Security
• Step 5 – Configure the Service to Publish Metadata Securely
• Step 6 – Create a Test Client Application
• Step 7 – Add a WCF Service Reference to the Client
• Step 8 – Test the Client and WCF Service

Step 1 – Create and Install a Service Certificate for
Transport Security
In this step, you create a temporary service certificate and install it in the local store. This
certificate will be used to establish an SSL connection between the client and the WCF service.

Creating and installing the certificate is outside the scope of this How To article. For instructions
on how to do this, see “How To – Create and Install Temporary Certificates in WCF for Transport
Security during Development” and follow steps 1 through 4.

Note: Temporary certificate should be used for development and testing purposes only. For
actual production deployment, you will need to obtain a valid certificate from a certificate
authority (CA).

Step 2 – Create a Sample WCF Service Project with SSL
In this step, you create a WCF service in Visual Studio and enable SSL.

1. In Visual Studio, on the menu, select File > New Web Site.
2. In the New Web Site dialog box, under Templates, select WCF Service. Make sure that

the Location is set to Http and then click Browse.
3. In the Choose Location dialog box, click Local IIS.
4. At the bottom of the dialog box, select the Use Secure Sockets Layer check box, and

then click Open.
5. In the New Web Site dialog box, set the new Web site address as

https://localhost/WCFTestService and then click OK.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 677

Note: Because the SSL port might not be configured by default on the IIS, it might throw errors
while creating the WCF service. To prevent this, open the IIS Manager, right‐click Default Web
Site, and then click Properties option. In the Default Web Site Properties dialog box, click the
Web Site tab and make sure that the SSL port: is set to 443.

Step 3 – Configure the Virtual Directory to Require SSL
In this step, you configure the virtual directory hosting the WCF service to use SSL.

1. Click Start then Run and then type inetmgr to open the Internet Information Services
manager.

2. In the Internet Information Services Manager dialog box, expand the (local computer),
expand the Web Sites node, and then expand the Default Web Site node.

3. Right‐click your virtual directory (WCFTestService) and then click Properties.
4. In the Properties dialog box, click the Directory Security tab, and then in the Secure

Communication section, click Edit.
5. In the Secure communications dialog box, select the Require secure channel (SSL) check

box.
6. in the Secure communications dialog box, click OK.
7. In the Properties dialog box, click OK.

Step 4 – Configure wsHttpBinding for Windows
Authentication and Transport Security
In this step, you configure the WCF service to use Windows Authentication and transport
security.

1. Right‐click the Web.config file of the WCF service and then click Edit WCF Configuration.
2. If you do not see the Edit WCF Configuration option, on the Tools menu, click WCF

Service Configuration Editor. Close the WCF Service Configuration Editor tool that
appears. The option should now appear on the web.config context menu.

3. In the configuration editor, in the Configuration section, expand Service and then
expand Endpoints.

4. Select the first node [Empty Name] and set the Name attribute to wsHttpEndpoint.
5. Click the Identity tab and delete the Dns attribute value, which by default is set to

“localhost”.
6. In the configuration editor, select the Bindings folder.
7. In the Bindings section, select New Binding Configuration.
8. In the Create a New Binding dialog box, select wsHttpBinding.
9. Click OK.
10. Set the Name of the binding configuration to some logical and recognizable name; for

example, wsHttpEndpointBinding.
11. Click the Security tab.
12. Set the Mode attribute to Transport by choosing this option from the drop‐down list.
13. Make sure that the TransportClientCredentialType is set to Windows, which is the

default setting.
14. In the Configuration section, select the wsHttpEndpoint node.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 678

15. Set the BindingConfiguration attribute to wsHttpEndpointBinding by choosing this
option from the drop‐down list.
This associates the binding configuration setting with the binding.

16. In the configuration editor dialog box, on the File menu, click Save.
17. In Visual Studio, open your configuration and comment out the identity element. It

should look as follows:

 <!--<identity>
 <dns value="" />
 </identity>-->

18. In Visual Studio, verify your configuration. The configuration should look as follows:
…
<bindings>
 <wsHttpBinding>
 <binding name="wsHttpEndpointBinding">
 <security mode="Transport">
 </security>
 </binding>
 </wsHttpBinding>
</bindings>
<services>
 <service behaviorConfiguration="ServiceBehavior"
name="Service">
 <endpoint address="" binding="wsHttpBinding"
 bindingConfiguration="wsHttpEndpointBinding"
 name="wsHttpEndpoint" contract="IService">
 <!--<identity>
 <dns value="" />
 </identity>-->
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
contract="IMetadataExchange" />
 </service>
</services>
…

Step 5 – Configure the Service to Publish Metadata Securely
In this step, you configure your WCF service to publish and secure the metadata. By publishing
the Metadata, you allow your client to add a reference to your WCF service.

1. In the configuration editor, expand the Service node, and then expand Endpoints.
2. Select the second endpoint created [Empty Name] and then set the Name attribute to

“MexHttpsBindingEndpoint”.
3. Set the Binding attribute to mexHttpsBinding.
4. In the configuration editor dialog box, on the File menu, click Save.
5. In Visual Studio, verify your configuration in App.config. The configuration should look

as follows.

…
<services>
 <service behaviorConfiguration="ServiceBehavior"

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 679

6. In the configuration editor, expand the Advanced node, and then expand the Service

Behaviors node.
7. Expand the ServiceBehavior node and then select the serviceMetadata node.
8. Set the HttpGetEnabled attribute to False and the HttpsGetEnabled attribute to True.
9. In the configuration editor dialog box, on the File menu, click Save.
10. In Visual Studio, verify your configuration in App.config. The configuration should look

as follows.

…
<behaviors>
 <serviceBehaviors>
 <behavior name="ServiceBehavior">
 <serviceMetadata httpGetEnabled="false"
httpsGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="false" />
 </behavior>
 </serviceBehaviors>
</behaviors>
…

Step 6 – Create a Test Client Application
In this step, you create a Windows Forms application to test the WCF service.

1. Right‐click your solution, click Add, and then click New Project.
2. In the Add New Project dialog box, in the Templates section, select Windows Forms

Application.
3. In the Name field, type Test Client and then click OK.

Step 7 – Add a WCF Service Reference to the Client
In this step, you add a reference to your WCF service so that your client can call the service.

1. Right‐click your Client project and then click Add Service Reference.
2. In the Add Service Reference dialog box, set the URL to your WCF service – for example,

https://<<YourMachineName>>/WCFTestService/Service.svc – and then click Go .
3. In the Namespace field, change ServiceReference1 to WCFTestService and then click

OK.

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 680

A reference to WCFTestService should appear beneath Service References in your Client
project.

Note: If the machine name used in the Add Service Reference dialog does not match the
certificate name, you will get an error when trying to add the reference. You can resolve this by
ensuring that the certificate name matches the machine name used in this URL.

Step 8 – Test the Client and WCF Service
In this step, you access the WCF service, pass the user credentials, and make sure that the
authentication works through a secure channel (HTTPS).

1. In your Client project, drag a Button control onto your form.
2. Double‐click the Button control to show the underlying code.
3. In the code behind the button click, create an instance of the proxy and call the GetData

operation of your WCF service. The code should look as follows:

private void button1_Click(object sender, EventArgs e)
{
 WCFTestService.ServiceClient myService = new
 WCFTestService.ServiceClient();

MessageBox.Show(myService.GetData(123));
 myService.Close();
}

4. Right‐click the Client project and then click Set as Startup Project.
5. Run the Client application by pressing F5 or Ctrl+F5. When you click the button on the

form, the message “You entered: 123” should appear.

Additional Resources
• For more information on WCF Transport Layer Security using wsHttpBinding and SSL,

see “WCF Transport Layer Security using wsHttpBinding and SSL” at
http://www.codeproject.com/KB/WCF/WCF.aspx

• For more information on how to work with temporary certificates, see “How to: Create
Temporary Certificates for Use During Development” at
http://msdn2.microsoft.com/en‐us/library/ms733813.aspx

• For more information on how to view certificates by using the Microsoft Management
Console (MMC) snap in, see “How to: View Certificates with the MMC Snap‐in” at
http://msdn2.microsoft.com/en‐us/library/ms788967.aspx

• For more information on differences in certificate validation between Microsoft Internet
Explorer and WCF, see “Differences Between Service Certificate Validation Done by
Internet Explorer and WCF” at http://msdn2.microsoft.com/en‐
us/library/aa702599.aspx

• For more information on differences in certificate validation between protocols, see
“Certificate Validation Differences Between HTTPS, SSL over TCP, and SOAP Security” at
http://msdn2.microsoft.com/en‐us/library/aa702579.aspx

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 681

WCF Security Resources

Getting Started

Microsoft
• Microsoft® MSDN® Library – “Fundamental Windows Communication Foundation

Concepts” – 4TUhttp://msdn2.microsoft.com/en-us/library/ms731079.aspxU4T
• MSDN Library – “Windows Communication Foundation Security” –

4TUhttp://msdn.microsoft.com/en-us/library/ms732362.aspxU4T
• WCF Security Documentation – “Security Overview” – 4TUhttp://msdn.microsoft.com/en-

us/library/ms735093.aspxU4T

Community
• DevX.com – “Fundamentals of WCF Security,” by Michèle Leroux Bustamante –

4TUhttp://www.devx.com/codemag/Article/33342U4T
• TheServer Side.NET – “WCF Security Learning Guide,” by Brent Sheets –

4TUhttp://www.theserverside.net/tt/articles/showarticle.tss?id=WCFSecurityLearningGuideU4T

Articles

Microsoft
• MSDN Library – “The .NET Developer’s Guide to Identity,” by Keith Brown –

4TUhttp://msdn2.microsoft.com/en-us/library/aa480245.aspxU4T
• MSDN Magazine – “Identity: Secure Your ASP.NET Apps And WCF Services With Windows

CardSpace, “by Michèle Leroux Bustamante – 4TUhttp://msdn2.microsoft.com/en-
us/magazine/cc163434.aspxU4T

• MSDN Magazine – “IIS 7.0: Extend Your WCF Services Beyond HTTP With WAS,” by
Dominick Baier, Christian Weyer, and Steve Maine – 4TUhttp://msdn2.microsoft.com/en-
us/magazine/cc163357.aspxU4T

• MSDN Magazine – “Security Briefs: Exploring Claims-Based Identity,” by Keith Brown –
4TUhttp://msdn2.microsoft.com/en-us/magazine/cc163366.aspxU4T

• MSDN Magazine – “Security Briefs: Limited User Problems and Split Knowledge,” By Keith
Brown – 4TUhttp://msdn2.microsoft.com/en-us/magazine/cc163531.aspxU4T

• MSDN Magazine – “Security Briefs: Security in Windows Communication Foundation,” by
Keith Brown – 4 TUhttp://msdn2.microsoft.com/en-us/magazine/cc163570.aspxU4T

• MSDN Magazine – “Service Station: WCF Messaging Fundamentals,” by Aaron Skonnard –
4TUhttp://msdn2.microsoft.com/en-us/magazine/cc163447.aspxU4T

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 682

Community
• DevX.com – “Fundamentals of WCF Security,” by Michèle Leroux Bustamante –

4TUhttp://www.devx.com/codemag/Article/33342U4T
• TheServerSide.NET – “Building a Claims-Based Security Model in WCF,” by Michèle Leroux

Bustamente –
4TUhttp://www.theserverside.net/tt/articles/showarticle.tss?id=ClaimsBasedSecurityModelU4 T

• TheServerSide.NET – “Building a Claims-Based Security Model in WCF – Part 2,” by Michèle
Leroux Bustamente – 4TUhttp://www.theserverside.net/news/thread.tss?thread_id=45499U4T

• TheServerSide.NET – “Securing Your WCF service,” by William Tay –
4TUhttp://www.theserverside.net/tt/articles/showarticle.tss?id=SecuringWCFServiceU4 T

• TopXML – “BizTalk and WCF: Part II, Security Patterns,” by Richard Seroter –
4TUhttp://www.topxml.com/code/cod-72_10192_biztalk-and-wcf-part-ii-security-
patterns.aspxU4T

Blogs

Microsoft
• J.D. Meier – 4TUhttp://blogs.msdn.com/jmeier/archive/tags/WCF/default.aspxU4T
• Kim Cameron – 4TUhttp://www.identityblog.com/U4T
• Kenny Wolf – 4 TUhttp://kennyw.com/category/indigo/U4T
• Nicholas Allen – 4 TUhttp://blogs.msdn.com/drnick/U4T
• Ralph Squillace – 4TUhttp://blogs.msdn.com/ralph.squillaceU4T
• Steve Maine – 4TUhttp://hyperthink.net/blog/U4T
• Tomasz Janczuk –4TUhttp://www.pluralsight.com/blogs/tjanczuk/U4T
• Vittorio Bertocci – 4 TUhttp://blogs.msdn.com/vbertocci/U4 T
• Wenlong Dong – 4 TUhttp://blogs.msdn.com/wenlongU4T

Community
• Dominick Baier – 4TUhttp://www.leastprivilege.com/U4T
• Keith Brown – 4 TUhttp://www.pluralsight.com/blogs/keithU4T
• Michèle Leroux Bustamante – 4TUhttp://www.thatindigogirl.com/U4 T
• Thomas Restrepo – 4TUhttp://www.winterdom.com/weblogU4T

Channel9

Podcasts
• ARCast – “Secure, Reliable Transacted Messaging with WCF (Part 1)” –

4TUhttp://channel9.msdn.com/Showpost.aspx?postid=173405U4 T
• ARCast – “Secure, Reliable Transacted Messaging with WCF (Part 2)” –

4TUhttp://channel9.msdn.com/Showpost.aspx?postid=173830U4 T

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 683

ARCast.TV
• ARCast.TV – “WCF Session Behavior from Slovenia” –

4TUhttp://channel9.msdn.com/Showpost.aspx?postid=347826U4 T

Videos
• Vittorio Bertocci: “WS-Trust – Under the Hood” – 4TUhttp://channel9.msdn.com/tags/WS-

TrustU4T

Tags
• WCF tag – 4TUhttp://channel9.msdn.com/tags/WCFU4T

Documentation

Overview
• Architecture – 4TUhttp://msdn2.microsoft.com/en-us/library/ms733128.aspxU4T
• Concepts – 4TUhttp://msdn2.microsoft.com/en-us/library/ms731069.aspxU4T
• Distributed Application Security – 4TUhttp://msdn2.microsoft.com/en-

us/library/ms731204.aspxU4T
• Security Architecture – 4TUhttp://msdn2.microsoft.com/en-us/library/ms788756.aspxU4T
• Security Overview – 4 TUhttp://msdn2.microsoft.com/en-us/library/ms735093.aspxU4T
• WCF Security Terminology – 4TUhttp://msdn2.microsoft.com/en-us/library/ms731846.aspxU4T

Guidance
• Best Practices for Queued Communication – 4 TUhttp://msdn2.microsoft.com/en-

us/library/ms731093.aspxU4T
• Best Practices for Reliable Sessions – 4 TUhttp://msdn2.microsoft.com/en-

us/library/ms733795.aspxU4T
• Security Guidance and Best Practices – 4 TUhttp://msdn2.microsoft.com/en-

us/library/ms731983.aspxU4T

Scenarios
• Common Security Scenarios – 4 TUhttp://msdn2.microsoft.com/en-us/library/ms730301.aspxU4T
• Identity Model Scenarios – 4TUhttp://msdn2.microsoft.com/en-us/library/ms729851.aspxU4T

Threats and Countermeasures
• Threats and Countermeasures – 4TUhttp://msdn2.microsoft.com/en-

us/library/ms731086.aspxU4T

Topics
• Auditing – 4TUhttp://msdn2.microsoft.com/en-us/library/ms731669.aspxU4T
• Authentication – 4 TUhttp://msdn2.microsoft.com/en-us/library/ms733082.aspxU4T

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 684

• Authorization – 4TUhttp://msdn2.microsoft.com/en-us/library/ms733071.aspxU4T
• Authorization Mechanisms – 4TUhttp://msdn2.microsoft.com/en-us/library/ms733106.aspxU4T
• Bindings and Security – 4 TUhttp://msdn2.microsoft.com/en-us/library/ms731172.aspxU4T
• Claims-Based Authorization – 4 TUhttp://msdn2.microsoft.com/en-us/library/ms729851.aspxU4T
• Configuration Schema – 4 TUhttp://msdn2.microsoft.com/en-us/library/ms731734.aspxU4T
• Federation and Issued Tokens – 4 TUhttp://msdn2.microsoft.com/en-us/library/ms730908.aspxU4T
• Hosting – 4TUhttp://msdn2.microsoft.com/en-us/library/ms729846.aspxU4T
• Impersonation and Delegation – 4 TUhttp://msdn2.microsoft.com/en-

us/library/ms730088.aspxU4T
• Impersonation with Transport Security – 4TUhttp://msdn2.microsoft.com/en-

us/library/ms788971.aspxU4T
• Message Security in WCF – 4TUhttp://msdn2.microsoft.com/en-us/library/ms733137.aspxU4T
• Partial Trust – 4 TUhttp://msdn2.microsoft.com/en-us/library/bb412175.aspxU4T
• Reliable Sessions Overview – 4 TUhttp://msdn2.microsoft.com/en-us/library/ms733136.aspxU4T
• SAML Tokens and Claims – 4TUhttp://msdn2.microsoft.com/en-us/library/ms733083.aspxU4T
• Security Capabilities with Custom Bindings – 4TUhttp://msdn2.microsoft.com/en-

us/library/ms733121.aspxU4T
• Secure Conversations and Secure Sessions – 4 TUhttp://msdn2.microsoft.com/en-

us/library/ms731107.aspxU4T
• Secure Sockets Layer (SSL) – 4TUhttp://msdn2.microsoft.com/en-us/library/ms734679.aspxU4T
• Securing Services and Clients – 4TUhttp://msdn2.microsoft.com/en-us/library/ms734736.aspxU4T
• Transport Security Overview – 4TUhttp://msdn2.microsoft.com/en-us/library/ms729700.aspxU4T
• X.509 Certificates – 4TUhttp://msdn2.microsoft.com/en-us/library/ms731899.aspxU4T

How To Articles
• How to: Audit Windows Communication Foundation Security Events –

4TUhttp://msdn2.microsoft.com/en-us/library/ms734737.aspxU4T
• How to: Configure Credentials on a Federation Service – 4TUhttp://msdn2.microsoft.com/en-

us/library/ms730131.aspxU4T
• How to: Configure a Local Issuer – 4 TUhttp://msdn2.microsoft.com/en-

us/library/aa347715.aspxU4T
• How to: Configure a Port with an SSL Certificate – 4 TUhttp://msdn2.microsoft.com/en-

us/library/ms733791.aspxU4T
• How to: Consistently Reference X.509 Certificates – 4TUhttp://msdn2.microsoft.com/en-

us/library/aa702627.aspxU4T
• How to: Create a Custom Binding Using the SecurityBindingElement –

4TUhttp://msdn2.microsoft.com/en-us/library/ms730305.aspxU4T
• How to: Create a Federated Client – 4 TUhttp://msdn2.microsoft.com/en-

us/library/ms731690.aspxU4T
• How to: Create a Secure Session – 4TUhttp://msdn2.microsoft.com/en-

us/library/ms733783.aspxU4T
• How to: Create a Security Token Service – 4 TUhttp://msdn2.microsoft.com/en-

us/library/ms733095.aspxU4T

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 685

• How to: Create a Stateful Security Context Token for a Secure Session –
4TUhttp://msdn2.microsoft.com/en-us/library/ms731814.aspxU4T

• How to: Create a Supporting Credential – 4TUhttp://msdn2.microsoft.com/en-
us/library/ms734664.aspxU4T

• How to: Create Temporary Certificates for Use During Development –
4TUhttp://msdn2.microsoft.com/en-us/library/ms733813.aspxU4T

• How to: Create a WSFederationHttpBinding – 4 TUhttp://msdn2.microsoft.com/en-
us/library/aa347982.aspxU4T

• How to: Create a Custom Reliable Session Binding with HTTPS –
4TUhttp://msdn2.microsoft.com/en-us/library/ms735116.aspxU4T

• How to: Disable Encryption of Digital Signatures – 4T Uhttp://msdn2.microsoft.com/en-
us/library/aa738768.aspxU4T

• How to: Disable Secure Sessions on a WSFederationHttpBinding –
4TUhttp://msdn2.microsoft.com/en-us/library/ms731827.aspxU4T

• How to: Enable Message Replay Detection – 4TUhttp://msdn2.microsoft.com/en-
us/library/ms733063.aspxU4T

• How to: Exchange Messages Within a Reliable Session – 4 TUhttp://msdn2.microsoft.com/en-
us/library/ms733049.aspxU4T

• How to: Impersonate a Client on a Service – 4TUhttp://msdn2.microsoft.com/en-
us/library/ms731090.aspxU4T

• How to: Make X.509 Certificates Accessible to WCF – 4TUhttp://msdn2.microsoft.com/en-
us/library/aa702621.aspxU4T

• How to: Obtain a Certificate (WCF) – 4TUhttp://msdn2.microsoft.com/en-
us/library/aa702761.aspxU4T

• How to: Restrict Access with the PrincipalPermissionAttribute Class –
4TUhttp://msdn2.microsoft.com/en-us/library/ms731200.aspxU4T

• How to: Retrieve the Thumbprint of a Certificate – 4TUhttp://msdn2.microsoft.com/en-
us/library/ms734695.aspxU4T

• How to: Secure Messages within Reliable Sessions – 4TUhttp://msdn2.microsoft.com/en-
us/library/aa702650.aspxU4T

• How to: Secure a Service with Windows Credentials – 4TUhttp://msdn2.microsoft.com/en-
us/library/ms734673.aspxU4T

• How to: Secure a Service with an X.509 Certificate – 4TUhttp://msdn2.microsoft.com/en-
us/library/ms788968.aspxU4T

• How to: Set Up a Signature Confirmation – 4TUhttp://msdn2.microsoft.com/en-
us/library/ms730328.aspxU4T

• How to: Set a Max Clock Skew – 4TUhttp://msdn2.microsoft.com/en-us/library/aa738468.aspxU4T
• How to: Specify the Certificate Authority Certificate Chain Used to Verify Signatures (WCF) –

4TUhttp://msdn2.microsoft.com/en-us/library/aa738659.aspxU4T
• How to: Use the ASP.NET Authorization Manager Role Provider with a Service –

4TUhttp://msdn2.microsoft.com/en-us/library/ms734774.aspxU4T
• How to: Use the ASP.NET Membership Provider – 4TUhttp://msdn2.microsoft.com/en-

us/library/ms731049.aspxU4T

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 686

• How to: Use the ASP.NET Role Provider with a Service – 4TUhttp://msdn2.microsoft.com/en-
us/library/aa702542.aspxU4T

• How to: Use a Custom User Name and Password Validator –
4TUhttp://msdn2.microsoft.com/en-us/library/aa702565.aspxU4T

• How to: Use Multiple Security Tokens of the Same Type – 4 TUhttp://msdn2.microsoft.com/en-
us/library/bb885138.aspxU4T

• How to: Use Transport Security and Message Credentials –
4TUhttp://msdn2.microsoft.com/en-us/library/ms789011.aspxU4T

• How to: View Certificates with the MMC Snap-in – 4TUhttp://msdn2.microsoft.com/en-
us/library/ms788967.aspxU4T

Guides

Community
• dasblonde.net – “WCF Security Fundamentals,” by Michèle Leroux Bustamante –

4TUhttp://www.dasblonde.net/downloads/sessions/WCFSecurityFundamentals.pdfU4T
• TheServer Side.NET – “WCF Security Learning Guide,” by Brent Sheets –

4TUhttp://www.theserverside.net/tt/articles/showarticle.tss?id=WCFSecurityLearningGuideU4T

Posts

Microsoft
• Alexander Strauss – “WCF – Let’s Start The Dialogue” –

4TUhttp://blogs.msdn.com/astrauss/archive/2006/10/27/wcf-let-s-start-the-dialogue.aspxU4T
• Alik Levine – “How To Consume WCF Using AJAX Without ASP.NET” –

4TUhttp://blogs.msdn.com/alikl/archive/2008/02/18/how-to-consume-wcf-using-ajax-without-
asp-net.aspxU4T

Community
• Dominick Baier – “Using IdentityModel: Authorization Policies, Context and Claims

Transformation” –
4TUhttp://www.leastprivilege.com/UsingIdentityModelAuthorizationPoliciesContextAndClaims
Transformation.aspxU4T

• Dominick Baier – “Using IdentityModel: Creating Custom Claim Sets” –
4TUhttp://www.leastprivilege.com/UsingIdentityModelCreatingCustomClaimSets.aspxU4T

• Dominick Baier – “Using IdentityModel: Typical Operations on Claim Sets” –
4TUhttp://www.leastprivilege.com/UsingIdentityModelTypicalOperationsOnClaimSets.aspxU4T

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 687

• Dominick Baier – “Using IdentityModel: Windows and X509Certificate Claim Sets” –
4TUhttp://www.leastprivilege.com/UsingIdentityModelWindowsAndX509CertificateClaimSets.
aspxU4T

• Dominick Baier – “Using IdentityModel: Inspecting Claim Sets” –
4TUhttp://www.leastprivilege.com/UsingIdentityModelInspectingClaimSets.aspxU4T

• Dominick Baier – “Using IdentityModel: Claim Sets” –
4TUhttp://www.leastprivilege.com/UsingIdentityModelClaimSets.aspxU4T

• Dominick Baier – “Using IdentityModel: Claims” –
4TUhttp://www.leastprivilege.com/UsingIdentityModelClaims.aspxU4T

• Dominick Baier – “Be careful with ServiceAuthorizationManager.CheckAccess()” –
4TUhttp://www.leastprivilege.com/BeCarefulWithServiceAuthorizationManagerCheckAccess.as
pxU4T

• Dominick Baier – “UserName SupportingToken in WCF” –
4TUhttp://www.leastprivilege.com/UserNameSupportingTokenInWCF.aspxU4T

• Paolo Pialorsi – “WCF Custom Authentication and Impersonation” –
4TUhttp://weblogs.asp.net/paolopia/archive/2005/12/08/432658.aspxU4T

• Tomas Restrepo – “WCF Configuration Complexity” –
4TUhttp://www.winterdom.com/weblog/CommentView,guid,d8954fbc-3c04-441c-8d81-
9e98e70a8580.aspxU4T

patterns & practices

• WCF Security Guidance Package –

4TUhttp://www.codeplex.com/servicefactory/Release/ProjectReleases.aspx?ReleaseId=8814U4T

Product Support Services (PSS)

• WCF Troubleshooting Quickstart – 4TUhttp://msdn2.microsoft.com/en-

us/library/aa702636.aspxU4T

Samples

Microsoft
• Basic Windows Communication Foundation Technology Samples –

4TUhttp://msdn2.microsoft.com/en-us/library/ms752239.aspxU4T

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 688

• Windows Communication Foundation Samples – 4 TUhttp://msdn2.microsoft.com/en-
us/library/ms751514.aspxU4T

Community
• Paolo Pialorsi – “WCF Security Full Demo” –

4TUhttp://weblogs.asp.net/paolopia/archive/2007/12/16/wcf-security-full-demo.aspxU4T

Videos

• MSDN TV – Windows Communication Foundation Bindings and Channels by Clemens

Vasters – 4TUhttp://www.microsoft.com/downloads/details.aspx?FamilyID=16FF9371-82EA-
4229-8868-EBC87F0F5E77&displaylang=enU4 T

• MSDN Webcast: Windows Communication Foundation Top to Bottom (Part 10 of 15):
Security Fundamentals (Level 200) –
4TUhttp://msevents.microsoft.com/CUI/WebCastEventDetails.aspx?culture=en-
US&EventID=1032344349&CountryCode=USU4 T

Web Casts

MSDN Support WebCasts
• MSDN Support WebCast: Building distributed services on the Windows Communication

Foundation – 4TUhttp://support.microsoft.com/kb/907388/en-usU4T

Improving Web Services Security: Scenarios and Implementation Guidance for WCF

Microsoft patterns & practices 689

	Cover Page
	Copyrights Page
	Title
	Foreword by Nicholas Allen
	Foreword by Rockford Lhotka
	Introduction
	WCF / Services Security
	Scope of This Guide
	Why We Wrote This Guide
	Who Should Read This Guide
	How to Use This Guide
	Organization of This Guide
	Parts
	Checklist
	Guidelines
	Practices
	Questions and Answers
	“How To” Articles
	Resources

	Feedback and Support
	Feedback on the Guide
	The Team Who Brought You This Guide
	Contributors and Reviewers
	Tell Us About Your Success

	Solutions at a Glance
	Summary
	Security Engineering
	Message and Transport Security
	Authentication / Authorization
	Patterns
	Auditing and Logging
	Bindings
	Exception Management
	Impersonation / Delegation
	Message Validation

	Fast Track
	Summary
	Goal and Scope
	The Approach
	patterns & practices Security Engineering
	End-to-End Scenarios
	Intranet
	Internet

	Web Services Security Frame
	Threats and Attacks to Your Web Services
	Guidelines for Your Web Services
	Web Services Security Patterns
	Bindings in WCF
	Transport Security
	Message Security
	Authentication
	Transport Security
	Message Security

	Authorization Options in WCF

	Part I - Security Fundamentals for Web Services
	Ch 01 - Security Fundamentals for Web Services
	Objectives
	Overview
	What Do We Mean by Security?
	The Foundations of Security
	Threats, Vulnerabilities, and Attacks Defined
	What Is a Service?
	Common Services Scenarios
	Service-Oriented Architecture (SOA)
	SOA Tenants
	Service Orientation vs. Object Orientation
	Application Boundaries
	Enterprise SOA vs. Application SOA
	SOA Security in Practice
	WS-Security Standards / Web Services Security Concepts
	How Do You Build Secure Services?
	patterns & practices Security Engineering
	Web Services Security Principles
	Web Services Security Frame
	Web Services Security Patterns
	Summary
	Additional Resources

	Ch 02 - Threats and Countermeasures for Web Services
	Objectives
	Overview
	Threats, Attacks, Vulnerabilities, and Countermeasures
	Web Services Security Frame
	Auditing and Logging
	Authentication
	Authorization
	Configuration Management
	Exception Management
	Impersonation/Delegation
	Message Encryption
	Message Replay Detection
	Message Signing
	Message Validation
	Sensitive Data
	Session Management
	Threats and Attacks Explained

	Ch 03 - Security Design Guidelines for Web Services
	Contents
	Overview
	Security Architecture and Design Issues for Web Services
	Deployment Considerations
	Auditing and Logging
	Each of these guidelines is briefly described in the following sections.
	Audit and Log Access Across Application Tiers
	Back Up and Analyze Log Files Regularly
	Consider Identity Flow
	Do Not Log Sensitive Information
	Instrument for Significant Business Operations
	Instrument for Unusual Activity
	Instrument for User Management Events
	Know Your Baseline
	Log Key Events
	Protect and Audit Log Files
	Additional Considerations
	Use Log Throttling

	Authentication
	Be Able to Disable Accounts
	Do Not Send Passwords over the Wire in Plaintext
	Do Not Store Passwords in User Stores
	Protect Authentication Cookies
	Require Strong Passwords
	Support Password Expiration Periods
	Use Account Lockout Policies for End-user Accounts
	Additional Resources

	Authorization
	Tie Authentication to Authorization on the Same Tier
	Consider Authorization Granularity
	Know Your Authorization Options
	Restrict User Access to System-level Resources
	Use Least-privileged Accounts
	Use Multiple Gatekeepers
	Additional Resources

	Configuration Management
	Consider Your Key Storage Location
	Encrypt Sensitive Sections of Configuration Files
	Use ACLs to Protect Your Configuration Files
	Use Secure Settings for Various Operations of Web Services

	Exception Management
	Catch Exceptions
	Do Not Log Private Data Such as Passwords
	Do Not Reveal Sensitive System or Application Information
	Log Detailed Error Messages
	Additional Resources

	Message Protection
	Use Message Security or Transport Security to Encrypt and Sign Your Messages
	Use Platform-Provided Cryptography
	Use Platform Features for Key Management
	Periodically Change Your Keys
	Additional Resources

	Message Validation
	Do Not Trust Input
	Verify the Message Payload Against a Schema
	Verify the Message Size, Content, and Character Sets
	Filter, Scrub, and Reject Input and Output Before Additional Processing
	Additional Resources

	Sensitive Data
	Do Not Store Database Connections, Passwords, or Keys in Plaintext
	Do Not Store Secrets if You Can Avoid It
	Do Not Store Secrets in Code
	Encrypt Sensitive Data in Configuration Files
	Encrypt Sensitive Data over the Network
	Retrieve Sensitive Data on Demand

	Session Management
	Authenticate and Authorize Access to the Session Store
	Avoid Storing Sensitive Data in Session Stores
	Reduce Session Timeouts
	Secure the Channel to the Session Store

	Part II - WCF Security Fundamentals
	Ch 04 - WCF Security Fundamentals
	Objectives
	Overview
	Key Security Features
	Scope of WCF Security
	Bindings and Behaviors
	Transfer Security
	Transport Security
	Message Security
	Protection Levels
	Configuring the Protection Level
	Service Credentials Negotiation
	Secure Session

	Authentication
	Transport Security Mode Authentication Options
	Message Security Mode Authentication Options

	Authorization in WCF
	Impersonation / Delegation
	Controlling Impersonation at the Service Side
	Controlling Impersonation at the Client Side

	Auditing

	Ch 05 - Authentication, Authorization and Identities in WCF
	Objectives
	Overview
	Client Authentication and Service Authentication
	Transfer Security Modes
	Authentication Options with Transport Security
	Authentication Options with Message Security
	Authorization Options in WCF
	Role-based Authorization Options in WCF
	Imperative Authorization
	Declarative Authorization

	Identity-based Authorization Options in WCF
	Resource-based Authorization Options in WCF
	The Trusted Subsystem Model
	The Impersonation / Delegation Model
	Identities in WCF
	Design Strategy for Authentication and Authorization
	Step 1 – Identify Resources
	Step 2 – Choose an Authorization Approach
	Step 3 – Choose the Identities to Be Used for Resource Access
	Step 4 – Choose an Authentication Approach
	Transfer Security
	Transport Security
	Message Security

	Bindings
	Bindings Summary
	User Store and Credential Management

	Key Authentication and Authorization Scenarios
	Intranet Scenarios
	Internet Scenarios
	Additional Resources

	Ch 06 - Impersonation and Delegation
	Objectives
	Overview
	Impersonation Scenarios
	Impersonate the Original Caller
	Impersonate the Original Caller Temporarily
	Impersonate a Specific Windows Identity
	Use Delegation to Access Network Resources

	Impersonation Options
	Impersonate Using the WindowsIdentity Token With Windows Authentication
	Impersonate Using the WindowsIdentity Constructor (S4U Kerberos Extensions)
	Impersonate Using the LogonUser API

	Impersonation Methods
	Impersonate the Original Caller Declaratively on Specific Operations
	Impersonate the Original Caller Declaratively for the Entire Service
	Impersonate the Original Caller Programmatically Within an Operation

	Controlling Impersonation on the Service Side
	Controlling Impersonation on the Client Side
	Pitfalls and Issues with Impersonation
	Related Items
	Additional Resources

	Ch 07 - Message and Transport Security
	Objectives
	Overview
	Transport Security
	Message Security
	Transfer Security Modes
	Transport Security in WCF
	Intranet Scenarios
	Internet Scenarios

	Message Security in WCF
	Protection Level
	Intranet Scenarios
	Internet Scenarios

	Ch 08 - Bindings
	Objectives
	Overview
	WCF Built-in Bindings
	Bindings Behaviors and Endpoints
	Bindings Summary
	basicHttpBinding
	wsHttpBinding
	netTcpBinding
	netNamedPipeBinding
	netMsmqBinding
	wsDualHttpBinding
	CustomBinding

	Internet Binding Scenarios
	Intranet Binding Scenarios
	Binding Elements
	Protocol Binding Elements
	Message Encoding Binding Elements
	Transport Security Binding Elements
	Transport Binding Elements
	Custom Binding Configuration Examples

	Part III - Intranet Application Scenarios
	Ch 09 - Intranet - Web to Remote WCF Using Transport Security (Original Caller, TCP)
	Applies To
	Scenario
	Key Characteristics
	Solution
	Solution Summary Table
	Web Server
	Application Server
	Database Server
	Communication Security

	Analysis
	Web Server
	Application Server
	Database Server
	Communication Security

	Example
	Domain Controller
	Web Server
	Application Server
	Database Server

	Additional Resources

	Ch 10 - Intranet - Web to Remote WCF Using Transport Security (Trusted Subsystem, HTTP)
	Applies To
	Scenario
	Key Characteristics
	Solution
	Solution Summary Table
	Web Server
	Application Server
	Database Server
	Communication Security

	Analysis
	Web Server
	Application Server
	Database Server
	Communication Security

	Example
	Domain Controller
	Web Server
	Application Server
	Database Server

	Additional Resources

	Ch 11 - Intranet - Web to Remote WCF Using Transport Security (Trusted Subsystem, TCP)
	Applies To
	Scenario
	Key Characteristics
	Solution
	Solution Summary Table
	Web Server
	Application Server
	Database Server
	Communication Security

	Analysis
	Web Server
	Application Server
	Database Server
	Communication Security

	Example
	Domain Controller
	Web Server
	Application Server
	Database Server

	Additional Resources

	Ch 12 - Intranet - Windows Forms to Remote WCF Using Transport Security (TCP)
	Applies To
	Scenario
	Key Characteristics
	Solution
	Solution Summary Table
	Thick Client
	Application Server
	Database Server
	Communication Security

	Analysis
	Thick Client
	Application Server
	Database Server
	Communication Security

	Example
	Application Server
	Database Server

	Additional Resources

	Part IV - Internet Application Scenarios
	Ch 13 - Internet – WCF and ASMX Client to Remote WCF Using Transport Security (Original Caller, HTTP)
	Applies To
	Scenario
	Key Characteristics
	Solution
	Solution Summary Table
	Clients
	Application Server
	Database Server
	Communication Security

	Analysis
	Clients
	WCF Proxy
	ASMX Web Service Proxy

	Application Server
	Database Server
	Communication Security

	Example
	Clients
	WCF Client
	ASMX Web Service Client

	Application Server
	IIS
	WCF

	Database Server

	Additional Resources

	Ch 14 - Internet – Web to Remote WCF Using Transport Security (Trusted Subsystem, TCP)
	Applies To
	Scenario
	Key Characteristics
	Solution
	Solution Summary Table
	Web Server
	Application Server
	Database Server
	Communication Security

	Analysis
	Web Server
	Application Server
	Database Server
	Communication Security

	Example
	Web Server
	Application Server
	Database Server

	Additional Resources

	Ch 15 - Internet – Windows Forms Client to Remote WCF Using Message Security (Original Caller, HTTP)
	Applies To
	Scenario
	Key Characteristics
	Solution
	Solution Summary Table
	Thick Client
	Application Server
	Database Server
	Communication Security

	Analysis
	Thick Client
	Application Server
	Database Server
	Communication Security

	Example
	Application Server
	Client
	Database Server

	Additional Resources

	Checklist
	Design Considerations
	Auditing and Logging
	Authentication
	Authorization
	Bindings
	Configuration Management
	Exception Management
	Hosting
	Impersonation/Delegation
	Input/Data Validation
	Message Security
	Transport Security
	Proxy Considerations
	Sensitive Data
	Deployment Considerations

	Guidelines
	Index
	Design Considerations
	Consider Exposing Different Endpoints
	If you need to support ASMX clients, use basicHttpBinding
	If You Are Migrating from DCOM, Consider Using netTcpBinding
	If You Need to Support Legacy WSE Clients, Use a CustomBinding in WCF
	If You Require Interoperability with Non-Microsoft Clients, Use Bindings That Are Targeted for Interoperability
	If Your Non-Microsoft Clients Understand the WS* Stack, Use ws2007HttpBinding or wsHttpBinding
	Consider Transport Security as Your Preferred Security Mode
	Know Your Authentication Options
	Know Your Authorization Options
	Know Your Binding Options
	Choose the Right Binding for Your Scenario

	Auditing and Logging
	Each of these guidelines is described in the following sections.
	Use WCF Auditing to Audit Your Service
	If Non-repudiation is Important, Consider Setting the SuppressAuditFailure Property to false
	Use Message Logging for Debugging Purposes
	Instrument for User Management Events
	Instrument for Significant Business Operations
	Protect Log Files from Unauthorized Access
	Do Not Log Sensitive Information
	Protect Information in Log Files
	Use a Custom Trace Listener to Filter Sensitive Application Data in Messages

	Authentication
	Each of these guidelines is described in the following sections.
	Know Your Authentication Options
	Use Windows Authentication When You Can
	If Your Users Are in Active Directory but You Can’t Use Windows Authentication, Consider Using Username Authentication
	If You Are Using Username Authentication, use a Membership Provider Instead of Custom Authentication
	If Your Users Are in a SQL Server Membership Store, Use the SQL Server Membership Provider
	If Your Users Are in a Custom Store, Consider Using Username Authentication with a Custom Validator
	If Your Clients Have Certificates, Consider Using Client Certificate Authentication
	If Your Partner Applications Need to Be Authenticated When Calling WCF Services, Use Client Certificate Authentication
	If You Are Using Username Authentication, Validate User Login Information
	Do Not Store Passwords Directly in the User Store
	Enforce Strong Passwords
	Protect Access to Your Credential Store
	If You Are Using Client Certificate Authentication, Limit the Certificates in the Certificate Store

	Authorization
	If You Store Role Information in Windows Groups, Consider Using the WCF PrincipalPermissionAttribute Class for Role Authorization
	If You Use ASP.NET Roles, Use the ASP.NET Role Manager for Role Authorization
	If You Use Windows Groups for Authorization, Use the ASP.NET Role Provider with AspNetWindowsTokenRoleProvider
	If You Store Role Information in SQL Server, Consider Using the SQL Server Role Provider for Role Authorization
	If You Store Role Information in ADAM, Use the Authorization Manager Role Provider
	If You Store Role Information in a Custom Store, Create a Custom Authorization Policy
	If You Need to Authorize Access to WCF Operations, Use Declarative Authorization
	If You Need to Perform Fine-Grained Authorization Based on Business Logic, Use Imperative Authorization

	Bindings
	If You Need to Support Clients Over the Internet, Consider Using wsHttpBinding
	If You Need to Expose Your WCF Service to Legacy Clients as an ASMX Web Service, Use basicHttpBinding
	If You Need to Support WCF Clients Within an Intranet, Consider Using netTcpBinding
	If You Need to Support WCF Clients on the Same Machine, Consider Using netNamedPipeBinding
	If You Need to Support Disconnected Queued Calls, Use netMsmqBinding
	If You Need to Support Bidirectional Communication Between a WCF Client and WCF Service, Use wsDualHttpBinding or netTcpBinding

	Configuration Management
	Use Replay Detection to Protect Against Message Replay Attacks
	If You Host Your Service in a Windows Service, Expose a Metadata Exchange (mex) Binding
	If You Don’t Want to Expose Your WSDL, Turn Off HttpGetEnabled and Remove Metadata Exchange (mex) Endpoints
	Encrypt Configuration Sections That Contain Sensitive Data

	Exception Management
	Use Structured Exception Handling
	Do Not Divulge Exception Details to Clients in Production
	Use a Fault Contract to Return Error Information to Clients
	Use a Global Exception Handler to Catch Unhandled Exceptions

	Hosting
	Run Your Service in a Least-Privileged Account
	Use IIS to Host Your Service Unless You Need to Use a Transport That IIS Does Not Support

	Impersonation/Delegation
	Know the Tradeoffs Involved in Impersonation
	Know Your Impersonation Options
	Impersonate Using Windows Authentication
	Impersonate Using S4U Kerberos Extensions
	Impersonate Using the LogonUser API

	Know Your Impersonation Methods
	Impersonate the Original Caller Declaratively on Specific Operations
	Impersonate the Original Caller Declaratively on the Entire Service
	Impersonating the original caller programmatically within an operation

	Consider Using Programmatic Instead of Declarative Impersonation
	When Impersonating Programmatically, Be Sure to Revert to the Original Context
	When Impersonating Declaratively, Only Impersonate on the Operations That Require It
	Consider Using the S4U Feature for Impersonation and Delegation When You Cannot Do a Windows Mapping
	Consider Using the LogonUser API if Your WCF Service Cannot Be Trusted for Delegation
	Use Constrained Delegation if You Have to Flow the Original Caller to the Back-end Services

	Message Validation
	If You Need to Validate Parameters, Use Parameter Inspectors
	Use Schemas with Message Inspectors to Validate Messages
	Use Regular Expressions in Schemas to Validate Format, Range, or Length
	Implement the AfterReceiveRequest Method to Validate Inbound Messages on the Service
	Implement the BeforeSendReply Method to Validate Outbound Messages on the Service
	Implement the AfterReceiveReply Method to Validate Inbound Messages on the Client
	Implement the BeforeSendRequest Method to Validate Outbound Messages on the Client
	Validate Operation Parameters for Length, Range, Format, and Type
	Do Not Rely on Client-side Validation
	Avoid User-supplied File Name and Path Input
	Do Not Echo Untrusted Input

	Transport Security
	Use Transport Security When Possible
	If You Need to Support Clients in an Intranet, Use Transport Security
	If You Need to Support Interoperability with Non-WCF Clients, Use Transport Security
	Use a Hardware Accelerator When Using Transport Security

	Proxy Considerations
	Publish Your WCF Service Metadata Only When Required
	If You Need to Publish Your WCF Service Metadata, Publish It over the HTTPS Protocol
	If You Need to Publish Your WCF Service Metadata, Publish It Using Secure Binding
	If You Turn Off Mutual Authentication, Be Aware of Service Spoofing

	Sensitive Data
	Avoid Plain-text Passwords or Other Sensitive Data in Configuration Files
	Use Platform Features to Manage Keys Where Possible
	Protect Sensitive Data over the NetworkNetwork
	Do Not Cache Sensitive Data
	Minimize Exposure of Secrets in Memory
	Be Aware That basicHttpBinding Will Not Protect Sensitive Data by Default
	Use Appropriately Sized Keys

	Deployment Considerations
	Do Not Use Temporary Certificates in Production
	If You Are Using Kerberos Authentication or Delegation, Create an SPN
	Use IIS to Host Your WCF Service Wherever Possible
	Use a Least-Privileged Account to Run Your WCF Service
	Protect Sensitive Data in Your Configuration Files

	Practices at a Glance
	Index
	Auditing and Logging
	How to Audit Security Events
	How to Enable WCF Message Logging
	How to Enable WCF Tracing
	How to Use Health Monitoring in WCF
	How to Filter Sensitive Data from Your Logs
	How to View Log Information
	How to View Trace Information
	How to Log Traces to a WMI Provider
	How to Turn Off Audit Failure Suppression

	Authentication
	How to Authenticate Users Against the SQL Server Membership Provider
	How to Authenticate Users against Active Directory
	How to Authenticate Users Against Active Directory Without Windows Authentication
	How to Authenticate Users with Certificates
	How to Map Certificates with Windows Accounts
	How to Authenticate Users Against a Custom User Store

	Authorization
	How to Authorize Declaratively
	How to Authorize Imperatively if You Use a Role Provider
	How to Authorize Imperatively
	How to Perform Resource-based Authorization
	How to Perform Role-based Authorization
	How to Authorize Users Against Windows Groups
	How to Authorize Users Against Windows Groups Using AspNetWindowsTokenRoleProvider
	How to Authorize Users Against the SQL Server Role Provider
	How to Authorize Users Against the ASP.NET Role Provider
	How to Assign the Current Principal with IAuthorizationPolicy to Allow Authorization Using Custom Authentication
	How to Authorize Users Against ADAM Using the Authorization Manager Role Provider
	How to Map Roles to Certificates

	Configuration Management
	How to Encrypt Sensitive Data in Your Configuration Files
	How to Run Your Service Under a Specific Identity
	How to Create a Service Account for Your WCF Service
	How to Stop Clients from Referencing Your Service
	How to Protect Against Message Replay Attacks

	Deployment Considerations
	How to Configure Certificates to Enable SSL in IIS
	How to Map Windows Accounts with Certificates
	How to Create a Service Principle Name (SPN)
	How to Configure WCF for NATs and Firewalls
	How to Create an X.509 Certificate

	Exception Management
	How to Shield Exception Information with Fault Contracts
	How to Check the State of a Channel in WCF Proxy Client
	How to Avoid Faulting the Channels with Fault Contracts
	How to Create an Error Handler to Log Details of Faults for Auditing Purposes
	How to Handle Unhandled Exceptions In Downstream Services
	How to Throw an Exception with Complex Types or Data Contracts with a Fault Exception
	How to Handle Unknown Faults in a Service
	How to Implement a Data Contract to Propagate Exception Details for Debugging Purposes
	How to Implement Fault Contracts in Callback Functions

	Hosting
	How to Host WCF in IIS
	How to Host WCF in a Windows Service
	How to Self-host WCF
	How to Configure a Least-privileged Account to Host Your Service

	Impersonation/Delegation
	How to Choose Between a Trusted Subsystem and Impersonation/Delegation
	How to Impersonate the Original Caller when Using Windows Authentication
	How to Impersonate Programmatically in WCF
	How to Impersonate Declaratively In WCF
	How to Delegate the Original Caller to Call Back-end Services when Using Windows Authentication
	How to Impersonate the Original Caller Without Windows Authentication
	How to Impersonate the Original Caller Using S4U Kerberos Extensions
	How to Delegate the Original Caller Using S4U Kerberos Extensions
	How to Impersonate and Delegate Using the LogonUser Windows API
	How to Flow the Original Caller from an ASP.NET Client to WCF
	How to Control Access to a Remote Resource Based on the Original Caller’s Identity

	Message Validation
	How to Protect Your Service from Malicious Messages
	How to Protect Your Service from Malicious Input
	How to Protect Your Service from Denial Of Service Attacks
	How to Validate Parameters with Parameter Inspectors
	How to Validate Messages with Message Inspectors Using Schemas
	How to Validate Data Contracts with Message Inspectors Using Schemas
	How to Validate Message Contracts with Message Inspectors Using Schemas
	How to Use Regular Expressions to Validate Format, Range, and Length in Schemas
	How to Validate Inbound Messages on a Service
	How to Validate Outbound Messages on a Service
	How to Validate Outbound Messages on the Client
	How to Validate Inbound Messages on the Client
	How to Validate Input Parameters
	How to Validate Output Parameters

	Message Security
	How to Use Message Security
	How to Control the Level of Message Encryption
	How to Use Out-of-band Credentials with Message Security

	Proxy Considerations
	How to avoid proxy spoofing
	How to Publish Service Metadata for Your Clients
	How to Create a Proxy for an IIS-hosted Service with Certificate Authentication and Transport Security

	Sensitive Data
	How to Encrypt Sensitive Data in Configuration Files
	How to Protect Sensitive Data in Memory
	How to Protect Sensitive Data on the Network

	Transport Security
	How to Use Transport Security
	How to Use Secure Conversations in WCF

	X.509 Certificates
	How to Create a Temporary X.509 Certificate for Transport Security
	How to Create a Temporary X.509 Certificate for Message Security
	How to Create a Temporary X.509 Certificate for Certificate Authentication

	Questions and Answers
	Index
	Design Considerations
	How do I decide on an authentication strategy?
	How do I decide on an authorization strategy?
	When should I use message security vs. transport security?
	How do I use my existing Active Directory infrastructure?
	What bindings should I use over the Internet?
	What bindings should I use over the intranet?
	When should I use resource-based authorization vs. roles-based authorization?
	When should I impersonate the original caller?
	When should I flow the original caller’s identity?
	How do I migrate to WCF from an ASMX Web service?
	How do I migrate to WCF from a COM application?
	How do I migrate to WCF from a DCOM application?
	How do I migrate to WCF from a WSE application?

	Auditing and Logging
	What WCF service security events should be logged?
	How do I enable logging and auditing in WCF?
	How do I stop my service if there has been an auditing failure?
	How do I log important business events in WCF?
	How do I implement log throttling in WCF?
	How do I use health monitoring feature with WCF?
	How do I protect my log files?
	How to I pass user identity information in a message for auditing purpose?

	Authentication
	How do I decide on an authentication strategy in WCF?
	When should I use the SQL Server Membership provider?
	How do I authenticate against Active Directory?
	How do I authenticate against a SQL store?
	How do I authenticate against a custom store?
	How do I protect passwords in my user store?
	How do I use certificate authentication with X.509 certificates?
	What is the most common authentication scenario for intranet applications?
	What is the most common authentication scenario for Internet applications?
	How do I support authentication for multiple client types?
	What is federated security?
	How do I send credentials in the message when I am using transport security?
	How do I avoid cleartext passwords?

	Authorization
	How do I decide on an authorization strategy in WCF?
	What’s the difference between resource-based, roles-based, and claims-based authorization?
	How do I use Windows groups for role authorization in WCF?
	How do I use the SQL Server role provider for ASP.NET role authorization in WCF?
	How do I use the Windows Token role provider for ASP.NET role authorization in WCF?
	How do I use the Authorization Store role provider for ASPNET role authorization in WCF?
	What is the difference between declarative and imperative roles authorization?
	How do I restrict access to WCF operations to specific Windows users?
	How do I associate roles with a certificate?
	What is a service principal name (SPN)?
	How do I create a service principal name (SPN)?

	Bindings
	What is a binding?
	What bindings are available?
	Which bindings are best suited for the Internet?
	Which bindings are best suited for the Intranet?
	How do I choose an appropriate binding?

	Configuration Management
	How do I encrypt sensitive data in the WCF configuration file?
	How do I run a WCF Service with a particular identity?
	How do I create a service account for running my WCF Service?
	When should I use a configuration file versus the WCF object model?
	What is a metadata exchange (MEX) binding?
	How do I keep clients from referencing my service?

	Deployment Considerations
	What are the additional considerations for using WCF in a Web farm?
	How do I configure Active Directory groups and accounts for role-based authorization checks?
	How do I create an X.509 certificate?
	When should I use a service principal name (SPN)?
	How do I configure a least-privileged account for my service?

	Exception Management
	How do I implement a global exception handler?
	What is a fault contract?
	How do I define a fault contract?
	How do I avoid sending exception details to the client?

	Hosting
	How do I configure a least-privileged account to host my service?
	When should I host my service in IIS?
	When should I host my service in a Windows service?
	When should I self-host my service?

	Impersonation/Delegation
	What are my impersonation options?
	What is the difference between impersonation and delegation?
	How do I impersonate the original caller for an operation call?
	How do I temporarily impersonate the original caller in an operation call?
	How do I impersonate a specific (fixed) identity?
	What is constrained delegation?
	What is protocol transition?
	How do I flow the original caller from the ASP.NET client to a WCF service?
	What is the difference between declarative and programmatic impersonation?
	What is the trusted subsystem model?
	When should I flow the original caller to back-end code?
	How do I control access to a remote resource based on the original caller’s identity?

	Input/Data Validation
	How do I implement input and data validation in WCF?
	What is schema validation?
	What is parameter validation?
	Should I validate before or after message serialization?
	How do I protect my service from denial of service (DoS) attacks?
	How do I protect my service from malicious input attacks?
	How do I protect my service from malformed messages?

	Message Protection
	When should I use message security?
	When should I use transport security?
	How do I protect my message when there are intermediaries routing my message?
	How do I protect my message when there are multiple protocols used during message transit?

	Proxy Considerations
	When should I use a channel factory?
	When do I need to expose a metadata exchange endpoint for my service?
	How do I avoid proxy spoofing?

	Sensitive Data
	How do I protect sensitive data in configuration files?
	How do I protect sensitive data in memory?
	How do I protect my metadata?
	How do I protect sensitive data from being read on the wire?
	How do I protect sensitive data from being tampered with on the wire?

	X.509 Certificates
	How do I create X.509 certificates?
	Do I need to create a certificate signed by the root CA certificate?
	How do I use X.509 certificate revocation?

	HowTos
	How To - Audit and Log Security Events in WCF calling from Windows Forms
	Applies to
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Step 1 – Create a Sample WCF Service
	Step 2 – Enable Auditing for Your WCF Service
	Step 3 – Enable Logging and Tracing for Your WCF Service
	Step 4 – Create a Windows Forms Test Client Application
	Step 5 – Add a WCF Service Reference to the Client
	Step 6 – Test the Client and WCF Service
	Step 7 – Verify the Service Events in the Event Log
	Step 8 – Trace the Log File Using the SvcTraceViewer
	Additional Resources

	How To - Create and Install Temporary Certificates in WCF for Message Security During Development
	Applies to
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Step 1 – Create a Certificate to Act as Your Root Certificate Authority
	Step 2 – Create a Certificate Revocation List File from the Root Certificate
	Step 3 – Install Your Root Certificate Authority Certificate on the Server and Client Machines
	Step 4 – Install the Certificate Revocation List File on the Server and Client Machines
	Step 5 – Create and Install Your Temporary Service Certificate
	Step 6 – Give the WCF Process Identity Access to the Temporary Certificate’s Private Key
	Deployment Considerations
	Additional Resources

	How To - Create and Install Temporary Certificates in WCF for Transport Security During Development
	Applies to
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Step 1 – Create a Certificate to Act as Your Root Certificate Authority
	Step 2 – Install Your Root Certificate Authority on the Server and Client Machines
	Step 3 – Create and Install Your Temporary Service Certificate
	Step 4 – Configure Your Temporary Service Certificate in IIS to Support SSL
	Deployment Considerations
	Additional Resources

	How To - Create and Install Temporary Client Certificates in WCF During Development
	Applies to
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Step 1 – Create a Certificate to Act as Your Client Root Certificate Authority
	Step 2 – Create a Certificate Revocation List File from the Root Certificate
	Step 3 – Install Your Client Root Certificate Authority on the Client and Server Machines
	Step 4 – Install the Certificate Revocation List File on the Server and Client Machines
	Step 5 – Create and Install Your Temporary Client Certificate
	Deployment Considerations
	Additional Resources

	How To - Host WCF in a Windows Service Using TCP
	Applies To
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Step 1 – Create a WCF service
	Step 2 – Configure the WCF Endpoints to Use TCP and Set the Base Address
	Step 3 – Create a Windows Service
	Step 4 – Add the Service Installers to the Windows Service
	Step 5 – Modify the Windows Service to Host the WCF Service
	Step 6 – Install the Windows Service
	Step 7 – Create a Windows Forms Test Client Application
	Step 8 – Add a WCF Service Reference to the Client
	Step 9 – Test the Client and WCF Service
	Additional Resources

	How To - Impersonate the Original Caller in WCF Calling from Web Application
	Applies To
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Before You Begin
	Step 1 – Create a Sample WCF Service
	Step 2 – Configure the WCF Service to Use Windows Authentication
	Step 3 – Configure the SPN Identity for the WCF Service Endpoint
	Step 4 – Implement Impersonation in the WCF Service
	Step 5 – Create a Web Application Test Client
	Step 6 – Add a WCF Service reference to the client
	Step 7 – Impersonate the Original Caller When Calling the WCF Service
	Step 8 – Configure the Web Application for Constrained Delegation
	Step 9 – Test the Client and WCF Service
	Additional Information
	Additional Resources

	How To - Impersonate the Original Caller in WCF Calling from Windows Forms
	Applies To
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Step 1 – Create a Sample WCF Service
	Step 2 – Configure the WCF Service to Use Windows Authentication
	Step 3 – Implement Impersonation in the WCF Service
	Step 4 – Create a Test Client Application
	Step 5 – Add a WCF Service Reference to the Client
	Step 6 – Test the Client and WCF Service
	Additional Information
	Additional Resources

	How To - Perform Input Validation in WCF
	Applies To
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Step 1 – Create a Sample WCF Service
	Step 2 – Create a Windows Class Library for Parameter Validation
	Step 3 – Create a Class That Implements the Validation Logic
	Step 4 – Create a Class That Implements a Custom Endpoint Behavior
	Step 5 – Create a Class That Implements a Custom Configuration Element
	Step 6 – Add the Custom Behavior to the Configuration File
	Step 7 – Create an Endpoint Behavior and Map It to Use the Custom Behavior
	Step 8 – Configure the Service Endpoint to Use the Endpoint Behavior
	Step 9 - Test the Parameter Validator
	Deployment Considerations
	Additional Resources

	How To - Perform Message Validation with Schema Validation in WCF
	Applies To
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Step 1 – Create a Sample WCF Service
	Step 2 – Configure the WCF Service to Use wsHttpBinding with Windows Authentication and Message Security
	Step 3 – Create the Schema to Validate the Message
	Step 4 – Create a Windows Class Library Project That Will Contain the Three Classes Necessary for Schema Validation
	Step 5 – Create a Class That Implements the Schema Validation Logic
	Step 6 – Create a Class That Implements a Custom Endpoint Behavior
	Step 7 – Create a Class That Implements a Custom Configuration Element
	Step 8 – Add the Custom Behavior to the Configuration File
	Step 9 – Create an Endpoint Behavior and Map It to Use the Custom Behavior
	Step 10 – Configure the Service Endpoint to Use the Endpoint Behavior
	Step 11 - Test the Schema Validator
	Deployment Considerations
	Additional Resources

	How To - Use basicHttpBinding with Windows Authentication and TransportCredentialOnly in WCF from Windows Forms
	Applies To
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Step 1 – Create a Sample WCF Service
	Step 2 – Configure the WCF Service to Use basicHttpBinding
	Step 3 – Configure basicHttpBinding to use Windows Authentication with TransportCredentialOnly
	Step 4 – Enable Windows Authentication on IIS
	Step 5 – Create a Windows Forms Test Client Application
	Step 6 – Add a WCF Service Reference to the Client
	Step 7 – Test the Client and WCF Service
	Additional Resources

	How To - Use Certificate Authentication and Message Security in WCF Calling from Windows Forms
	Applies to
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Step 1 – Create a Sample WCF Service
	Step 2 – Configure wsHttpBinding with Certificate Authentication and Message Security
	Step 3 – Create and Install a Service Certificate
	Step 4 – Configure the Service Certificate for the WCF Service
	Step 5 – Create a Test Client
	Step 6 – Add a WCF Service Reference to the Client
	Step 7 – Create and Install the Client Certificate for Authentication
	Step 8 – Configure the Client Certificate in the WCF Client Application
	Step 9 – Test the Client and WCF Service
	Additional Resources

	How To - Use Certificate Authentication and Transport Security in WCF Calling from Windows Forms
	Applies to
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Step 1 – Create and Install a Temporary Certificate for Transport Security
	Step 2 – Create and Install a Temporary Client Certificate for Certificate Authentication
	Step 3 – Create a Sample WCF Service
	Step 4 – Configure wsHttpBinding with Certificate Authentication and Transport Security
	Step 5 – Configure the mex Endpoint to Use wsHttpbinding with Certificate Authentication Configuration
	Step 6 – Configure the Virtual Directory to Use SSL and Require Client Certificates
	Step 7 – Create a Test Client
	Step 8 – Create a Svcutil Configuration File in the Client Machine
	Step 9 – Create a Proxy with the svcutil.exe Tool
	Step 10 – Test the Client and WCF Service
	Additional Resources

	How To - Use Delegation for Flowing the Original Caller Credentials to Back-end in WCF Calling from Windows Forms
	Applies To
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Step 1 – Create a Sample WCF Service
	Step 2 – Configure the WCF Service to Use Windows Authentication
	Step 3 – Identify and Configure the Remote Service to Be Accessed
	Step 4 – Configure the WCF Service Identity Trusted for Constrained Delegation
	Step 5 – Impersonate the Original Caller in the WCF Service
	Step 6 – Create a Test Client Application
	Step 7 – Add a WCF Service Reference to the Client
	Step 8 – Test the Client and WCF Service
	Additional Resources

	How To - Use Health Monitoring to Instrument WCF Service for Security
	Applies to
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Step 1 – Create a Custom Web Event
	Step 2 – Create a WCF Service for Monitoring
	Step 3 – Configure Your WCF Service for Health Monitoring
	Step 4 – Instrument Your WCF Service
	Step 5 – Create a Test Client
	Step 6 – Add a WCF Service Reference to the Client
	Step 7 – Test the Client and WCF Service
	Step 8 – Verify the Service Events in the Event Log
	Additional Resources

	How To - Use netTcpBinding with Windows Authentication and Message Security in WCF Calling from Windows Forms
	Applies To
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Step 1 – Create a Windows Service
	Step 2 – Create a Sample WCF Service
	Step 3 – Modify the Windows Service to Host the WCF Service
	Step 4 – Configure the WCF Service to Use netTcpBinding with Message Security
	Step 5 – Configure the WCF Service to Publish Metadata
	Step 6 – Install the Windows Service
	Step 7 – Create a Test Client Application
	Step 8 – Test the Client and WCF Service
	Additional Resources

	How To - Use netTcpBinding with Windows Authentication and Transport Security in WCF Calling from Windows Forms
	Applies to
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Step 1 – Create a Windows Service
	Step 2 – Create a Sample WCF Service
	Step 3 – Modify the Windows Service to Host the WCF Service
	Step 4 – Configure the WCF Service to Use netTcpBinding with Transport Security
	Step 5 – Configure the WCF Service to Publish Metadata
	Step 6 – Install the Windows Service
	Step 7 – Create a Test Client Application
	Step 8 – Test the Client and WCF Service
	Additional Resources

	How To - Use Protocol Transition for Impersonating and Delegating Original Caller in WCF
	Applies To
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Step 1 – Create a Sample WCF Service
	Step 2 – Configure wsHttpBinding with Certificate Authentication and Message Security
	Step 3 – Create and Install a Service Certificate
	Step 4 – Configure the Service Certificate for the WCF Service
	Step 5 – Impersonate the Original Caller in the WCF Service
	Step 6 – Configure the WCF Service Identity for Protocol Transition and Constrained Delegation
	Step 7 – Create a Test Client
	Step 8 – Add a WCF Service Reference to the Client
	Step 9 – Create and Install the Client Certificate for Authentication
	Step 10 – Configure the Client Certificate in the WCF Client Application
	Step 11 – Test the Client and WCF Service
	Additional Resources

	How To - Use SQL Role Provider with Username Authentication in WCF Calling from Windows Forms
	Applies to
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Step 1 – Create a WCF Service with Username Authentication Using the SQL Server Membership Provider
	Step 2 – Create a Role Store for the SQL Server Role Provider
	Step 3 – Grant Access Permission to the WCF Service Process Identity
	Step 4 – Enable and Configure the Role Provider
	Step 5 – Create Roles and Assign Users
	Step 6 – Implement Declarative Role-based Security
	Step 7 – Create a Test Client
	Step 8 – Add a WCF Service Reference to the Client
	Step 9 – Configure the Client to Set RevocationMode to NoCheck
	Step 10 – Test the Client and WCF Service
	Additional Resources

	How To - Use SQL Role Provider with Windows Authentication in WCF Calling from Windows Forms
	Applies to
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Step 1 – Create a WCF Service with Windows Authentication
	Step 2 – Create a Role Store for the SQL Server Role Provider
	Step 3 – Grant Access Permission to the WCF Service Process Identity
	Step 4 – Enable and Configure the Role Provider
	Step 5 – Create and Assign Roles to Windows Accounts
	Step 6 – Implement Declarative Role-based Security
	Step 7 – Create a Test Client
	Step 8 – Add a WCF Service Reference to the Client
	Step 9 – Test the Client and WCF Service
	Additional Resources

	How To - Use Username Authentication with the SQL Membership Provider and Message Security in WCF from Windows Forms
	Applies to
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Step 1 – Create a User Store for SQL Membership Provider
	Step 2 – Grant Access Permission to the WCF Service Process Identity
	Step 3 – Create a Sample WCF Service
	Step 4 – Configure wsHttpBinding with Username Authentication and Message Security
	Step 5 – Configure Membership Provider for Username Authentication
	Step 6 – Create and Install a Service Certificate
	Step 7 – Configure the Service Certificate for WCF
	Step 8 – Create a User in the User Store
	Step 9 – Create a Test Client
	Step 10 – Add a WCF Web Reference to the Client
	Step 11 – Test the Client and WCF Service
	Additional Resources

	How To - Use Username Authentication with Transport Security in WCF Calling from Windows Forms
	Applies to
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Step 1 – Create a User Store for the SQL Server Membership Provider and a Role Store for the SQL Server Role Provider
	Step 2 – Grant Access Permission to the WCF Service Process
	Step 3 – Create a Sample WCF Service
	Step 4 – Configure basicHttpBinding with Transport Security and an Authentication Type of “None”
	Step 5 – Configure the WCF Service for ASP.NET Compatibility Mode
	Step 6 – Configure the SQL Server Membership Provider in the Web Configuration File
	Step 7 – Configure the SQL Server Role Provider and Enable It in WCF
	Step 8 – Create the User and Assign Roles
	Step 9 – Implement a Custom HTTP Module Class That Derives from IHttpModule to Authenticate Users with the SQL Server Membership Provider
	Step 10 – Configure the WCF Service to Use the HTTP Module for Authentication
	Step 11 – Implement a Class that Derives from IAuthorizationPolicy
	Step 12 – Configure the WCF Service to Use the Authorization Policy
	Step 13 – Configure Security Settings in IIS
	Step 14 – Implement Authorization Checks on Your Service
	Step 15 – Create a Test Client
	Step 16 – Add a WCF Service Reference and Web Service Reference to the Client
	Step 17 – Test the WCF/ASMX Client and WCF Service
	Additional Resources

	How To - Use wsHttpBinding with Username Authentication and TransportWithMessageCredential in WCF calling from Windows Forms
	Applies to
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Step 1 – Create a User Store for the SQL Server Membership Provider
	Step 2 – Grant Access Permission to the WCF Service Process Identity
	Step 3 – Create and Install a Service Certificate for Transport Security
	Step 4 – Create a Sample WCF Service Project with SSL
	Step 5 – Configure the Virtual Directory to Require SSL
	Step 6 – Configure wsHttpBinding for Username Authentication and TransportWithMessageCredential Security
	Step 7 – Configure the Service to Publish Metadata Securely
	Step 8 – Configure the Membership Provider for Username Authentication
	Step 9 – Create a User in the User Store
	Step 10 – Create a Test Client Application
	Step 11 – Add a WCF Service Reference to the Client
	Step 12 – Test the Client and WCF Service
	Additional Resources

	How To - Use wsHttpBinding with Windows Authentication and Message Security in WCF Calling from Windows Forms
	Applies to
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Step 1 – Create a Sample WCF Service
	Step 2 – Configure the WCF Service to Use wsHttpBinding with Windows Authentication and Message Security
	Step 3 – Create a Test Client
	Step 4 – Add a WCF Service Reference to the Client
	Step 5 – Test the Client and WCF Service
	Additional Considerations
	Deployment Considerations
	Additional Resources

	How To - Use wsHttpBinding with Windows Authentication and Transport Security in WCF Calling from Windows Forms
	Applies to
	Summary
	Contents
	Objectives
	Overview
	Summary of Steps
	Step 1 – Create and Install a Service Certificate for Transport Security
	Step 2 – Create a Sample WCF Service Project with SSL
	Step 3 – Configure the Virtual Directory to Require SSL
	Step 4 – Configure wsHttpBinding for Windows Authentication and Transport Security
	Step 5 – Configure the Service to Publish Metadata Securely
	Step 6 – Create a Test Client Application
	Step 7 – Add a WCF Service Reference to the Client
	Step 8 – Test the Client and WCF Service
	Additional Resources

	WCF Security Resources
	Getting Started
	Articles
	Blogs
	Channel9
	Documentation
	Guides
	Posts
	patterns & practices
	Product Support Services (PSS)
	Samples
	Videos
	Web Casts

